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Altered adipose tissue macrophage populations in
people with HIV on integrase inhibitor-containing
antiretroviral therapy
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Objective: Antiretroviral therapy (ART) extends the life of people with HIV (PWH), but
these individuals are at increased risk for obesity, dyslipidemia, diabetes, and cardio-
vascular disease. These comorbidities may be a consequence of HIV-related chronic
inflammation and/or adverse effects of ART on tissue regulatory adipose tissue macro-
phages (ATMs). We sought to determine the effects of HIV/ART on metabolically
beneficial ATM populations and functions.

Design: We examined subcutaneous ATMs from PWH on integrase inhibitor-contain-
ing ART (n=5) and uninfected persons (n =9). We complemented these studies with ex
vivo and in vitro analyses of peripheral blood mononuclear cell (PBMC) and murine
macrophage lipid metabolism and fatty acid oxidation gene expression.

Methods: ATM populations were examined by flow cytometry. Macrophage lipid
metabolism and fatty acid oxidation gene expression were examined by Seahorse
assay and quantitative PCR.

Results: Adipose tissue from PWH had reduced populations of metabolically activated
CD9" ATMs compared to that of uninfected controls (P < 0.001). PBMCs of PWH had
lower fatty acid metabolism compared to those of uninfected controls (P <0.01).
Analysis of murine macrophages revealed that dolutegravir reduced lipid metabolism
(P<0.001) and increased expression of the fatty acid beta-oxidation enzyme enoyl-CoA
hydratase, short chain 1 (P <0.05).

Conclusions: We report the loss of metabolically beneficial ATM populations in PWH
on ART, altered fatty acid metabolism of blood immune cells, and evidence that
dolutegravir alters macrophage fatty acid metabolism. Future studies should examine
direct or indirect effects and mechanisms of dolutegravir, and other integrase inhibitors
and ART classes, on fatty acid beta-oxidation.
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Introduction

The life expectancy of people with HIV (PWH) has
increased considerably due to the development of
effective antiretroviral therapy (ART) over the past
several decades [1,2]. However, PWH are at increased risk
for several chronic, noninfectious comorbidities includ-
ing obesity, dyslipidemia, diabetes mellitus, and cardio-
vascular disease [3—5]. As a result, metabolic and
cardiovascular diseases are now some of the leading
causes of death among PWH in developed countries [6].
Although etiologies for these comorbidities remain under
investigation, associations have been identified between
specific ART agents and worse metabolic outcomes [7—
9]. Although protease inhibitors have many well known
metabolic effects [10], they are used with decreasing
frequency. In contrast, integrase inhibitor agents are now
very widely used, but have been associated with
considerable weight gain and increased adiposity [11].
Dolutegravir in particular, a second generation integrase
inhibitor, is associated with greater weight gain as
compared with first generation agents of the same class
[12]. However, our limited understanding of the
mechanistic basis for these associations limits our ability
to prevent and/or treat HIV-associated metabolic
diseases.

Over the past two decades, studies from the obesity
field reveal that immune cells, and adipose tissue
macrophages (ATMs) in particular, are central regula-
tors of metabolic health. It is now appreciated that
obesity is associated with the accumulation of ATMs in
adipose tissue [13]. However, multiple ATM subsets
with distinct cellular functions exist in obese adipose
tissue [14]. For example, some obesity-associated
ATMs undergo a metabolic activation that is charac-
terized by increased lipid metabolism [15—19]. This
functional state is likely an adaptive response to dead
and dying adipocytes that have lost adequate blood
supply due to tissue hypertrophy [20]. However,
potentially as a natural progression of this process,
ATM subsets have also been shown to increase secretion
of tumor necrosis factor-alpha (TNFa) and other
inflammatory mediators that contribute to adipose
tissue insulin resistance [14,21,22]. It is the balance of
these outcomes that ultimately contributes to
the adipose tissue dysfunction that accompanies
obesity [23].

The fact that macrophages are central to mammalian
metabolism may be relevant to understanding HIV-
associated metabolic disease. Monocytes and macro-
phages are important HIV reservoirs [24], and both
HIV infection and ART can alter monocytes and
macrophage activation and function during HIV
infection [25—27]. Associations have also been made
between monocyte expansion in HIV infection and
insulin resistance [28]. There is also evidence that

antiretrovirals can alter macrophage inflammatory
functions in vitro [29]. However, studies to date have
focused on the emergence of pro-inflammatory
macrophage phenotypes among PWH on ART and
have not investigated the metabolically-beneficial
functions of ATMs in adipose tissue. In addition,
studies of ATMs isolated from ART-treated PWH have
not been performed. Addressing these knowledge gaps
is the first step towards avoiding and/or specifically
treating HIV-associated metabolic diseases.

Here, we investigated sub-cutaneous ATMs from samples
of PWH being treated with integrase-containing regi-
mens along with uninfected persons. We also investigated
the effects specifically of dolutegravir on macrophage fatty
acid metabolism. We show that PWH have a marked
reduction in the proportion of ATMs that are metaboli-
cally active, altered lipid metabolism by peripheral blood
mononuclear cells (PBMCs), and that dolutegravir
specifically alters macrophage lipid metabolism.

Methods

Participant selection and recruitment

Potential participants with HIV infection were identified
through the Penn Center for AIDS Research using
relevant clinical data. Recruitment criteria included
being on a stable integrase inhibitor-based ART regimen
and HIV RNA < 200 copies/ml for at least 1year. HIV
uninfected participants were recruited through the Penn
Human Metabolic Tissue Bank. This study was approved
by the Institutional Review Board of the University of
Pennsylvania (IRB 20-844427) and the Children’s
Hospital of Philadelphia (IRB 18-015524).

Adipose tissue collection and isolation of
stromal-vascular-fraction

Subcutaneousadipose tissue was collected from the anterior
abdominal wall during planned surgical procedure or via
biopsy and transported to the lab at 37°C within 30 min.
The stromal vascular fraction (SVE which contains
adipocyte precursors, stromal cells, and immune cells)
was isolated by incubating tissue samples in 5ml of
Dulbecco’s Modified Eagle Medium (DMEM) supple-
mented with 3 mg/1 ml collagenase IVat 37°C for 20 min
in a rotating incubator [14]. SVF cells were pelleted at
800 X ¢ and floating adipocyte fraction was removed and
discarded. SVF were washed 3 times with FACS butter
[1 X phosphate buffered saline (PBS), 2% bovine serum
albumin (BSA), 1 mmol/] ethylenediaminetetraacetic acid
(EDTA), 0.1% sodium azide] before processing for flow
cytometric analysis.

Flow cytometric analysis
SVF or bone marrow—derived macrophage (BMDM)
cultures were treated with human Fe-receptor block (BD
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Pharmingen) before staining with antihuman or antimouse
fluorochrome-conjugated monoclonal antibodies specific
for CD3¢ (HIT3a, 1:500), CD9 (HI9a, 1:500), CD11b
(M1/70, 1:500), CD11c (3.9, 1:500), CD14 (M5E2,
1:500), CD15 (W6D3, 1:500), CD16 (3G8, 1:500), CD45
(HI30, 1:500), and CD20 (HIB19, 1:500). Cells were also
stained with DAPI (2ng/ml) to exclude dead cells.
Compensation was performed with OneComp eBeads
beads (Thermo Fisher Scientific) or cells as appropriate.
Samples were analyzed with a BD LSR II running DiVa
software (BD Bioscience) and analyzed with FlowJo
software (version 10.8). A minimum of 100 000 cells were
employed for each analysis.

Isolation of peripheral blood mononuclear cells
Peripheral blood samples were obtained by venipuncture
on the same day as adipose tissue, and PBMCs were
isolated by Ficoll gradient.

Generation and metabolic activation of murine
bone marrow-derived macrophages

BMDMs were generated from 6- to 8-week-old,
C57Bl/6] mice as previously described [30]. Briefly,
femurs were excised under sterile conditions and flushed
with DMEM to isolate bone marrow cells. Cells were
washed with PBS and incubated for 7days at 37°C
and 5% CO, in BMDM differentiation medium
containing DMEM with 10% fetal bovine serum
(FBS), 2mmol/l GlutaMAX, 100U/ml penicillin—
streptomycin, 1mmol/l sodium pyruvate, and 10ng/
ml macrophage colony-stimulating factor (M-CSF)
(R&D Systems). On day 7 of culture, cells were isolated
by scraping and BMDM purity was evaluated by flow
cytometry. Cells were subsequently transferred to six-
well plates (0.5—1 x 10° cells per well), and metaboli-
cally activated with palmitate (250 wmol/1)) for 24 h as
previously described [17]. Studies were performed in the
presence or absence of dolutegravir (50 wmol/l). This
concentration was chosen as it is between trough and
peak serum levels observed in clinical studies [31,32].
After 24h, cells were harvested for analysis of
mitochondrial respiration and mRNA levels.

Measurement of mitochondrial respiration

The analysis of mitochondrial respiration was performed
on PBMCs of male subjects or murine BMDMs, due to
limited human sample availability. Mitochondrial respi-
ration was determined by monitoring the oxygen
consumption rate (OCR) of cells in the presence of
XF Palmitate — BSA (Seahorse Bioscience) and absence
of exogenous glucose and glutamine. The proportion of
respiration that is supported by exogenous fatty acids was
determined using the fatty acid oxidation (FAO)
inhibitor etomoxir (40 pwmol/l). For quantifying mito-
chondrial respiration, cells were cultured at the density
of 50 000 cells/well in XF96 cell culture plates in growth
medium overnight. One hour before running the assay,
cells were washed and incubated in XF assay medium

containing palmitate at 37°C in a CO, free atmosphere.
Oligomycin (Oligo.), carbonyl cyanide 4 (trifluoro-
methoxy)phenylhydrazone (FCCP), and rotenone and
antimycin A (R/A) were sequentially injected into each
well to assess basal respiration, coupling of respiratory
chain, and mitochondrial spare respiratory capacity,
respectively. Data were collected on a Seahorse XF96
instrument and analyzed using XFe Wave Software
(Seahorse Bioscience). Cellular protein levels were
determined using BCA protein assay kit (Pierce), and
all data were normalized to the protein content of the
assay well.

RNA isolation and cDNA synthesis

Total RNA was isolated from using TR1zol (Life Technolo-
gies) according to the manufacturer’s instructions. RINA
quantity and quality were measured with the Nanodrop
spectrophotometer, and cDNA was synthesized using Verso
cDNA synthesis kit (Thermo Fisher Scientific). Quantitative
real-time PCR was performed with the Quant Studio 12K
Flex System using the SYBR Green method. HPRT served
asahousekeeping control. PCR primers used were: Acadl_F
TGCACACATACAGACGGTGC; Acadl_ R, CATG-
GAAGCAGAACCGGAGT; Cptla_L-E GACTCCG
CTCGCTCATTCC; Cptla_L-R, ACCAGTGATGATG
CCATTCTTG; Echsl_E CCAGTTCGGACAGCCA-
GAAA; Echsl_R, TCTTGCTTACAAGACCTGCCT;
Hadha_E AGGACCTCGGTGTAAAGCAC; Hadha_R,
TAGTGCATGCCGATCACCTTC; Hprt E TCAGT-
CAACGGGGGACATAA; Hprt R, GGGGCTGTA
CTGCTTAACCAG.

Statistical analyses

Graphical data are presented as mean == SEM of at least three
independent experiments. Data were analyzed by a Student’s
t test for comparison between PWH and uninfected persons
(GraphPad Prism). Analysis of associations between %CD9 ™
ATMs and participant characteristics were performed by
simple regression. Differences were considered statistically
significant at P-values (alpha level) <0.05.

Results

Metabolically-activated adipose tissue
macrophages are reduced in sub-cutaneous
adipose tissue of people with HIV

The demographic and clinical characteristics of PWH and
uninfected participants are shown in Table 1. Participants
were recruited to represent a diverse BMI range from normal
weight (18.5-24.9) to obese class III (>40). All HIV+
participants were on integrase-containing ART regimens
(either bictegravir or dolutegravir) consistent with current
ART treatments. ATMs were examined by flow cytometry
(Figure 1, Supplemental Digital Content, http://links.Iww.
com/QAD/C538), and surface expression of the metabolic
activation marker CD9 was compared between the groups
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Table 1. Demographic and clinical characteristics of study participants.

Participant Age (years) Sex Race Ethnicity BMI ART
HIV 1 59 M AA NH 40.0 B, E T, Al
HIV 2 47 M AA NH 61.0 Ab, DTG, L
HIV 3 33 M AA NH 21.0 B, E, T, Al
HIV 4 43 M AA NH 29.0 DTG, L
HIV 5 44 M AA NH 28.0 Ab, DTG, L, T, Di,
Control 1 27 F AA NH 45.1 N/A
Control 2 40 F AA NH 49.3 N/A
Control 3 40 M AA NH 61.2 N/A
Control 4 28 F AA NH 58.7 N/A
Control 5 42 F AA NH 55.1 N/A
Control 6 31 F W NH 48.0 N/A
Control 7 52 M W NH 29.1 N/A
Control 8 22 F Other NH 53.9 N/A
Control 9 36 F AA NH 41.9 N/A
Control 10 39 M W NH 21.1 N/A

AA, African American; Ab, abacavir; Al, alafenamide; ART, antiretroviral therapy; B, bictegravir; BMI, body mass index; Di, disoproxil; DTG,
dolutegravir; E, emtricitabine; F, female; L, lamivudine; M, male; N/A, not-applicable; NH, non-Hispanic; T, tenofovir; W, white.

[14,19]. Asa proportion of non-B, non-T (NBNT) immune
cells, ATMs were reduced in sub-cutaneous adipose tissue of
PWH as compared with uninfected individuals (35 &£ 3.0%
vs. 11+ 1.6%; P=0.0001; Fig. 1a). We also observed a
marked and consistent reduction in the surface expression of
CD9 on sub-cutaneous adipose tissue ATMs of PWH as
compared with uninfected individuals (82 £ 6.9% vs. 28

+9.5%; P=0.0006; Fig. 1b, c). Because all PWH
participants were African American (AA) while uninfected
participants were more racially diverse, we carried out a
subgroup analysis of AA participants and found a similar
result (Figure 2, Supplemental Digital Content, http://links.
lww.com/QAD/C538). There was no significant relation-
ship between %CD9 " ATMs and BMI, and both obese and
nonobese HIV/ART subjects showed reduced CD9"
ATMs compared to uninfected participants (Tables 1 and
2, Supplemental Digital Content, http://linksIww.com/
QAD/C538, and Figure 3, Supplemental Digital Content,
http://linksIww.com/QAD/C538).

One hallmark of ATM metabolic activation is a shift
towards lysosome-mediated fatty acid metabolism [15—
19]. Because the number of ATMs isolated from adipose
tissue was too low for metabolic studies, we investigated
metabolic function of PBMCs. We observed that
PBMC s isolated from a subset of PWH participants
had markedly lower basal and maximal respiration
when metabolizing fatty acid compared with uninfected
participants (5+0.2 vs. 33+3.4, and 21 +£0.5 vs. 37
+2.7; P=0.0018 and P=0.0429, respectively;
Fig. 1d). Treatment of PBMCs with etomoxir, an
inhibitor of fatty acid metabolism, reduced mitochon-
drial respiration of PBMCs from both groups, indicating
that the measured oxygen consumption was primarily
from metabolism of palmitate (Figure 4, Supplemental
Digital Content, http://links.Iww.com/QAD/C538).
Together, these results indicate that metabolically
activated macrophages are reduced within the

subcutaneous adipose tissue of PWH and that PBMCs
from PWH have altered lipid metabolism.

Dolutegravir alters fatty acid oxidation by
murine macrophages

Having observed a defect in fatty acid metabolism in cells
from PWH participants, we next sought to isolate a potential
cause of this defect. Since ART, and integrase inhibitors in
particular [7—9], have been associated with weight gain, we
sought to test whether dolutegravir altered macrophage fatty
acid cellular metabolism. To do so, we isolated BMDMs,
metabolically activated them with palmitate in the presence
or absence of dolutegravir and measured mitochondrial
respiration of palmitate as the only cellular fuel source. We
observed that dolutegravir resulted in a significant and
reproducible reduction in mitochondrial maximal (33 £ 1.1
vs. 63+ 5.1; P=0.0008) and spare (19 1.1 vs. 45+ 2.9;
P=0.0010) respiratory capacity (Fig. 2a, b). Treatment of
BMDMs with etomoxir reduced mitochondrial respiration,
indicating that the measured oxygen consumption was
primarily from metabolism of palmitate (Figure 5,
Supplemental Digital Content, http://links.lww.com/
QAD/C538). There was no change in CD9" expression
as a result of dolutegravir (DTG) treatment of metabolically
activated BMDMs (Figure 6, Supplemental Digital Content,
http://links.Iww.com/QAD/C538).

We then asked whether the dolutegravir eftect on murine
macrophage cellular metabolism might be linked to
changes in expression of genes relevant to fatty acid beta-
oxidation. Dolutegravir resulted in a significant (three-
fold) up-regulation of BMDM Echs1 expression, which
encodes the protein which functions in the second step of
the mitochondrial fatty acid beta-oxidation pathway
(Fig. 2¢). In contrast, expressions of other genes in the
fatty acid beta-oxidation pathway (Acad1, Cptla, and
Hadha) were not significantly altered. Thus, dolutegravir
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Fig. 1. Total and CD9* ATM:s are reduced in sub-cutaneous adipose tissue of PWH. (a) Frequency of total CD14" ATMs as a
percentage of NBNT immune cells in subcutaneous adipose tissue of uninfected (control) or PWH participants. Mean +SEM
shown, n=9 and n=5, respectively. (b) Flow-cytometric analysis of CD9™ adipose tissue macrophages in sub-cutaneous adipose
tissue samples from representative uninfected control or PWH participants. Gated on alive, CD45%, CD3~, CD20~, CD14 ™" cells.
Numbers indicate percentage of parent gate. (c) Frequency of CD9" ATMs in subcutaneous adipose tissue of uninfected (control)
or PWH participants. Mean £SEM shown, n=9 and n =5, respectively. (d) Respiration of PBMCs from uninfected control or PWH
participants as measured by oxygen consumption rate (OCR) in palmitate-containing assay media. During measurements, cells
were treated with the complex V inhibitor oligomycin (Oligo.), the uncoupler fluoro-carbonyl cyanide phenylhyrazone (FCCP),
and the complex | and Il inhibitors rotenone/antimycin A (R/A) at the times indicated (black arrows). Basal and maximal (max)
respiration are shown. Calculations were corrected for nonmitochondrial respiration and normalized to the cellular protein
content of the assay well. Data points are represented as mean = SEM from >3 biologic replicates and data are representative of at
least three independent experiments. Statistics by unpaired or paired ttest, (*) P < 0.05; (**) P < 0.01; (***) P < 0.001. ATM, adipose
tissue macrophage; PWH, people with HIV; SEM, standard error of mean.

[11,12]. Together, these observations have led to concern
that specific ART regimens are contributing to HIV-
associated obesity and metabolic diseases [33].

alters macrophage fatty acid metabolism and expression of
a key gene involved in fatty acid metabolism.

The adipose tissue immune system, and ATMs in
particular, are critical regulators of adipose tissue function
and metabolic health. It is therefore essential to examine
the impact of HIV and ART on ATM activation and
functions. A few studies have examined effects of HIV/

Discussion

PWH are at increased risk for metabolic dysfunction and
disease [3—5]. Itis therefore important that we improve our

understanding of the etiology of these comorbidities to
reduce morbidity and mortality in this population [6].
Although HIV infection itself results in immune activation
that may influence metabolic homeostasis [25—27], there is
growing evidence that various ART agents may contribute
to metabolic dysregulation [7]. For example, integrase
inhibitors are associated with more weight gain than other
antiretrovirals, and dolutegravir (a second generation
integrase inhibitor) is associated with greater weight gain
as compared with first generation agents of the same class

ART on ATMs, but they have focused on inflammatory
outcomes. For example, elevated monocyte numbers
have been shown to correlate with worsening HIV
immune outcomes [28], and treatment with protease
inhibitors and reverse transcriptase inhibitors has been
shown to enhance monocyte production of monocyte
chemoattractant protein-1 and interleukin-6 [29]. In
contrast, we chose to examine the key activity that ATMs
have in maintaining normal adipose tissue functions
through the uptake and metabolism of free lipid [15—-19].
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Fig. 2. Dolutegravir alters fatty acid metabolism in murine macrophages. (a, b) Respiration of metabolically-activated murine
bone marrow-derived macrophages (BMDM) that were untreated (control) or treated with dolutegravir (DTG) as measured by
oxygen consumption rate (OCR) in palmitate-containing assay media. During measurements, cells were treated with the complex
V inhibitor oligomycin (Oligo.), the uncoupler fluoro-carbonyl cyanide phenylhyrazone (FCCP), and the complex | and lII
inhibitors rotenone/antimycin A (R/A) at the times indicated (black arrows). Maximal (max) respiration and spare respiratory
capacity are shown. Calculations were corrected for non-mitochondrial respiration and normalized to the cellular protein content
of the assay well. (c) Relative gene expression of genes relevant to fatty acid beta-oxidation in untreated or DTG treated murine
BMDMs. Data points are represented as mean + SEM from >3 biologic replicates and data are representative of at least three
independent experiments. Statistics by unpaired or paired t test, (*) P <0.05; (**) P<0.01; (***) P<0.001.

We observed that subcutaneous adipose tissue of PWH
have a reduced ATM frequency as well as reduced
frequency of CD9" ATMs, a beneficial ATM sub-
population that are metabolically activated as evidenced
by upregulation of lipid receptors, phagocytosis of lipid,
and activation of lipid metabolic pathways [14,19]. The
loss of CD9" ATM:s in mice results in systemic metabolic
dysregulation highlighting the beneficial roles that these
cells play [19]. It is therefore possible that the impairment
of CD9" ATMs development and/or function contrib-
utes to the adipose tissue dysfunction and metabolic
disease observed among PWH.

To better understand the etiology of reduced CD9"
ATMs in PWH on ART, we examined immune cell lipid
metabolism. As the number of ATMs recovered from
subcutaneous adipose tissue biopsies were too small for
cellular-metabolic analysis, we studied PBMCs from
uninfected and PWH participants. We observed that
metabolism of palmitate, a 16-carbon saturated fatty acid
that is a fuel source for metabolically activated macro-
phages, was lower in PWH compared with uninfected

individuals. Although PBMCs contain mainly lympho-
cytes and as such are not a direct indication of ART-
induced changes in ATM metabolism, this observation
does suggest that immune lipid metabolism is altered by
HIV infection/ART, and raises the possibility that such
effects are not limited to the adipose tissue.

Finally, we sought to determine if integrase inhibitor ART
alters macrophage lipid metabolism, focusing on dolutegravir
since it is associated with more weight gain than other agents
[11,12]. We observed that dolutegravir significantly reduced
BMDM palmitate metabolism, which is consistent with our
studies of ATMs from PWH, all of whom were receiving
integrase inhibitors. This result also suggests that, in addition
to inflammatory effects of HIV infection on myeloid cells
[25—27], antiretrovirals may contribute to ATM dysfunction
and HIV-associated metabolic disease. We also observed
significant up-regulation of Echs1 expression by BMDMs
treated with dolutegravir, indicating effects on macrophage
expression of metabolism genes. Echs1 encodes enoyl-CoA
hydratase, short chain 1, an enzyme that forms the secondstep
of the mitochondrial fatty acid beta-oxidation pathway.
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Upregulation of Echs1 expression could represent a
compensatory response to dolutegravir’s negative effects
on fatty acid metabolism. The effects of DTG on BMDM
metabolism occurred in the absence of any alterations in cell
surface CD9 expression. This may be due to the acute nature
of the DTG exposure in our experimental system and
suggests that cellular-metabolic effects of acute DTG
exposure may mechanistically precede changes in CD9
protein or surface expression. Future studies should
interrogate this hypothesis, as well as any direct and/or
indirecteftects of dolutegraviron enoyl-CoA hydratase, short
chain 1 function.

There are some limitations to our study. Firstly, we
examined a relatively small participant number and as
such our ability to detect age, sex, or race-dependent
effects was limited. There were also differences in the sex
and racial distribution of our control and experimental
groups that could bias our findings. This work should
therefore be expanded in a larger cohort that includes
individuals of diverse demographic groups. We studied
individuals on integrase inhibitor-containing ART, so our
in vivo results cannot be ascribed to integrase inhibitors
specifically, though they are concordant with our in vitro
observations. Thus, it will be important to study PWH on
non-integrase inhibitor ART regimens. Similarly, our in
vitro analyses study the effects of a single integrase
inhibitor (dolutegravir) on mitochondrial respiration and
gene expression in murine cells. As these studies were not
performed using other integrase inhibitors we cannot
generalize the observed effects to the entire class of
integrase inhibitors. As such, future studies should
examine the effects of other integrase inhibitors, and
other antiretroviral classes, on ATMs and human
macrophage mitochondrial respiration. In addition, we
examined sub-cutaneous adipose tissue but did not have
access to visceral or other adipose tissue depots. Although
there may be important similarities between the eftects of
HIV-infection/ART on beneficial macrophage functions
between these depots they are also functionally distinct
and should be examined independently. Finally, future
studies with larger participant numbers should examine
relationships between these outcomes and BMI, diabetes,
and other features of metabolic dysfunction.

In sum, we find a previously unreported dysregulation of
adipose tissue macrophage populations in PWH on
integrase inhibitor-containing regimens regardless of
BMI, and a detrimental eftect of dolutegravir on
beneficial macrophage functions related to adipose tissue
homeostasis. This eftect may act synergistically with
known inflammatory effects HIV infection on myeloid
cells to promote adipose tissue dysfunction and metabolic
disease in some individuals with HIV infection. Future
studies should investigate additional ATM functions and
ART drugs, which will contribute to understanding of
the mechanisms and role of macrophage functions in
obesity and metabolic disease among PWH.
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