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Abstract

Background: Epigenome-wide association scans (EWAS) are under way for many com-

plex human traits, but EWAS power has not been fully assessed. We investigate power

of EWAS to detect differential methylation using case-control and disease-discordant

monozygotic (MZ) twin designs with genome-wide DNA methylation arrays.

Methods and Results: We performed simulations to estimate power under the case-

control and discordant MZ twin EWAS study designs, under a range of epigenetic risk

effect sizes and conditions. For example, to detect a 10% mean methylation difference

between affected and unaffected subjects at a genome-wide significance threshold of

P¼1� 10�6, 98 MZ twin pairs were required to reach 80% EWAS power, and 112 cases

and 112 controls pairs were needed in the case-control design. We also estimated the

minimum sample size required to reach 80% EWAS power under both study designs.

Our analyses highlighted several factors that significantly influenced EWAS power,

including sample size, epigenetic risk effect size, the variance of DNA methylation at the

locus of interest and the correlation in DNA methylation patterns within the twin sample.

Conclusions: We provide power estimates for array-based DNA methylation EWAS

under case-control and disease-discordant MZ twin designs, and explore multiple factors

that impact on EWAS power. Our results can help guide EWAS experimental design and

interpretation for future epigenetic studies.
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Introduction

Recent advances in epigenetic technologies have

enabled high-throughput epigenome-wide association

scans (EWAS). To date EWAS have predominantly

focused on DNA methylation, identifying many

differentially methylated positions (DMPs), differentially

methylated regions (DMRs) and allele-specific

methylation (ASM) regions,1,2 related to ageing,3–6

environmental exposures7–11 and complex diseases.12–14

The majority of EWAS use microarray-based DNA

methylation platforms, such as the Illumina Infinium

HumanMethylation450 (Illumina 450K15) array.

Several methods have recently been developed to explore

epigenome-wide variation,16–23 but limited research has

investigated power.

Similar to genome-wide association scans (GWAS), in

EWAS power depends on several key factors including study

design and sample size, effect size and correction for mul-

tiple testing. At least two additional factors that are specific

to epigenetic data can also influence power, and these are

the longitudinal stability of the epigenetic marks and their

variance within a biological sample, because epigenetic sig-

nals in a biological sample from one individual represent fre-

quency measures from a population of cells. Although most

of these factors remain unknown, results from recent EWAS

can provide some insights. The two most widely applied

EWAS study designs to date are the case-control and the dis-

ease-discordant monozygotic (MZ) twin design, which is

often sought after because twins are closely matched for

genetic variation, age, sex and cohort effects, and have simi-

lar early environments. Recent EWAS findings based on

these designs report modest to moderate effect sizes of

0.13% to 6.6% difference in DNA methylation levels be-

tween affected and unaffected individuals in type 1 dia-

betes,24 10% in pain,10 >10% difference in systemic lupus

erythematosus (SLE)25 and up to> 20% for environmental

exposures such as smoking.11 To correct for multiple test-

ing, recent EWAS have applied Bonferroni correction on the

total number of regions and false-discovery rate (FDR)

approaches. Longitudinal stability of epigenetic variants has

been explored genome-wide, and appears to vary across re-

gions and among individuals of different ages.4,26

Lastly, the impact of biological variability in epigenetic

marks within a sample has been recently addressed

in the context of whole blood cell composition, where

it is now widely acknowledged that blood cell

heterogeneity can impact on EWAS results, and computa-

tional methods have been developed to minimize these

effects.22,23

Although power has a crucial role in EWAS, only two

recent studies have addressed it in detail in the context of

the case-control study design.27,28 In both studies, the

authors estimated power under a number of assumptions

and for a range samples sizes, and concluded that the

distribution and variability of DNA methylation at

the locus of interest can impact on power to detect small

effect sizes. Greater power was attained at loci where the

DNA methylation signal was less variable in both case and

control groups. Furthermore, the studies also propose new

measures of effect size (for example, the methylation odds

ratio27) and extended EWAS test statistics.28 In the dis-

ease-discordant MZ twin design, formal power calcula-

tions are still lacking, but several studies have estimated

locus-specific power estimates.3,29–30 These are based on

different technologies and under a number of assumptions,

and report a wide range of power. For example, 25 twin

pairs were sufficient to reach 80% power to detect a 1.2-

fold change in DNA methylation at Bonferroni correction

in CpG island microarray (not single-CpG resolution)

methylome data,29 whereas more recent examples report

low (35%) to good (>80%) power to detect DMRs at sin-

gle CpG sites with methylation differences of 5–6% be-

tween affected and unaffected twins in 20–22 disease-

discordant twin pairs.3,30

Here, we estimate power of EWAS to detect the differen-

tial methylation using methylation platforms such as the

Illumina 450K, under the case-control and disease-discordant

twin study designs. We also evaluate the sample size required

to reach 80% power under a variety of effect sizes for the

two study designs. We explore factors that impact on EWAS

Key Messages

• We provide estimates of EWAS power using simulations based on DNA methylation array data.

• EWAS power was calculated under both the case-control and discordant MZ twin designs.

• We explore major factors that influence EWAS power including sample size, effect size (methylation difference and

methylation odds ratio), the methylation variance of the case and control samples, and the correlation in DNA methy-

lation between identical twin pairs.

• The provided power estimates can help guide EWAS study design and interpretation.
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Figure 1. DNA methylation patterns at the (A) cellular and individual levels, and (B) with respect to the proposed methylation distributions in the simu-

lations. We assume that a cell can have two methylated alleles (ei¼ 1), one methylated allele (ei¼ 0.5) or two unmethylated alleles (ei¼ 0), and one

sample from an individual contains different frequencies of these cells (A, upper panel). The methylated allele is shown as a dagger symbol, and the

colour of each cell represents its methylation status: un-methylated (white), hemi-methylated (grey) and methylated (black) (A, upper panel). The

methylation in each sample is represented as the summary of the methylated epi-allele, denoted here as beta (A, middle panel) which can range from

0 to 1 (A, lower panel). We assume that cases have greater mean methylation levels compared with controls, and we propose one control and eight

case distributions. (B) Each line represents the density of methylation levels on each proposed distribution, where the Control distribution is un-

methylated, Cases 1–3 represent predominantly un-methylated samples (left panel), Cases 4–6 are hemi-methylated (middle panel) and Cases 7–8

are predominantly methylated (right panel).
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power, such as the effect size, between-group methylation

variance and the methylation correlation in twins.

Methods

An epigenetic model of complex disease

susceptibility

We assume that disease risk is affected by DNA methyla-

tion at a single locus, l (Figure 1A, upper panel), where

l represents a single CpG site in the genome. The methyla-

tion status at locus l in a single cell can be represented as

a biallelic marker, where epi-allele 1 represents the pres-

ence of the methylated mark, and epi-allele 0 represents

the absence of methylation. We assume that the disease-

associated methylation mark occurs prior to onset of

disease and is faithfully transmitted through mitotic

cell division. We denote DNA methylation status

(epi-genotype) at locus l as ej, where the ej takes the value

of 0, 0.5, and 1 to correspond to un-methylated, hemi-

methylated and methylated states for a single cell. Each in-

dividual cell can consist of un-methylated, hemi-methy-

lated and methylated epi-genotypes with probabilities of

p1, p2 and p3, where p1þ p2þ p3¼ 1. A sample from an

individual i represents a population of cells (Figure 1A,

middle panel), and we assume that the contribution of

each cell to the population is constant and without bias.

The sample-level DNA methylation estimate is a func-

tion of the methylation levels of the composition of cells

(Figure 1A, lower panel), and can be described by different

functions or epigenetic models. In this study, we propose a

threshold model where the sample-level DNA methylation

estimate reflects the allele frequency of the methylated epi-

allele 1 in the cell population. That is, DNA methylation

level for each sample is denoted as b (beta), which repre-

sents the sum of its fully methylated cells plus half of its

hemi-methylated cells, divided by the total number of cells

in the sample. In addition to the proposed DNA methyla-

tion threshold model, dominant and recessive models may

also be applied, as proposed for genetic disease susceptibil-

ity risk.

DNA methylation distribution

Multiple methods can be used to profile DNA methylation

patterns across the genome. We focus on micro-array

based datasets, such as those generated by the Illumina

450K array, which is currently the most widely used gen-

ome-wide technology to detect methylation in large-scale

EWAS. The array measures methylated and un-methylated

signals at 485 578 single CpG sites genome-wide. At each

CpG site, the Illumina 450K DNA methylation level is

characterized as a finite bounded quantitative trait b,

calculated as:

Beta bð Þ ¼ Methylated signal

Methylated signal þUnmethylated signal þ 100

Previous work has proposed that a single or bimodal

beta distribution can be used to describe the single-locus

distribution of DNA methylation levels on the Illumina

450K array.27 We therefore propose nine single-locus

DNA methylation distributions in the context of the epi-

genetic disease susceptibility model. We assume that the

absence of methylation is linked to the absence of disease,

and propose an un-methylated distribution in unaffected

individuals (Control distribution, Figure 1B), which is

described by b(1.5,6) with a mean methylation level of 0.2.

In our model, affected individuals will show higher levels

of DNA methylation relative to controls, and we propose

eight possible single-locus methylation distributions in af-

fected individuals (Case 1–Case 8 distributions, Figure 1B).

The eight case distributions have increasing ordinal mean

methylation difference with the control distribution that

ranges from 1% to 60% in mean DNA methylation. The

eight case distributions include three distributions (Case

1–Case 3) with mean methylation levels� 0.3 (un-

methylated), three distributions (Case 4–Case 6) with

mean methylation levels� 0.45 and� 0.5 (hemi-methy-

lated) and two distributions with mean methylation

levels� 0.75 (methylated). The three proposed un-methy-

lated case distributions, Case 1 to 3, follow b(1.6,6), b(2,6)

and b(2.6,6) with a mean methylation level of 0.21, 0.25

and 0.30, respectively, and mean methylation difference of

1%, 5% and 10% with the control distribution, respect-

ively. Case 4 and Case 5 characterize hemi-methylated dis-

tributions of b(4.9,6) and b(6,6) with mean methylation

levels of 0.45 and 0.5, respectively, and mean methylation

differences of 25% and 30%, respectively. Case 6 is also

hemi-methylated, but follows the normal distribution

N(0.5,0.1), and has the same mean methylation level as

Case 5 but a smaller standard deviation. Case 7 follows the

combination of 9% of b(1.5,6) and 91% of b(6,1.5) with a

mean methylation of 0.75, and methylated Case 8 follows

the b(6,1.5) with a mean of 0.8 that is diametrically

opposed to the control distribution. The mean methylation

difference between Case 7 and Case 8 with the control dis-

tribution was 55% and 60%, respectively.

Study designs

Power was estimated under two EWAS study designs, case-

control and disease-discordant monozygotic (MZ) twins.

To compare power under the same parameters in the
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case-control and twin designs, we assumed that cases were

identical in both study designs, and their matched controls

and unaffected co-twins were sampled from the control

distribution. In case-control design, the controls were se-

lected based on the defined effect sizes. In the MZ discord-

ant twin design, unaffected co-twins were selected with

additional intra-pair locus-specific correlation. In each

simulation, cases were selected from one of the eight Case

distributions, and for the disease-discordant MZ twin

design unaffected co-twins were sampled from the control

distribution if: (i) the mean difference within the co-twins

matched the pre-specified effect size; and (ii) the

Spearman’s correlation coefficient within MZ pairs was

between 0.193 and 0.616, which represented the

genome-wide mean correlation coefficients 6 1 SD in a

previously published set of 21 MZ twins using Illumina

27K.3 Once MZ twin pairs were selected, for each affected

twin (or case) we also sampled a matched healthy unrelated

control sample from the control distribution. Figure 2

shows an example simulation procedure by selecting the

cases from distribution Case 3 and both matched unrelated

controls and matched healthy co-twins from the control

distribution.

Simulation parameters

We considered case-control and disease-discordant twin

samples over a range of sample sizes. As MZ twins are

more difficult to recruit than unrelated cases and controls,

we used a smaller sample size for the twin design, specific-

ally 10, 15, 20, 25, 30 and 50 MZ twin pairs. Power calcu-

lations were also performed for case-control sample sizes

of 10, 15, 20, 25, 30, 50, 100, 200 and 500 pairs of unre-

lated cases and controls (that is, altogether 20 to 1000 indi-

viduals in the sample).

As an estimate of effect size we used two approaches.

First, we used the mean difference in methylation levels

between affected and unaffected individuals, which ranged

from 1% to 20%, 25%, 30%, 55% and 60%, and this

was applied to both the twin and case-control designs. The

selection of effect sizes and sample sizes was based on

recently published EWAS findings as described in the intro-

duction, and further extended to cover a broad range. In

our simulation results (Supplementary Table 1a–c, avail-

able as Supplementary data at IJE online), we did not have

power to detect effects at 1% methylation difference at sin-

gle locus significance (P<0.05) with 500 cases and con-

trols, and therefore the simulations with methylation

differences less than 1% were not performed. For the case-

control design we also calculated effect sizes using the

methylation odds ratio (methOR). Given the pre-specified

range of mean methylation differences (1% to 60%),

we calculated the methOR, which was previously27

defined as:

methOR

¼ Mean MethylationCase � ð1�Mean MethylationControlÞ
1�Mean MethylationCaseð Þ � Mean MethylationControl

The methOR in this study ranged from 1.05 to 2.0, and

was combined with a maximum mean difference value to

minimize methylation effect variability, because the range

of mean differences tends to be narrower for larger sam-

ples. For example, for a methOR¼1.2, the range of mean

differences is 2.63% to 3.68% in 50 case-controls, whereas

the range is 2.78% to 3.38% in 500 case-controls. In this

example, to reduce bias caused by variation of mean differ-

ence, we set a cutoff of 3% mean difference along with

methOR¼ 1.2.

We estimate the variance in DNA methylation signal

using the pooled standard deviation (pooled SD) of each

case-control or twin sample by calculating:

Pooled SD ðSDCase;ControlÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NCase � 1ð Þ � SDCase

2 þ ðNControl � 1Þ � SDControl
2

ðNCase þNControl � 2Þ

s

We also assessed the correlation in DNA methylation pro-

files between cases and controls, and between affected

twins and healthy co-twins. We calculated between-group

correlation using Spearman’s correlation coefficients (q).

The statistical significance threshold was set at a

P-value threshold of 0.05 for single locus analysis, and

a P-value threshold of 1� 10�6 for genome-wide signifi-

cance. This threshold was selected using Bonferroni

correction based on a subset of the probes on the Illumina

450K array, because some regions show evidence

for co-methylation. Furthermore, recent EWAS using

Illumina 450K data have reported FDR-based thresholds

of 1% to 5% FDR with corresponding P-values close to

P¼ 1 � 10�4.31,32

Estimation of statistical power

Power estimation was based on simulations. For the para-

metric analyses, a t test with a prior F test for equal vari-

ance was performed in the case-control design and a paired

t test was performed in the twin study design. All of the

case-control simulations include equal and unequal varian-

ces between cases and controls with the exception of one

case-multiple control scenario with a greater proportion of

unequal variances. Supplementary Tables 1a–c show

results from simulations with equal variances between

cases and controls. The corresponding nonparametric ana-

lyses, Wilcoxon rank sum test (also called the
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Mann–Whitney U test) and Wilcoxon signed rank test,

were also performed. All statistical analyses were per-

formed in R version 2.15.0.

Results

Power of case-control EWAS using mean

difference effect estimates

Power simulations were performed under the case-control

EWAS design, by sampling effect sizes based on the mean

difference in DNA methylation between cases and controls.

Cases were selected from one of eight case distributions and

controls were drawn from the control distribution, using

1000 permutations per simulation. Simulations were per-

formed with mean difference effects from 1% to 60% and

with increasing sample sizes from 10 to 500 pairs of cases

and controls, that is, 20 to 1000 individuals altogether

(Figure 3A, Supplementary Table 1a, available as

Supplementary data at IJE online). Figure 3A shows the

mean difference required to achieve 80% power at different

sample sizes at P-value thresholds of 0.05 (single locus

threshold, upper plot) and 1� 10�6 (genome-wide

threshold, lower plot). For example, a sample size of 100

cases and 100 controls results in over 80% power to detect

a 4.5% mean difference (mean methOR¼ 1.32) in methyla-

tion at nominal significance (P¼ 0.05). However, at a gen-

ome-wide significance (P¼1�10�6) the same sample size

gives over 80% power to detect a much larger effect size of

11% mean difference (mean methOR¼ 1.81). The results

of the Wilcoxon test are shown in Supplementary Table 1

and 2, available as Supplementary data at IJE online. We

also performed power estimation under the one case-mul-

tiple controls scenario. We show results from one case:two

controls and one case:four controls study design

(Supplementary Table 1b and c, available as Supplementary

data at IJE online) and, as expected, power increases when

the sample size of the control group increases.

Power of case-control EWAS using methOR

effect estimates

We next considered using the methOR as a measure of ef-

fect size in the case-control design. Power estimates were

obtained from simulations with methOR effects of 1.05 to

Figure 2. Example of a permutation procedure. Cases were drawn from the case distribution and matched controls, and healthy co-twins were drawn

from the control distribution. Only permutations with a set effect size between the two groups were used in the power calculation. The cases are iden-

tical for both case-control and twin designs (black dots). Controls in the case-control design were randomly selected from the control distribution. In

the twin design, DNA methylation profiles in healthy co-twin controls were correlated with cases (Spearman’s correlation coefficients between 0.193

and 0.616). The thickness of the blue line in the twin design illustrates the similarity in DNA methylation between twins.
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2.0 and with increasing sample sizes from 50 to 500 pairs

of cases and controls (Figure 3B, Supplementary Table 2

available as Supplementary data at IJE online). To achieve

80% power to detect differential methylation at nominal

significance, the minimum methOR that could be detected

ranged from 1.15 for a sample of 500 cases and 500 con-

trols, to 1.45 for a sample of 50 cases and 50 controls. To

achieve 80% power to detect differential methylation at

genome-wide significance, sample sizes of at least 100

cases and 100 controls were required to detect methORs of

at least 1.8, and no power was observed for smaller sam-

ples (n�50 cases and 50 controls).

Power of discordant twin EWAS

We next estimated EWAS power under the disease-discord-

ant MZ twin design. Simulations were performed with

mean difference effects from 1% to 60% and with sample

sizes of 10, 15, 20, 25, 30 and 50 twin pairs (Table 1,

Figure 4). For example, we observed that a sample of 25

twin pairs has over 80% power to detect a mean difference

of 8% in methylation at nominal significance (P¼ 0.05),

and 25% at genome-wide significance (P¼ 1� 10�6). As

expected, power estimates in twins outperformed the case-

control design (Table 1, Figure 4). For example, a sample

of 25 twin pairs has over 80% power to detect a mean dif-

ference of 8% in methylation at nominal significance

(P¼ 0.05), whereas 25 pairs of cases and controls have

only 45% power to detect this effect (Figure 4A). At gen-

ome-wide significance, at least 50 pairs of subjects were

required to identify effect sizes of 16% mean difference

with over 80% power in both designs (Figure 4B).

However, our simulations were not designed for a formal

comparison between case-control and twin power, because

our results assume that twins and case-control samples are

equally well matched for factors that can influence

Figure 3. Power of case-control EWAS. Estimates are obtained for a range of sample sizes, using (A) mean difference and (B) methOR effects, at nom-

inal (upper panel) and genome-wide (lower panel) significance thresholds. Each line represents the power curve under different case-control sample

sizes from 10 to 500 pairs of cases and controls.
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differential methylation, including age, sex and cohort ef-

fects, and unrelated samples are typically more heteroge-

neous than MZ twins.

Sample size required to reach 80% power in

EWAS twin and case-control designs

We estimated the sample size required to reach 80%

power in both the twin and case-control designs (Table 2).

Effects were simulated using mean differences of 7% to

15% for both case-controls and twins. Power was

estimated at nominal significance (P¼ 0.05) and at a

EWAS genome-wide significance threshold of

P¼ 1� 10�6. Twins required a smaller sample size to

reach 80% power compared with case-controls. In general,

the sample sizes required to detect larger mean differences

(�13%) were similar between twins and case-controls, but

differed when mean differences were smaller (�10%).

For example, to detect a mean difference of 7% at gen-

ome-wide significance, 178 pairs of twins were required

and 211 cases and 211 controls were needed. Similar

sample sizes were estimated using the nonparametric

Wilcoxon test.

DNA methylation variance can impact on power

in the EWAS case-control design

We explored the effect of DNA methylation variance on

EWAS power by estimating the pooled SD in DNA methy-

lation for the combined case-control sample as a measure

of variance (Figure 5A). We selected permutations with 20

cases and 20 controls at a 10% methylation mean differ-

ence and with equal variances, and estimated power by

categorizing the pooled SD into four groups (0.145–0.150,

0.150–0.155, 0.155–0.160 and 0.160–0.165) and methOR

into six groups (1.62–1.64, 1.64–1.66, 1.66–1.68,

1.68–1.70, 1.70–1.72 and 1.72–1.74). Power was esti-

mated using the t test (Figure 5A, left panel) and Wilcoxon

test (Figure 5A, right panel) at nominal significance. Under

the t test, the pooled SD greatly influences power where

greater pooled SD will lead to lower power irrespective of

methOR differences. In comparison, both pooled SD and

methOR have an influence on power estimated using the

Wilcoxon test. Greatest power can be achieved with

smaller pooled SD and at highest methOR.

To further explore the influence of methylation variance

on power, we selected permutations with the same 20 cases

Figure 4. Power of discordant twin EWAS. Estimates are shown for the

twin (solid lines) and case-control (dashed lines) designs for a range of

sample sizes and mean differences at a significance level of 0.05

(A, upper panel) and 1� 10�6 (B, lower panel). Each line represents the

power curve under different sample sizes from 10 to 100 pairs of twins,

or pairs of cases and controls.

Table 2. Sample size requirements for 80% power in EWAS

twin and case-control designs

Diff Twin Case-control

P<0.05 P<1�10�6 P<0.05 P<1�10�6

t-testa Wilcoxb t-testa Wilcoxb t-testc Wilcoxd t-testc Wilcoxd

7% 30 30 178 178 37 37 211 211

8% 25 25 145 149 30 30 169 169

9% 20 20 117 117 24 24 137 137

10% 17 18 98 102 20 21 112 110

11% 15 15 81 83 17 18 96 95

12% 13 13 71 71 15 16 80 80

13% 11 12 63 69 13 13 70 70

14% 10 11 55 62 11 13 61 63

15% 9 10 50 57 10 11 54 57

Diff, mean methylation difference between affected and unaffected

individuals.
at test, paired t test.
bWilcox, Wilcoxon signed-rank test.
ct test, two-sample t test.
dWilcox, Wilcoxon rank-sum test.
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and 20 controls at a 10% methylation mean difference,

but only using simulations where the variance of cases was

not equal to that of the controls. The major difference be-

tween the equal and unequal variance t test is in the de-

nominator of the t statistic and degrees of freedom. In the

unequal variance test, the variance between groups was

calculated by:

SD
Case �Control

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDCase

2

NCase
þ SDControl

2

NControl

s

Power estimates in the unequal variance case-control simu-

lations were categorized using this pooled standard

deviation into four groups (0.040–0.042, 0.042–0.044,

0.044–0.046 and 0.046–0.048), and using methOR into

six groups (1.62–1.64, 1.64–1.66, 1.66–1.68, 1.68–1.70,

1.70–1.72 and 1.72–1.74). Furthermore, we also con-

sidered which group (cases or controls) had the greater

variance; that is, either the variance in cases was greater

than that in controls, or the variance in cases was smaller

than that in controls. Compared with the simulations with

equal variances between the groups, the power estimations

from the unequal variance results were quite similar for the

t test (Supplementary Figure 1, left panel, available as

Supplementary data at IJE online). It is easier to reach

greater power when the variance in the cases is smaller

Figure 5. DNA methylation variance and correlation can impact EWAS power. Case-control power estimates (A, upper panel) are shown under differ-

ent pooled SDs and methORs at a fixed mean difference¼10% using parametric (left panel) and nonparametric (right panel) test statistics. MZ twin

power estimates (B, lower panel) are shown under different pooled SDs and correlation coefficients at a fixed mean difference¼ 9% using parametric

(left panel) and nonparametric (right panel) test statistics.
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than that in controls, and a more distinct pattern is found

using the Wilcoxon test under the same parameter settings

(Supplementary Figure 1, right panel, available as

Supplementary data at IJE online). Similarly to the equal

variance results, the methOR and pooled variance

impact on power (Supplementary Figure 2, available as

Supplementary data at IJE online). These results also high-

light the importance of choosing the appropriate analytical

method across the equal variance t test, the unequal vari-

ance t test and the Wilcoxon test.

DNA methylation variance and twin correlation

can influence power in the EWAS twin design

The impact of methylation variance on power in the case-

control design suggests that similar effects may exist in the

twin design. We therefore assessed power in the EWAS

twin design by considering the pooled SD of the DNA

methylation signal in the twin sample, as well as the correl-

ation in methylation between co-twins (Figure 5B). We

performed permutations by varying the pooled SD and cor-

relation, at a set methylation difference of 9% in 20 pairs

of twins. Because 9% methylation difference can corres-

pond to a range of methORs (from 1.30 to 2.44) in the

case-control design, which can also impact on power, we

further restricted the permutations to give a set

methOR¼ 1.67. Power was estimated at nominal signifi-

cance by categorizing pooled SD into four groups (0.6–0.7,

0.7–0.8, 0.8–0.9 and 0.9–1.0), and the correlation into six

groups (0.19–0.25, 0.25–0.30, 0.30–0.35, 0.35–0.40,

0.40–0.45 and 0.45–0.63). The smallest pooled SD results

in greatest power and, under the same pooled SD, permu-

tations with higher twin correlation result in greater

power. Compared with the t test, the Wilcoxon test gives

slightly lower power under moderate pooled SD, but the

Wilcoxon test can outperform the t test under larger

pooled SD. Smaller pooled SD, greater mean difference

and greater Spearman’s correlation within twins can result

in greater power.

Discussion

Statistical power and sample size are crucial to EWAS

design and interpretation. Here, we estimate power and

sample size limitations for two most commonly applied

EWAS designs under a number of key assumptions. EWAS

power has previously been explored in the case-control

context, but our results provide a first characterization of

power for the disease-discordant MZ twins EWAS design

across a range of epigenetic disease models.

MZ twins share nearly all of their genetic variants, are

matched for age, gender and cohort effects, and have

similar in utero and maternal effects and many early-life

environmental factors. All of these factors have either been

shown or are hypothesized to influence DNA methylation

levels throughout the genome. Therefore, MZ twins are a

much more homogeneous sample relative to genetically

heterogeneous unrelated individuals who are exposed to

different environments throughout life, and correspond-

ingly MZ twins have been shown to have much more simi-

lar levels of DNA methylation compared with dizygotic

(DZ) co-twins and unrelated pairs of individuals.3,33 It is

difficult to incorporate all of these factors in a simulation

study, therefore in an attempt to minimize some of these

effects, we assumed that all individuals in our study were

the same age and gender and were exposed to similar

cohort effects. This will bias the case-control sample to-

wards homogeneity and may give inflated power estimates

for the case-control design. Therefore, we cannot directly

compare the power estimates of case-control and twin

designs. The EWAS case-control and EWAS twin designs

are complementary to each other and can be used jointly to

identify the cause of the identified disease-associated

DMR. The twin design can be used to identify disease-

related DMRs that are either caused by stochastic or envir-

onmental factors, or that are a consequence of the disease.

In contrast, samples of unrelated individuals provide the

option to integrate genetic and DNA methylation datasets

to explore potential genetic impacts on the trait that are

mediated by methylation.

Our findings build on two previous studies that explore

power in the case-control design.27,28 In general, the case-

control power estimates and conclusions are consistent

with previous results.27,28 For example, using 200 cases

and 200 controls, a methOR of 1.49 and a mean difference

of 7.2% previously resulted in 16% power under the Wald

test.27 The closest scenarios in our study were using 200

cases and 200 controls, simulating a methOR between

1.45 (mean difference¼ 6.4%) and up to methOR of 1.5

(mean difference¼ 7.0%), which resulted in power

between 18% and 67% under the Wilcoxon test, respect-

ively. Although power is close to previous estimates, there

is a divergence which could be explained by the different

composition of the underlying DNA distributions. Both

previous power studies proposed that the single-locus

DNA methylation distribution is composed by a mixture

distribution, either a Uniform-Normal mixture28 or single

or combined Beta distributions,27 whereas we assumed

that the cases follow predominantly a single Beta distribu-

tion and the controls remained un-methylated. Our as-

sumption was based on published profiles from 172

healthy female subjects3 measured by the Illumina 27K

array, where 69% (n¼ 24 641) of the autosomal CpGs

were un-methylated and the majority of methylation
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distributions on each locus followed single Beta distribu-

tion with small standard deviation (85% of probes with

SD< 0.05). Therefore, as previously noted, the shape of

the underlying single-locus DNA methylation distribution

will play a role in power.

One of the major characteristics of the DNA methyla-

tion distribution is the variance in DNA methylation. DNA

methylation variance has previously been shown to impact

power,28 and we confirm these results not only in the case-

control design but also in the twin EWAS design. Another

conclusion that is consistent across studies27 is that the

methOR measure of epigenetic effect appears to correlate

better with power than the mean difference effect. Finally,

the similarity in DNA methylation profiles within pairs of

genetically identical twins can impact on EWAS power in

the twin design.

Some of the limitations of our study arise from the

major assumptions. One of these is that DNA methylation

occurs prior to disease onset and is mitotically stable.

Recent genome-wide data on longitudinal stability of DNA

methylation marks show that there is great variability in

longitudinal stability of methylation marks across the gen-

ome and with respect to age of the individual.4 Another

key assumption is that we explore DNA methylation pro-

files in the tissue that is most relevant to the disease. For

many diseases, access to clinically relevant tissues is not

feasible and surrogates such as whole blood are often used

in EWAS. Both tissue-shared and tissue-specific DNA

methylation profiles exist across the genome, and model-

ling these effects in our epigenetic disease susceptibility

models is difficult with limited empirical data. A third

overly simplistic assumption is to model the similarity in

DNA methylation profiles within MZ twins as a range of

correlations from empirical estimates.3 Several reports

have identified and replicated twin-based DNA

methylation heritable regions in the genome,3,31,33 and

have clearly shown that MZ twins have more similar

methylation profiles than unrelated individuals.3 However,

the precise structure of this correlation along the

genome varies.31 Lastly, we considered power and sample

size estimates under models where a single CpG site is associ-

ated with the phenotype. It is possible that multiple CpG sites

impact on the phenotype, either as an epi-haplotype (where

taking into account co-methylation may be informative), or

under models of CpG-interaction. For many of these assump-

tions, the relevant parameters are difficult to estimate because

of lack of in-depth data.

In summary, using comprehensive power calculations

we provide power limits of EWAS for the case-control and

discordant twin designs under a range of models and sev-

eral key assumptions. Our findings can help EWAS design

and interpretation.

Supplementary Data

Supplementary data are available at IJE online.
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