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Abstract

Due to their correlation with major human neurological diseases, dopaminergic neurons are some of the most studied
neuronal subtypes. Mesencephalic dopaminergic (mDA) differentiation requires the activation of a cascade of transcription
factors, among which play a crucial role the nuclear receptor Nurr1 and the paired-like homeodomain 3, Pitx3. During
development the expression of Nurr1 precedes that of Pitx3 and those of typical dopaminergic markers such as tyrosine
hydroxylase (TH) and dopamine Transporter (DAT) that are directly regulated by Nurr1. Interestingly we have previously
demonstrated that Nurr1 RNA silencing reduced Pitx3 transcripts, leading to the hypothesis that Nurr1 may control Pitx3
expression. Here we show that Nurr1 overexpression up-regulates that of Pitx3 in a dose-dependent manner by binding to
a non-canonical NBRE consensus sequence, located at the 59 site of the gene. Interestingly, this sequence shows the same
effect as the canonical one in promoting gene translation, and its deletion abolishes the ability of Nurr1 to sustain reporter
gene expression. Moreover, we show that there is a direct interaction between Nurr1 and the Pitx3 gene promoter in
dopaminergic cell cultures and midbrain embryonic tissue. Altogether, our results suggest that the regulation of Pitx3 by
Nurr1 may be an essential event controlling the development and function of mDA neurons.
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Introduction

Mesencephalic dopaminergic (mDA) neurons play a key role in

the motor, reward and emotional behavior of mammals. They are

located in the ventral midbrain forming three distinct nuclei, the

substantia nigra (SN), the ventral tegmental area, and the retrorubral

red nucleus; together they constitute only about 1–5% of the

midbrain cell population [1]. The high incidence of their

degeneration in older people (Parkinson’s disease, PD), as well as

their involvement in widespread neuropsychiatric diseases (schizo-

phrenia or attention deficit hyperactive disorder, ADHD), have

prompted great efforts toward understanding the molecular

mechanisms underlying their specification, differentiation and

maintenance.

During embryonic development in rodents, the activation of

specific genes encoding for transcription factors (TFs) establishes a

molecular code essential for the proper maturation and differen-

tiation of terminal mDA. These include the member 2 nuclear

receptor subfamily 4 group A (Nr4a2 or Nurr1) whose expression

has been detected already at E10.5 in the mouse ventral

mesencephalon [2,3], and the paired-like homeodomain tran-

scription factor 3 (Pitx3) [4,5,6]. Pitx3 is also expressed early during

mDA differentiation, starting at E11 and before the onset of the

typical DA markers. Both TFs persist throughout life, albeit at

lower levels than during development.

Nurr1, differently from Pitx3, whose expression is restricted to

DA neurons [6,7], is also present in other regions of the

mammalian brain, as well as outside the nervous system [8].

Indeed its expression has been detected in non-dopaminergic areas

such as cerebral cortex and hippocampus [9,10] and in microglial

cells [11], where it is involved in the modulation of the

inflammatory response. Thus these findings suggest that it could

exert a wider transcriptional control than that described for the

mDA system.

The key role of Nurr1 during mDA phenotype development

and survival has been highlighted by conventional knock-out

mouse model and by conditional deletion [12]. In both cases it

has been shown that the deletion of Nurr1 determines the

progressive loss of mDA neurons, suggesting that its presence is

essential for maintenance of the dopaminergic specification

throughout the entire DA neuron lifespan. On the other hand,

the alteration of Pitx3 in the naturally occurring mouse mutant

aphakia shows a selective depletion of mDA neurons in the

substantia nigra [4,6].

The mechanism of action of Nurr1 has been dissected in vitro

and a number of its target genes in mDA neurons have been

identified, including tyrosine hydroxylase (TH), vesicular monoamine

transporter 2 (Vmat2), dopamine transporter (DAT), Neuropilin, and brain

derived neurotrophic factor (Bdnf) [13–17]. Some of these genes, such as

Vmat2, TH and DAT, are targets of Pitx3 as well [18]. The

involvement of both TFs in the regulation of crucial mDA genes

suggests that these proteins might cooperate and participate in

several processes during mDA neuron development, but their

hierarchical relationship remains unknown.
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We have previously reported, by using midbrain cultures

enriched in mDA neurons, that silencing Nurr1 determines a

significant decrease of Pitx3 expression similar to that observed for

other gene targets of Nurr1 such as Bdnf and TH [17]. This finding

has prompted us to investigate if the expression level of Pitx3 may

depend on Nurr1. Here we show that Nurr1 directly regulates

Pitx3 expression by binding to a specific Nurr1-binding region

located in the Pitx3 gene promoter.

Results

Overexpression of Nurr1 up-regulates Pitx3 mRNA and
protein

To investigate whether or not Nurr1 affects Pitx3 expression we

used the MN9D-Nurr1Tet-On cell line, which expresses Nurr1

under a tetracycline-inducible promoter [13]. MN9D cells have

already been used as the cellular model system to study the

development and maturation of mDA neurons. They are able to

synthesize and release dopamine, and after Nurr1 overexpression

acquire a more pronounced dopaminergic phenotype by boosting

the expression of the dopaminergic-related markers such as TH

and Vmat2 [13]. Following Nurr1 hyper-expression by doxycycline

treatment (Figure 1A) we observed a two-fold enrichment in Pitx3

mRNA, when compared to control cultures (Figure 1B). To

confirm the role of Nurr1 as an inducer of the DA phenotypes we

observed a parallel up-regulation of the levels of TH and Vmat2

mRNA, in agreement with previous data (Figure 1B) [13].

Since the expression of Pitx3 was only slightly increased by dox-

mediated overexpression of Nurr1 we replicated similar experi-

ments by transfecting the parental MN9D cell line with a

36FLAG-Nurr1 plasmid, which gave a more sustained Nurr1

expression (Figure 1C). As shown in Figure 1D the up-regulation

of Pitx3 was proportional to the amount of the Nurr1-expressing

plasmid when compared to cells transfected with an empty vector.

Under these conditions we observed an increase of Pitx3 mRNA

up to 3.5 times above the control. Similarly Vmat2 and TH

mRNAs were also up regulated and their higher level of expression

was achieved at a lower concentration of Nurr1 plasmid, reaching

a plateau at about 50 ng/well. (Figure 1E–F, respectively).

An increase of Pitx3, up to 50%, was also observed at the

protein level (Figure 2A) with respect to untreated samples. Such

up-regulation was observed both in MN9D-Nurr1Tet-On cells upon

doxycycline treatment and MN9D cells after Nurr1 transfection.

The relative expression of Pitx3 was assessed by quantifying

proteins bands, under the various experimental conditions, and

normalized to ß-actin. Similar results were obtained by using the

Neuronal Class III ß-Tubulin (TUJ1) as internal control

(Figure 2A).

Since Nurr1 can regulate transcription either as a monomer or

as a heterodimer with retinoid X receptor (RXR) [19], we

investigated whether the effects of Nurr1 on Pitx3 expression were

modified upon dimerization of Nurr1 with RXR. First we

established that RXR alone was unable to increase Pitx3 mRNA

above control levels (Figure 2B); then we co-transfected Nurr1 and

RXRa to assess for the existence of any synergic effect. As shown

in Figure 2B, the co-expression of Nurr1 and RXRa does not

modify Pitx3 mRNA levels, thus suggesting that Nurr1 acts as

either a monomer or homodimer in controlling Pitx3 translation.

The mouse Pitx3 promoter is responsive to Nurr1
We then investigated if Nurr1 could control the expression of

Pitx3 at the transcriptional level. By performing in silico analysis of

the Pitx3 promoter region we did not find canonical NBRE

sequences (AAAGGTCA), known to be essential for Nurr1

binding. Instead our analysis revealed a potential consensus motif,

located 220 base pairs (bp) upstream the transcription initiation

site that differs from the canonical NBRE for the insertion of a T

right after the central core (AAAGGTTCA; Figure 3A). We

renamed this sequence NBRE-like. To assess whether Nurr1 could

directly interact with the Pitx3 promoter and stimulate transcrip-

tion, we cloned the 700 bp region in a reporter vector above the

Pitx3 transcription initiation site, and verified that it contained the

NBRE-like region by sequencing it. To assess that it could trigger

transcription, we performed a luciferase assay in the human cell

line HeLa. As shown in Figure 3B, Nurr1 was able to activate

transcription of the luc-gene under the control of the Pitx3

promoter. This activation was specific for Nurr1 since vectors

expressing Coup-TF1 (chicken ovalbumin upstream promoter

transcription factor 1), a member of the nuclear receptor

transcription factor superfamily, or an unrelated protein such as

the alpha-synuclein, were unable to promote luciferase expression

(Figure 3C).

Next, to understand whether the ability of the NBRE-like

consensus site to promote reporter gene expression was compa-

rable to that of the NBRE, we restored the canonical motif by

deleting the extra T (construct N1; AAAGGTTCA in

AAAGGTCA). As we hypothesized, this mutation did not modify

the ability of the Pitx3 promoter to activate the reporter

transcription. These data confirm that the NBRE-like region is

able to bind Nurr1 and thus activate transcription of the

downstream gene, with efficiency comparable to the NBRE

sequence. In addition, the transcriptional stimulation triggered by

the NBRE-like sequence was comparable to that obtained by using

a construct carrying three repeated NBRE binding sites (36-

NBRE) (Figure 3D). Finally, to further confirm that the NBRE-like

region was the only Nurr1-dependent sequence able to promote

Pitx3 gene transcription, we deleted the 20 bp containing this

region (gggcctAAAGGTTCAcagct). As expected, the deletion

abolished over 70% of the luciferase expression (Figure 3D).

These data confirm that the NBRE-like sequence we identified

on the Pitx3 promoter is a proper target of Nurr1.

Nurr1 regulates Pitx3 expression by binding to its
promoter

We performed a chromatin immunoprecipitation (ChIP) assay

to demonstrate that Nurr1 can bind the genomic NBRE-like

sequence upstream to Pitx3. Indeed by using the immunoprecip-

itate from MN9D cells overexpressing 36FLAG-Nurr1, we were

able to show a significant enrichment of the Pitx3 promoter

fragment containing the NBRE-like sequence, either by PCR

(Figure 4A) or real time PCR (Figure 4B). We also probed this

same immunoprecipitate for the presence of promoter regions of

other Nurr1 target genes such as Bdnf, Vmat2 and TH, and found

that they were all enriched. As expected, no enrichment was

observed when we amplified a part of Vmat2 promoter that did

not contain the Nurr1 consensus sequence.

In order to confirm that Nurr1 binds to the NBRE-like

sequence on the Pitx3 also in vivo, we repeated the ChIP analysis

on mouse ventral midbrain tissue during embryonic development

(at E14.5). This time point was chosen since the highest Nurr1

expression takes place at this developmental stage in this region.

We observed a significant enrichment of the Pitx3 promoter

fragment containing the NBRE-like sequence, even higher (about

seven-fold) than that observed in cell cultures (Figure 4C–D). In

addition we found a four-fold enrichment of the Bdnf promoter

region (Figure 4C–D), as expected [17].

Altogether, these data strongly support a direct regulation of

Pitx3 expression by Nurr1.

Nurr1 Regulates Pitx3 Expression
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Figure 1. Overexpression of Nurr1 up-regulates Pitx3, TH and Vmat2 mRNAs. Transcriptional analysis performed by real time PCR of Nurr1,
Pitx3, TH and Vmat2 in MN9D cells treated with 3 mg/ml of doxycycline (dox, A, B) or with different concentrations (ng) of 36FLAG-Nurr1 plasmid
(C, D, E, F). The diagrams (C–F) show the mRNA levels of Nurr1, Pitx3, TH and Vmat2 over an empty vector as control (dotted lines, mean6SE).
Expression levels are presented as the relative number of copies compared with the Hprt transcript using the comparative threshold cycle (CT)
method (22DDCT). Asterisks (*) represent p#0.01 when compared to relative controls (ANOVA, Scheffè F-test).
doi:10.1371/journal.pone.0030661.g001
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Discussion

During ontogeny, the midbrain regional identity requires the

action of a complex transcriptional program involving among

others the TFs Lmx1a, Lmx1b, Pitx3 and Nurr1 [20]. This last TF

appears to be a major player in the control of the mDA phenotype,

through the regulation of several proteins required for dopami-

nergic function. However, it has been shown that also Pitx3 is able

to promote the expression of DA genes, suggesting a role for both

TFs as players acting on the same pathways. Thus several

approaches have been used, aimed at clarifying the reciprocal roles

of the transcription factors Nurr1 and Pitx3 in promoting the

differentiation of mDA neurons. By using molecular and cellular

approaches, a number of common downstream target genes of

both proteins have been identified, such as the vesicular

transporter Vmat2 and the plasma membrane transporter DAT

[13,16]. In addition Nurr1 2/2 mice display the absence of TH+

neurons in the ventral midbrain, because their development is

incomplete [21]. Indeed a few cells transiently expressed Pitx3 in

this area but disappeared shortly thereafter leading to two

alternative hypotheses: either Nurr1 expression is required to

maintain Pitx3 levels, or Pitx3 expression is independent of Nurr1

and is lost by the early death of the mDA neurons. Moreover the

combined transduction of Nurr1 and Pitx3 promotes the matura-

tion of ES cells into a dopaminergic phenotype [22]. These

observations have prompted the idea that a hierarchical

relationship could exist between Nurr1 and Pitx3, or alternatively

that both transcription factors could cooperate at the protein level

in controlling the dopaminergic transcription machinery.

Since in previous Nurr1 silencing experiments we observed a

reduction of Pitx3 mRNA, we were prompted to investigate

whether and how Nurr1 could modulate the expression of Pitx3.

Here we show that Nurr1 can increase Pitx3 transcripts and that

this effect is achieved by the specific binding of Nurr1 to a non-

canonical NBRE element located 220 bp upstream the transcrip-

tion initiation site on the Pitx3 promoter. By using multiple

approaches involving overexpression of Nurr1 in a dopaminergic

cell line, luciferase reporter assay and chromatin immunoprecip-

itation, in both culture and embryonic midbrain tissues, we

provide evidence that Nurr1 does indeed promote Pitx3 expres-

sion. Thus we suggest that Nurr1 controls the specification of the

dopaminergic phenotype also by modulating Pitx3. These findings

are not in contrast with the hypothesis that Nurr1 could interact

with Pitx3 at the protein level either directly or through a third

partner, to regulate common target genes, as has been suggested

by others [22,23]. Thus Pitx3 regulation could take place at various

levels, and at least in part, appears to be regulated by Nurr1 in

mDA neurons.

In synthesis, our report sheds new light on the role of Nurr1 in

mDA neuron differentiation and maintenance, positioning this TF

at a high hierarchical level in the regulation of this neuronal

phenotype.

Methods

Cell lines
The MN9D-Nurr1Tet On cell line was kindly provided by

Thomas Perlmann [13]. Cells were maintained at 37uC, with 5%

CO2 in DMEM/F12 medium (Life Technologies, Milan, Italy)

supplemented with 10% FBS (Euroclone, Milan, Italy), 100 U/ml

penicillin and 100 mg/ml streptomycin (Sigma, Milan, Italy). Cells

were grown in poly-D-lysine (Sigma) coated flasks as previously

described. Nurr1 expression was induced by addition of 3 mg/ml

doxycycline (Sigma) to the culture medium or with 36FLAG-

Nurr1 transfection. Cells were grown as above except that the

10% serum was changed in B27 supplement (Life Technologies).

Nurr1 expression was induced by addition of 3 mg/ml doxycycline

(Sigma). HeLa cells (ATCC, LGC Standards, Italy) and MN9D

[24] were used as well.

Plasmids construction
Pitx3 promoter (pPitx3) sequence, analyzed using MatInspector

Release professional 8.0 from Genomatix software package

(GmbH, Munich, Germany, http://www.genomatix.de/), was

amplified and cloned in pGL3-basic firefly luciferase reporter

vector (Promega, Milan, Italy). The plasmid pGL3-pPitx3

sequence was confirmed by sequencing. Mutant constructs of

pPitx3 were generated with the Quick-change site-direct muta-

genesis kit (Stratagene), according to the manufacturer’s protocol.

Flag-tagged full-length (FL) mouse Nurr1, cloned into 36FLAG

vector (Sigma), was kindly provided by Kaoru Saijo [11]. Full-

length (FL) of human RXRa was kindly provided by Philip

Lefevbre [25].

Figure 2. Pitx3 up-regulation depends of Nurr1 overexpres-
sion. (A) Pitx3 protein expression in MN9D treated or not (ctrl) with
3 mg/ml of doxycycline (dox) and transfected with the 36FLAG-Nurr1
expressing vector (Nurr1) or with an empty vector (36FLAG). The
diagram shows the relative quantitation (mean6SE) of Pitx3 protein
compared to that of ß-actin. The relative abundance of the Neuronal
Class III b-Tubulin (TUJ1) is shown as an additional loading control. Data
are expressed as ratio Pitx3/ß-actin. Inserts show a representative
western blot of Pitx3, ß-actin and TUJ1. (B) Pitx3 mRNA level in MN9D
cells transfected with: 36FLAG-Nurr1 (Nurr1), psg5-RXR (RXRa), or both
constructs (Nurr1+RXRa). The diagram shows Pitx3 mRNA level
(mean6SE) relative to Hprt (22DDCT). Asterisks (*) represent p#0.01
when compared to controls (ANOVA, Scheffè F-test).
doi:10.1371/journal.pone.0030661.g002

Nurr1 Regulates Pitx3 Expression
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Transient transfection and luciferase assay
700 bps region upstream the 59UTR of the Pitx3 promoter was

cloned into a pGL3 basic vector (pPitx3-luc) and co-transfected

with the 36FLAG-Nurr1 plasmid into HeLa cells using lipofecta-

mine 2000, according to the manufacturer’s protocol. Renilla

luciferase vector, carrying the Simian vacuolating virus 40

promoter (pRL-SV40), were used as an internal control. For the

dual (firefly and Renilla) luciferase assays, cells were extracted with

passive lysis buffer (Promega), and 10 ml of cell extract was used

according to the manufacturer’s protocol. Values were expressed

as a ratio of luminescence signals between the luciferase reporter

and the Renilla. The data were performed in triplicate.

RNA isolation and Real time PCR
Total RNA was isolated using Tri-Reagent (Sigma, Milan, Italy)

according to the manufacturer’s instructions. The analyses were

always carried out in triplicate samples for each experimental

point analyzed and were processed separately. The yield and

integrity of RNA were determined by spectrophotometric

measurement of A260 and agarose gel electrophoresis respectively.

Briefly, 2 mg of RNA were reverse transcribed, using random

hexanucleotides (New England Biolabs Inc., Milan, Italy, 6 mM)

and 200 U of Moloney-murine leukemia virus reverse transcrip-

tase (Ambion). Gene specific primer sets (Table 1) used for

quantitative real time PCR (qRT-PCR, Applied Biosystem, Milan,

Italy) were designed using OLIGO 6 software according to

manufacturer’s instructions, in order to obtain amplified fragments

with comparable length (around 100 bp). SYBR Green qRT-PCR

reactions were performed in 96-well plates using 7900HT Fast

Real-Time PCR System (Applied Biosystem). Thermal cycling

conditions comprised initial steps at 50uC for 2 minutes and 95uC
for 10 minutes, followed by 40 cycles at 95uC for 15 seconds and

60uC for 1 minute. All samples were run in triplicate. Amplifica-

tion efficiency of each primer pair was verified by performing

qRT-PCR using different template dilutions. Gene expression

levels were quantified from real-time PCR data by the compar-

ative threshold cycle (CT) method [26] using hypoxanthine

phosphoribosyl transferase (HPRT) as an internal control gene.

The fractional number of PCR cycles CT required to obtain a

given amount of qRT-PCR product in the exponential phase of

amplification was determined for the gene of interest and for

HPRT in each RNA sample. The relative expression level of the

gene of interest was then expressed as 22DDCT where DCT = CT

gene of interest - CT HPRT.

Figure 3. The mouse Pitx3 promoter is responsive to Nurr1. (A) Schematic representation of the mouse Pitx3 gene indicating the position of
NBRE-like binding sites in Pitx3 promoter. (B) Luciferase assay in HeLa cells co-transfected with the Pitx3 promoter–reporter vector and with increasing
concentration of 36FLAG-Nurr1 plasmid. (C) The Pitx3 promoter activation is specific for Nurr1 since vectors expressing Coup-TF1 (chicken ovalbumin
upstream promoter Transcription Factor 1) or alpha-synuclein (a-syn) were unable to promote luciferase expression. (D) Scheme of the promoter–
reporter gene constructs used. We named: i) ‘‘NBRE-like’’ the promoter with the endogenous sequence; ii) ‘‘N1’’ the endogenous promoter deleted of
the extra T to restore the canonical NBRE sequence; iii) ‘‘N2’’ the endogenous promoter deleted of the entire NBRE-like region. As positive control we
used a reporter vector expressing three times the canonical NBRE sequence (36-NBRE). The histogram shows similar luciferase activation when NBRE-
like, N1 or 36-NBRE constructs were used. The deletion of the entire NBRE-like region (N2) significantly reduced luciferase expression. The ratio of
firefly luciferase/Renilla activity is expressed as relative increase over control (dotted lines). The results are expressed as mean 6 SE; asterisks
(*) represent p#0.01 when compared to control (ANOVA, Scheffè F-test).
doi:10.1371/journal.pone.0030661.g003

Nurr1 Regulates Pitx3 Expression
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Western Blotting
For Western blot analyses three different cultures samples were

lysed in RIPA Buffer in presence of protease inhibitors (Roche,

Milan, Italy). 50 mg/lane of proteins were separated on 12% SDS-

polyacrilamide gel and transferred to PVDF membranes (Amer-

sham, Milan, Italy). Filters were probed for 2 hrs at room

temperature or overnight at 4uC with the following antibodies:

anti-Nurr1/Nur77 (E-20 sc-990 X, Santa Cruz Biotechnology

Inc., Milan, Italy, 1: 5000), anti-ß-actin (Sigma, 1:1000), anti-Pitx3

(Abcam, Cambridge, UK 1:250), anti-Neuronal Class III ß-

Tubulin (TUJ1, Convance, Milan, Italy, 1:1000). After washing,

immunoblots were incubated with goat anti-rabbit (Bio-Rad,

1:1500) or anti-mouse IgG antibodies (Amersham, 1:5000) and the

reaction detected with the ECL plus procedure (Amersham). The

relative protein levels were determined by densitometry and

compared with the protein level of ß-actin and TUJ1 either in

control or in treated cells.

Chromatin Immunoprecipitation (ChIP)
56106 MN9D cells were transfected with 36FLAG-Nurr1

using lipofectamine 2000, fixed 24 hrs post transfection with 1%

formaldehyde for 15 min at r/t and the reaction stopped by

addition of 125 mM glycine for 5 min. The pellets, washed in cold

PBS with proteinase inhibitors, were lysed in 5 ml of Lysis Buffer

[5 mM Pipes pH 8.0, 85 mM KCl, 0.5% NP40 and proteinase

inhibitors]. After the centrifugation at 2000 rpm for 5 min, nuclei

were dissolved in High Salt Lysis Buffer [HSLB- 16PBS, 1% NP-

40, 0.5% Sodium Deoxycholate, 0.1% SDS and Protease Inhibitor

Figure 4. Nurr1 directly regulates Pitx3 expression by binding to its promoter. (A) ChIP-PCR analysis performed in MN9D transfected with
36FLAG-Nurr1 and immunoprecipitated with anti-FLAG antibody shows a significant enrichment of Pitx3, Bdnf and Vmat2 promoter regions. No
enrichment was observed when an unrelated region of the Vmat2 promoter was used [19]. The inserts show representative PCR amplified fragments
after ChIP. (B) ChIP-Real time PCR in MN9D transfected with 36FLAG-Nurr1 and immunoprecipitated with anti-FLAG antibody. The diagram shows
the fold enrichment over background (dotted line) for Pitx3, Bdnf and Vmat2 promoter regions. (C) ChIP-PCR validation performed in E14.5 midbrain
and immunoprecipitated with Nurr1 antibody shows a significant enrichment of the Pitx3 and Bdnf promoter regions. A representative PCR amplified
fragment is shown into the insert. (D) The diagram shows the ChIP-Real time PCR quantitation of Bdnf and Pitx3 promoter region in E14.5 midbrain
and immunoprecipitated with Nurr1 antibody. Results are expressed as mean 6 SE of at least three independent experiments. Asterisks (*) represent
p#0.01 when compared to control (ANOVA, Scheffè F-test).
doi:10.1371/journal.pone.0030661.g004

Table 1. Primers (59-39) used for Real time-PCR.

Gene of interest Primers Sequence

Hprt F: TGGGAGGCCATCACATTGT
R: AATCCAGCAGGTCAGCAAAGA

Nurr1 F: CAACTACAGCACAGGCTACGA
R: GCATCTGAATGTCTTCTACCTTAATG

Pitx3 F: GACACTGGCCGCCCAAGG
R: AGGCCCCACGTTGACCGA

TH F: CCTTTGACCCAGACACAGCA
R: ATACGAGAGGCATAGTTCCTGAG

Vmat2 F: TTGCTCATCTGTGGCTGGG
R: TGGCGTTACCCCTCTCTTCAT

The table shows the forward (F) and reverse (R) primers used in Real time PCR
for the following genes: hypoxanthine-phosphoribosyl-transferase (Hprt), Nurr1,
the paired-like homeodomain transcription factor 3 (Pitx3), tyrosine hydroxylase
(TH), vesicular monoamine transporter 2 (Vmat2).
doi:10.1371/journal.pone.0030661.t001

Nurr1 Regulates Pitx3 Expression
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Cocktail]. Chromatin was fragmented by sonication in DNA

fragments from 200–1000 bp, cells debris removed by centrifuga-

tion and samples pre-cleared with 50 ml Protein A/G Plus-Agarose

(Santa Cruz Biotechnology, sc-2003) for 2 hrs at 4uC. Immuno-

precipitations of cross-linked complexes were performed by

overnight incubation at 4uC using 1 mg of goat anti- Nurr1/

Nur77 antibody (E-20 sc-990 X, Santa Cruz Biotechnology) or

1.5 mg of anti-mouse 36FLAG antibody (Sigma). For each

experiment, a sample without antibody was carried out in parallel

as a control for nonspecific background. Protein A/G Plus-

Agarose (50 ml) were added, incubated at 4uC for 2 hrs, spun at

2000 rpm, washed twice in HSLB, four times in Wash Buffer

[100 mM Tris (pH 8.0), 500 mM LiCl, 1% NP-40 and 1%

Deoxycholate]. The supernatant of bound and unbound samples

was then incubated at 67uC in 100 mM NaHCO3 and 1% SDS to

elute immune complexes. DNA was phenol-chloroform extracted,

ethanol precipitated, UV quantified, and used for PCR or Real

Time with primers spanning the NBRE-like sites in pGL3-pPitx3.

Statistical analysis
The analyses data have been described above. For all other

experiments, analysis of variance was carried out, followed by post

hoc comparison (ANOVA, Scheffè F-test). Data were expressed as

mean +/2 SEM.

Acknowledgments

We thank Luigi Leone and Anna Sollo for excellent technical assistance.

Author Contributions

Conceived and designed the experiments: GCB FV. Performed the

experiments: FV RDG SP. Analyzed the data: FV GCB. Contributed

reagents/materials/analysis tools: FV RDG. Wrote the paper: GCB FV

CPC UdP.

References

1. Brundin P, Isacson O, Bjorklund A (1985) Monitoring of cell viability in

suspensions of embryonic CNS tissue and its use as a criterion for intracerebral

graft survival. Brain Res 331: 251–259.

2. Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, et al. (1997)

Dopamine neuron agenesis in Nurr1-deficient mice. Science 276: 248–250.

3. Smits SM, Ponnio T, Conneely OM, Burbach JP, Smidt MP (2003) Involvement

of Nurr1 in specifying the neurotransmitter identity of ventral midbrain

dopaminergic neurons. Eur J Neurosci 18: 1731–1738.

4. Smidt MP, van Schaick HS, Lanctôt C, Tremblay JJ, Cox JJ, et al. (1997) A

homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic

dopaminergic neurons. Proc Natl Acad Sci USA 94: 13305–13310.

5. Smidt MP, Smits SM, Burbach JP (2004) Homeobox gene Pitx3 and its role in

the development of dopamine neurons of the substantia nigra. Cell Tissue Res

318: 35–43.

6. Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP (2003) Pitx3 is required

for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci

USA 100: 4245–4250.

7. van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ, et al.

(2003) Pitx3 is required for motor activity and for survival of a subset of midbrain

dopaminergic neurons. Development 130: 2535–2542.

8. Sirin O, Lukov GL, Mao R, Conneely OM, Goodell MA (2010) The orphan

nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells.

Nat Cell Biol 12: 1213–1219.

9. Xiao Q, Castillo SO, Nikodem VM (1996) Distribution of messenger RNAs for

the orphan nuclear receptors Nurr1 and Nur77 (NGFI-B) in adult rat brain

using in situ hybridization. Neuroscience 75: 221–230.

10. Colón-Cesario WI (2006) Knockdown of Nurr1 in the rat hippocampus:

implications to spatial discrimination learning and memory. Learn Mem 13:

734–744.

11. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, et al. (2009) Nurr1/

CoREST pathway in microglia and astrocytes protects dopaminergic neurons

from inflammation-induced death. Cell 137: 47–59.

12. Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C, et al. (2009) Nurr1

is required for maintenance of maturing and adult midbrain dopamine neurons.

J Neurosci 29: 15923–15932.

13. Hermanson E, Joseph B, Castro D, Lindqvist E, Aarnisalo P, et al. (2003) Nurr1

regulates dopamine synthesis and storage in MN9D dopamine cells. Exp Cell

Res 288: 324–334.

14. Hermanson E, Borgius L, Bergsland M, Joodmardi E, Perlmann T (2006)

Neuropilin1 is a direct downstream target of Nurr1 in the developing brain stem.

J Neurochem 97: 1403–1411.
15. Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH (1999) Nurr1, an

orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine
hydroxylase in neural progenitor cells derived from the adult brain.

Development 126: 4017–4026.
16. Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ (2001) Nurr1 enhances

transcription of the human dopamine transporter gene through a novel

mechanism. J Neurochem 76: 1565–1572.
17. Volpicelli F, Caiazzo M, Greco D, Consales C, Leone L, et al. (2007) Bdnf gene

is a downstream target of Nurr1 transcription factor in rat midbrain neurons in
vitro. J Neurochem 102: 441–453.

18. Hwang DY, Hong S, Jeong JW, Choi S, Kim H, et al. (2009) Vesicular

monoamine transporter 2 and dopamine transporter are molecular targets of
Pitx3 in the ventral midbrain dopamine neurons. J Neurochem 111: 1202–1212.

19. Aarnisalo P, Kim CH, Lee JW, Perlmann T (2002) Defining requirements for
heterodimerization between the retinoid X receptor and the orphan nuclear

receptor Nurr1. J Biol Chem 277: 35118–35123.
20. Simeone A (2005) Genetic control of dopaminergic neuron differentiation.

Trends Neurosci 28: 62–65.

21. Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, et al.
(1998) Nurr1 is essential for the induction of the dopaminergic phenotype and

the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc
Natl Acad Sci U S A 95: 4013–4018.

22. Jacobs FM, van Erp S, van der Linden AJ, von Oerthel L, Burbach JP, et al.

(2009) Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation
through release of SMRT-mediated repression. Development 136: 531–540.

23. Martinat C, Bacci JJ, Leete T, Kim J, Vanti WB, et al. (2006) Cooperative
transcription activation by Nurr1 and Pitx3 induces embryonic stem cell

maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci
USA 103: 2874–2879.

24. Choi HK, Won L, Roback JD, Wainer BH, Heller A (1992) Specific modulation

of dopamine expression in neuronal hybrid cells by primary cells from different
brain regions. Proc Natl Acad Sci USA 92: 8943–8947.

25. Sacchetti P, Dwornik H, Formstecher P, Rachez C, Lefebvre P (2002)
Requirements for heterodimerization between the orphan nuclear receptor

Nurr1 and retinoid X receptors. J Biol Chem 277: 35088–35096.

26. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the
comparative C(T) method. Nat Protoc 3: 1101–1108.

Nurr1 Regulates Pitx3 Expression

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e30661


