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The COVID-19 pandemic has seen multiple waves, in part due to the implementation and
relaxation of social distancing measures by the public health authorities around the world,
and also caused by the emergence of new variants of concern (VOCs) of the SARS-Cov-2
virus. As the COVID-19 pandemic is expected to transition into an endemic state, how to
manage outbreaks caused by newly emerging VOCs has become one of the primary public
health issues. Using mathematical modeling tools, we investigated the dynamics of VOCs,
both in a general theoretical framework and based on observations from public health data
of past COVID-19 waves, with the objective of understanding key factors that determine
the dominance and coexistence of VOCs. Our results show that the transmissibility
advantage of a new VOC is a main factor for it to become dominant. Additionally, our
modeling study indicates that the initial number of people infected with the new VOC
plays an important role in determining the size of the epidemic. Our results also support
the evidence that public health measures targeting the newly emerging VOC taken in the
early phase of its spread can limit the size of the epidemic caused by the new VOC (Wu
et al., 2139Wu, Scarabel, Majeed, Bragazzi, & Orbinski, ; Wu et al., 2021).

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The COVID-19 pandemic, caused by the infection of SARS-Cov-II virus, has become one of the most severe and deadly
pandemics in recent history. By May 2022, more than two years after its first known outbreak in December 2019, the WHO
reported over 6.28 million COVID-19 deaths and over half a billion confirmed COVID-19 cases (World Health Organization,
2021), while the total number of people infected with COVID-19 is believed to be much greater. It may take many years
from now to fully ascertain the health burden and socioeconomic impact of the pandemic.
-S. Ciupeanu), marie.varughese@gov.ab.ca (M. Varughese), wroda@ualberta.ca (W.C. Roda), donglin3@
myli@ualberta.ca (M.Y. Li).
unications Co., Ltd.

by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
ses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ciupeana@myumanitoba.ca
mailto:marie.varughese@gov.ab.ca
mailto:wroda@ualberta.ca
mailto:donglin3@ualberta.ca
mailto:donglin3@ualberta.ca
mailto:qun1@ualberta.ca
mailto:myli@ualberta.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.idm.2022.08.004&domain=pdf
www.sciencedirect.com/science/journal/24680427
www.keaipublishing.com/idm
https://doi.org/10.1016/j.idm.2022.08.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.idm.2022.08.004
https://doi.org/10.1016/j.idm.2022.08.004


A.-S. Ciupeanu, M. Varughese, W.C. Roda et al. Infectious Disease Modelling 7 (2022) 581e596
The COVID-19 pandemic has included multiple waves. These waves are mainly due to the implementation and relaxation
of non-pharmaceutical interventions and the emergence of new variants of concern (VOCs). These VOCs have been observed
worldwide. A COVID-19 variant contains one or more mutations in its viral genome. Certain COVID-19 variants have higher
transmissibility and severity in populations than other COVID-19 variants. Emerging VOCs are those variants that are
considered to have a distinguishable and significant health impact. Global travel and the timing of non-pharmaceutical in-
terventions has made it difficult to determine when the importation of new VOCs may enter a given geographic region. The
Alpha, Beta, and Gamma variants were first detected between October and November 2020 in the United Kingdom, South
Africa, and Brazil, respectively (National Collaborating Centre for Infectious Diseases, 2022). These three variants then spread
to other countries through global travel, and countries around the world experienced dissimilar transmission dynamics of
these variants (Chen et al., 2021).

In Canada, these VOCs were first detected in December 2020 (Alpha), January 2021 (Beta), andMarch 2021 (Gamma). Each
of these variants contributed differently to the transmission dynamics observed in the third wave. More recently, the
emergence and spread of the Omicron variant (BA.1 and BA.2) was a major driver of the fifth and sixth waves in Canada. An in
depth understanding of the COVID-19 VOCs transmission dynamics during the previous waves can provide valuable new
insights on how to effectively prevent and control future waves of VOCs.

Mathematical modelling has been widely used as a research and policy tool. During the COVID-19 pandemic, academic
researchers and government agencies worldwide have used mathematical models to help understand the spatial and tem-
poral dynamics of the COVID-19 disease. These models have incorporated dynamical features motivated by disease dynamics,
emerging variants, vaccine dynamics, and public health policies (Wu et al., 2139;Wu et al., 2021; Layton& Sadria, 2022; Yuan
et al., 1101; Auger & Moussaoui, 2021; Callaway, 2020; Korber et al., 2020). The public health policies included the following
strategies: travel restrictions, social distancing, isolation, testing for cases, and contact tracing. COVID-19 models have pro-
vided valuable insights and evidence that helped inform policies in a continuously changing pandemic.

A common feature of VOCs of COVID-19 has been their increased transmissibility, and they are expected to have a higher
basic reproduction number. By the standard theory of the multi-strain competition (Andreasen, Lin, & Levin, 1997), under
general assumptions of strain competition, the emerging VOC with the highest basic reproduction number will be able to
invade a population and replaces the wild-type or existing variants according to the competitive exclusion principle in
ecology (Andreasen et al., 1997; Bremermann & Thieme, 1989; Fath & Jørgensen, 2018; Levin, 1970). Several mechanisms for
co-existence of strains of the pathogen in a population have been established in the literature, including super-infection and
co-infection, mutation of one strain to another, cross immunity among strains, and population age heterogeneity in which
different strains preferentially infect different age groups (see (Martcheva, 2015) for reviews). Time-periodic infection rates
caused by seasonality and environmental influences have also been shown to lead to strain co-existence (Martcheva, 2009).
These mechanisms for co-existence are generally not applicable to COVID-19 epidemics, and we assume the competitive
exclusion principle holds for COVID-19 VOCs. The mathematical theories of multi-strain competition and competitive
exclusion are based on the asymptotic behaviours of solutions to mathematical models when time is infinitely large. For
finite-time horizon real-world epidemics such as epidemic waves of COVID-19, variant and strain dominance and coexistence
often are not as clearly defined as in the theory of competition. As were shown in (Wu et al., 2139; Wu et al., 2021; Layton &
Sadria, 2022), public health interventions can play a key role in mitigating, and possibly preventing, an emerging VOC from
becoming dominant in the population.

The main objective of our study was to understand the dynamics of variant competition using a two-variant mathematical
model and to interpret these behaviours in the context of emerging COVID-19 VOCs. The overall analysis will include both
asymptotic behaviours based on the theory ofmathematical epidemiology, and finite-time dynamics during a single epidemic
wave using public health COVID-19 data from the provinces of Alberta and British Columbia, Canada. Our investigation
focused on the following questions:

i) How to interpret dominance and coexistence of variants within the finite-time horizon of a COVID-19 wave, in com-
parison to the infinite-time horizon of the asymptotic limits?

ii) What are the different characteristics of variant dominance or coexistence in finite-time and infinite-time horizons?
iii) How to distinguish between dominance and coexistence of variants during a COVID-19 wave?
iv) What public health measures can be implemented to prevent emerging variants from becoming dominant and/or

mitigate the spread and size of the resulting epidemic?

Multiple variant dynamics of COVID-19 have not been widely discussed in the modeling literature, especially in the
context of the finite-time dynamics during an epidemic or a single epidemic wave. With both an asymptotic and finite-time
perspective, our study enriches the theory of variant/strain competition and it provides actionable insights to public health
interventions related to preventing, mitigating, and managing emerging COVID-19 VOCs.

In the next section, we illustrate the derivation of a general two-variant model for infectious diseases that includes COVID-
19 as a special case. Section 3 provides a detailed mathematical analysis of the model and Section 4 presents numerical
simulation results using public health data from Alberta, Canada.
582



A.-S. Ciupeanu, M. Varughese, W.C. Roda et al. Infectious Disease Modelling 7 (2022) 581e596
2. Derivation of the model

We developed an SIRS type of compartmental model for the transmission of two viral variants in the population. His-
torically, COVID-19 in Canada has presented with a clearly identified dominant variant and a newly emerging VOC. This has
motivated our consideration of using a two variant rather than a multi-variant model. Furthermore, the mathematical
analysis was simplified using a two-variant model. To further reduce the technicality in the mathematical analysis, we
considered a model of SIRS type. More complex models such as SEIR and SEIAR types that include latent and asymptomatic
compartments have been used for COVID-19 dynamics. In (Roda, Varughese, Han,& Li, 2020), the authors have shown that SIR
models perform better than SEIR or more complex compartmental models to represent the public health data of COVID-19.

Our mathematical model has four compartments: number of individuals susceptible to the viral infection at time t, S(t);
number of individuals infectedwith variants 1 and 2 at time t and not detected by the public health surveillance, I1(t) and I2(t);
and number of individuals recovered (detected or undetected from testing) and remain protected against infection at time t,
R(t). Individuals detected from testing transition to R and these individuals do not contribute to further transmission. Un-
detected individuals transition to R based on an average infectious period and these individuals also do not contribute to
further transmission.

For COVID-19, the evidence of an individual having co-infection from two or more variants has been rare, with only a
number of case reports of co-infection (see (da Silva Francisco et al., 2021; BBC News, 2022; Rockett et al., 2745;
1016Vatteroni, Capria, Spezia, Frateschi, & Pistello, ; Bolze et al., 1101)). Considering the evidence of co-infection during the
COVID-19 pandemic, we assumed that co-infection from two or more variants is negligible and we have a single recovered
compartment, R, in the model. The transmission coefficients for variants 1 and 2 are given by b1 and b2, respectively. Each
transmission coefficient is a product of two factors: the average contact rate between the susceptible and infected individuals,
and the probability of transmission per contact. During COVID-19, social-distancing measures and face masking were aimed
at reducing the contact rate among individuals and the probability of transmission, respectively. The parameters g1 and g2 are
the natural recovery rates from variant 1 infection and variant 2 infection, respectively, for infected people who are not
detected by the public health surveillance. Parameters r1 and r2 are case-infection ratios for variants 1 and 2, respectively. A
COVID-19 case is an individual diagnosed as COVID-19 positive by a PCR test as is recorded in the public health surveillance
system. An undetected infection is an individual infected with COVID-19 but not recorded in the public health surveillance
system. The case-infection ratio is defined as the number of new cases divided by the number of people living with unde-
tected COVID-19 infections, or the so-called hidden infections. The ratio 1/ri, i ¼ 1, 2, measures the number of undetected
COVID-19 infections by variant i in the community for each newly diagnosed variant i case, and it is a measure of the
effectiveness of public health surveillance. Daily positive cases identified through testing is denoted by r1I1(t) and r2I2(t) for
variants 1 and 2, respectively. Once detected through testing, individuals are assumed to not infect others until recovered,
which is analogous to isolation requirements and/or reduced social interactions while ill. The rate at which individuals lose
immunity is given by the parameter d. The parameter L is the influx of susceptible individuals from birth and migration.
When modeling a short duration epidemic, such as a COVID-19 wave, births and baseline deaths are often negligible, and, in
this case, the parameter L is set to 0. Since the COVID-19 pandemic is transitioning to an endemic state, the assumption of
L > 0 is helpful to assess the long-term effects of the infection. Also, with the consideration of the COVID-19 endemic state, we
assumed the death rates (baseline or infection-related) are positive.

Themodel is depicted in the transfer diagram in Fig.1. Model parameters are listed in Table 1, together with their biological
meanings. Based on our assumptions and the transfer diagram in Fig. 1, the following system of differential equations can be
derived for the model:
Fig. 1. Transfer diagram for the SIRS model for two variants.
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Table 1
List of model parameters and their biological interpretations.

Parameter Description

b1 transmission rate of variant 1
b2 transmission rate of variant 2
g1 recovery rate of variant 1
g2 recovery rate of variant 2
ri case-infection ratio for variant i, i ¼ 1, 2
d rate of immunity loss
dS background death rate of susceptible people
dI1 death rate of infected people (variant 1)
dI2 death rate of infected people (variant 2)
dR death rate of recovered people
S0 initial susceptible population size
I01 initial number of infections for variant 1
I02 initial number of infections for variant 2
R0 initial immune population size
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S0 ¼ L� b1SI1 � b2SI2 � dSSþ dR;
I1

0 ¼ b1SI1 � g1I1 � r1I1 � dI1 I1;
I2

0 ¼ b2SI2 � g2I2 � r2I2 � dI2 I2;
R0 ¼ g1I1 þ g2I2 þ r1I1 þ r2I2 � dRR� dR:

(1)
3. Model analysis

By examining the direction of the vector field of system (1) on coordinate subspaces of R4, we can verify that the
nonnegative orthant R4

þ is positively invariant under the flow of model (1), namely, solutions with nonnegative initial
conditions will remain nonnegative, and the model is well-posed.

Adding all equations in system (1) leads to

ðSþ I1 þ I2 þ RÞ0 ¼ L� dsS� dI1 I1 � dI2 I2 � dRR � L� dðSþ I1 þ I2 þRÞ;
where d ¼ minfds;dI1 ;dI2 ;dRg>0. This implies that lim supt/∞(S(t) þ I1(t) þ I2(t) þ R(t)) � L/d. We study system (1) in the
following feasible region:
G ¼
��

S; I1; I2;RÞ2R4
þ j Sþ I1 þ I2 þR�L

d

�
; (2)

which is positively invariant and contains the global attractor of model (1) in R4
þ.
3.1. Equilibria and stability analysis

Model (1) always has the disease-free equilibrium P0 ¼ ðLdS
;0;0;0Þ. Since waning immunity is included, when the infection

is not present, previously acquired immunity will be lost at the equilibrium P0 and the entire population will be susceptible.
There are two possible single-variant equilibria: P1 ¼ ðS; I1;0;RÞ and P2 ¼ ðS;0; I2;RÞ, where

S ¼ g1 þ r1 þ dI1
b1

and S ¼ g2 þ r2 þ dI2
b2

: (3)
The single-variant equilibrium P1 exists in G if

R01d
b1

g1 þ r1 þ dI1

L

dS
>1; (4)

it is outside of R4
þ if R01 <1, and it coincides with P0 if R01 ¼ 1. Similarly, P2 exists if

R02d
b2

g2 þ r2 þ dI2

L

dS
>1; (5)

it is outside of R4
þ if R02 <1, and it coincides with P0 if R02 ¼ 1.

We note that, for i ¼ 1, 2, threshold parameter R0i is the basic reproduction number for the variant i when it is the only
variant present in the population. Let
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R0dmaxfR01;R02g: (6)
Then R0 is the basic reproduction number for the two-variant model (1), namely, it measures the average number of the
secondary infections caused by a single infective with either variants during its entire infectious period.

Can a coexistence equilibrium P* ¼ ðS*; I*1; I*2;R*Þ exist when R0 >1? Assuming I*1; I
*
2 >0, then S* needs to satisfy

b1S
* ¼ g1 þ r1 þ dI1 and b2S

* ¼ g2 þ r2 þ dI2
simultaneously. This is only possible if ðg1 þ r1 þ dI1 Þ=b1 ¼ ðg2 þ r2 þ dI2 Þ=b2, namely, whenR01 ¼R02. Furthermore, in
such a case, infinitely choices of I*1; I

*
2 >0 are possible as solutions of a linear equation

�
b1S

* � d

dþ dR
ðg1 þ r1Þ

�
I*1 þ

�
b2S

* � d

dþ dR
ðg2 þ r2Þ

�
I*2 ¼ L:

and accordingly, a line segment defined by this equation connects P1 and P2 and consists entirely of positive equilibria (see
Appendix for a proof).

3.2. Stability analysis

Local stability analysis of equilibria can be carried out using the method of linearization and the Routh-Hurwitz criteria.
We state the following result that summarizes the existence and stability of the equilibria. Technical proofs are presented in
the Appendix. It can be shown that similar results hold for SEIR or more complex models of this type.

Theorem 1. Let R01;R02;R0;S, and S be defined in (3) - (6). The following statements hold.

I IfR0 <1, then the disease-free equilibrium P0 is the only equilibrium in the feasible region G and it is asymptotically stable.
II If R0 >1, then P0 is unstable. Furthermore,

(a) if R02 <1<R01, then the single-variant equilibrium P1 ¼ ðS; I1;0;RÞ exists and is asymptotically stable, while P2 does
not exist in G.

(b) if 1<R02 <R01, then both single-variant equilibria P1 and P2 exists in G. P1 is asymptotically stable while P2 is unstable
in the direction pointing to the interior of G.

(c) if R01 <1<R02, then the single-variant equilibrium P2 ¼ ðS;0; I2;RÞ exists and is asymptotically stable, while P1 does
not exist in G.

(d) if 1<R01 <R02, then both single-variant equilibria P1 and P2 exists in G. P2 is asymptotically stable while P1 is unstable
in the direction pointing to the interior of G.

(e) if R01 ¼ R02 >1, then both P1 and P2 exist, and there exists a line segment in G that consists entirely of positive
equilibria and connects P1 and P2. Each positive equilibrium is neutrally stable in the direction of the line segment, and
is asymptotically stable in directions transversal to the line segment.

Biologically, results in Theorem 1 on the existence and stability of equilibria infer that outcomes of the variants in the
population are determined by the variant-specific reproduction numbersR01 andR02 as defined in (4) and (5). As illustrated
in Fig. 2, in region I, relationR01 >R02 >1 holds, both variants are able to establish in the population. Variant 1 has the larger
basic reproduction number and will become dominant and eventually drive the variant 2 to extinction; in region II, the
reverse relation R02 >R01 >1 holds, and variant 2 will be dominant and drive variant 1 to extinction; and in region III, both
R01 and R02 are less than 1, and neither variant can establish itself in the population and the disease dies out. This is
consistent with R0 ¼ maxfR01;R02g<1.

We pay a special attention to the case in the diagram in Fig. 2 when R01 ¼ R02 >1. This is the only scenario under which
both variants can coexist in the population under our model assumptions. Mathematically, a line of equilibria (case (e) in
Theorem 1) is non-generic and not all equilibria on the line will survive under small perturbations. Furthermore, the half line
given by R01 ¼ R02 >1 has measure 0 in the 2-dimensional parameter region fðR1;R2Þ j R01 >1;R02 >1g. These facts
suggest that coexistence of the two variants in the sense of positive asymptotic limits is unlikely.

In real-world epidemics such as the COVID-19, dominance and coexistence of variants are often discussed within a finite
time horizon (e.g. a single epidemic wave or pandemic) rather than an infinitely long time (or within asymptotic limits). In
this paper, we use practical and theoretical dominance and coexistence to distinguish between finite and infinite time analysis
and observations.

Public health data during the COVID-19 pandemic provides real-world examples of practical dominance and coexistence
between variants and the original strain. Fig. 3 and Fig. 4 describe incident cases and percentage contributions of cases by
VOCs for COVID-19 in British Columbia and Alberta (Jan 1 to May 30, 2021), respectively. In Fig. 3, the Alpha variant and
Gamma variant appear to demonstrate practical coexistence during the second COVID-19 wave, having comparable levels of
variant-specific incident cases and percent contributions. In contrast, the Beta variant was not able to establish itself in the
585



Fig. 2. A diagram illustrating the results in Theorem 1. In region I, where R01 >R02 >1 holds, variant 1 will become dominant and eventually drive the variant 2
to extinction; in region II, where relationR02 >R01 >1 holds, variant 2 is dominant and drives variant 1 to extinction; and in region III, bothR01 and R02 are less
than 1, and neither variant can establish itself in the population and the disease dies out. On the half line defined by R01 ¼ R02 >1, both variants are able to
coexist in the population.

Fig. 3. Weekly reported public health data in the Province of British Columbia, Canada, shows that variants Alpha and Gamma are able to coexist at comparable
levels, while variant Beta was not able to establish itself in the population. The data covers the period from January 3 to June 20, 2021. Source of data: http://www.
bccdc.ca/health-info/diseases-conditions/covid-19/about-covid-19/variants, accessed on June 25, 2021.

Fig. 4. Daily reports of public health data in the Province of Alberta, Canada, show that the Alpha variant dominated the Gamma variant in both (a) case numbers
and (b) case percentages. This is in clear contrast to the variants situation in British Columbia as shown in Fig. 3. The data covers the period from December 15,
2020 to June 15, 2021. Source of data: https://www.alberta.ca/stats/covid-19-alberta-statistics.htm#variants-of-concern, accessed on June 25, 2021. Note: the
drop in the top curve in (b) is artificial and was due to the temporary stoppage of typing of variants during that period.

A.-S. Ciupeanu, M. Varughese, W.C. Roda et al. Infectious Disease Modelling 7 (2022) 581e596
population during the same period, and both Alpha and Gamma variants showed practical dominance over the Beta variant.
Based on our model analysis and results in Theorem 1, the VOC data from British Columbia in Fig. 3 suggests that the
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reproduction numbers of Alpha and Gamma variants are similar, and both are larger than the reproduction number of the
Beta variant.

In Fig. 4, the VOC data for Alberta during the same time period as Fig. 3 describes a different situation. The Alpha variant
showed a practical dominance over both Beta and Gamma variants in terms of incident cases and percentage case contri-
butions. Although the VOC data from British Columbia showed practical coexistence of the Alpha and Gamma variant sug-
gesting similar reproduction numbers, this was not observed in Alberta during the same time period. Alberta experienced
practical dominance of the Alpha variant following the original strain. How can the mathematical theory of competition of
variants be used to explain the apparently different situations of VOCs shown in Figs. 3 and 4? Can variant-specific public
health interventions explain the different situations in the two provinces?We carried out numerical investigations to address
these questions in Section 4.
4. Numerical investigations and implications for endemic states of the COVID-19 pandemic

Numerical simulations were carried out usingmodel (1) to investigate questions related to the dominance and coexistence
of variants raised in the previous two sections. Subsection 4.1 illustrates analytical results from numerical simulations of
theoretical (long-term) dominance and coexistence as described in Theorem 1. Parameter values in these simulations were
independent of time and they are described in figure captions. Subsection 4.2 focuses on simulations to demonstrate practical
(short-term) dominance and coexistence of variants. In these simulations, parameter values are fitted to public health data
from Alberta, Canada, and include time-dependency to account for phased implementation and relaxation of public health
measures (including testing policy changes).
4.1. Theoretical dominance and coexistence of variants

Our analytic results in Theorem 1 show that the variant with a larger basic reproduction number will become dominant,
andwill drive themain circulating variant to extinction as time tends to infinity. Furthermore, when the two variants have the
same basic reproduction number, they can coexist as time tends to infinity. These long-term behaviours are termed theoretical
dominance and coexistence dynamics. To illustrate the concepts, numerical simulations of number of the number (right) and
percentage (left) of hidden infections by each of the variants are shown in Figs. 5 and 6.

4.1.1. Impact of R0i on the theoretical dominance of variants
We assume that g1 ¼ g2 and r1 ¼ r2, and then select b2 ¼ 1.5b1 so thatR02 ¼ 1:5R01. By Theorem 1, we expect that variant

2 will dominate variant 1, irrespective of their initial values I10 > 0 and I20 > 0, and that I2ðtÞ/I2 >0, and I1(t) / 0 as t / ∞
(see Fig. 5). From the simulation results, we observe the following:

(1) The number of infection I2(t) is much larger than I1(t) during the course of the epidemic, suggesting that variant 2
dominates variant 1 (Fig. 5 (a)).
Fig. 5. Simulations of model (1) that demonstrate theoretical dominance of variant 1 by variant 2 when R02 ¼ 1:5R01. Parameter values used for simulations are
b2 ¼ 1.5b1, g2 ¼ g2 ¼ 0.1, r2 ¼ r1, I01 ¼ 9000 and I02 ¼ 100. We note that even when the initial number of infected of variant 2 is smaller than that of variant 1,
variant 2 still become dominant in the long term because of its basic reproduction number is larger.
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Fig. 6. Simulations of model (1) demonstrating the coexistence of variants 1 and 2 when R01 ¼ R01. Parameter values used in the simulations are b2 ¼ b2,
g2 ¼ g2 ¼ 0.1, r2 ¼ r1, I01 ¼ 9000 and I02 ¼ 100. Simulation results show that the variant 2 with smaller initial condition I02 has a smaller limit in both numbers (a)
and percentages (b).
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(2) The asymptotic limit I2 >0 in Fig. 5 (a) appears to be very close to 0 in comparison to the peak value of I2(t) because of
the scale, the infected populations I1(t) and I2(t) both appear to converge to 0 at the end of the epidemic. This leaves
doubt about the dominance of variant 2 based on simulations of I1(t) and I2(t).

(3) The percentage contributions of I1(t) and I2(t) in Fig. 5 (b) demonstrate a clear dominance of variant 2 over variant 1.

In conclusion, using percentage contributions of Ii(t) instead of their numbers can better identify the dominant variant for
analyzing both numerical simulations (Fig. 5) and public-heath data (see Figs. 3 and 4).

4.1.2. Theoretical coexistence of VOCs
In Fig. 6, the parameter values included the following assumptions: g1 ¼ g2, r1 ¼ r2, and b1 ¼ b2 so thatR01 ¼ R02. Based

on Theorem 1, we expect that both variants will coexist, and I1(t), I2(t) both converge to positive limits as t/∞. Furthermore,
the limits are determined by the initial conditions. From our simulation results in Fig. 6 we observed the following:

(1) In Fig. 6 (a), I1(t) is much larger than I2(t) during the course of the epidemic, and the variant 1 appear to dominate
variant 2.

(2) In Fig. 6 (a), variant 1 has a larger initial condition than variant 2, and variant 1 produces a much larger epidemic than
variant 2. This illustrates the conclusion (e) of Theorem 1 that the limits of number of infected for coexisting variants
are dependent on the initial conditions.

(3) In Fig. 6 (b), the percentage contributions of I1 and I2 illustrate that both variants take a positive percentage throughout
the epidemic. In such a case, we say that variant 2 has a low-level coexistence with variant 1.

Overall, two variants coexist whenR01 ¼R02. In this case, the variant with a greater number of initially infected will have
a higher epidemic curve and percentage contribution of total infections. The significance of this theoretical result for real-
world epidemics is that when there are multiple variants having similar reproductive numbers (e.g. Omicron BA.4 and
BA.5) at an early stage within a similar time period, the variant with the largest initial infections will have the greatest
percentage contribution of total infections. In situations where VOCs differ in their severity in terms of symptoms and case-
fatality, control measures during the early stage of an epidemic or wave can be designed to limit the importation and spread of
a more severe variant. If control measures cannot be implemented that target all circulating variants, suppressing the most
severe variant would allow for a milder variant to take a higher percentage contribution and help reduce severe outcomes.
4.2. Practical dominance and coexistence of VOCs during the COVID-19 pandemic

In this subsection, we will examine the concepts of dominance and coexistence of new variants during real-world epi-
demics, or epidemic waves that typically only last for only a finite time. The COVID-19 pandemic provided an ideal context for
such a study, since each epidemic wave was caused by a new variant that became dominant during the epidemic wave. We
will use public health data in the provinces of Alberta and British Columbia, Canada, to inform the model simulations.
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The main objective of the following numerical investigations is to provide plausible explanations for differences in trans-
mission dynamics in finite time (a few months) between Alpha and Gamma variants in Alberta and British Columbia, as shown
in Figs. 3 and 4. In these simulations, it is important to determine conditions that allow for variant dominance or the coexistence
of two variants during an epidemic wave. Since these dynamics are challenging to observe through infections alone (see Figs. 5
and 6), percentage contributions of variants were also provided. This is observed in Alberta's variants data in Fig. 4, where, the
Alpha variant appears to dominate the Gamma variant in the number of cases (Fig. 4 (a)). However, it is clear from the per-
centage contribution by variant (Fig. 4 (b)) that the Gamma variant showed low-level coexistence with the Alpha variant. This
shows the percentage contribution by variant is a better gauge for variant coexistence than incident case numbers.

To realistically model the COVID-19 dynamic, the incorporation of public health interventions such as social distancing,
lock-down measures, testing, quarantine, isolation, and contact tracing are important. Some key parameters require time
dependent characteristics to reflect the policy changes at different phases of the pandemic. For example, time-dependent
transmission coefficients bi(t) will reflect impacts on transmission such as social distancing and lock-down measures.
Time-dependent ri(t) will account for the impacts of COVID-19 testing, contact tracing, quarantine, and isolation measures.
Accordingly, we will carry out our simulations using the following modified model:

S0 ¼ �b1ðtÞSI1 � b2ðtÞSI2 � dSSþ dR;
I1

0 ¼ b1ðtÞSI1 � g1I1 � r1ðtÞI1 � dI1 I1;
I2

0 ¼ b2ðtÞSI2 � g2I2 � r2ðtÞI2 � dI2 I2;
R0 ¼ g1I1 þ g2I2 þ r1ðtÞI1 þ r2ðtÞI2 � dRR� dR:

(7)
We note that the influx of susceptibles L and non-COVID-19 death are set to zero since the epidemic only lasted three
months and the impact of birth and background death on the size of the susceptible population were negligible during
epidemic.

4.2.1. Determination of bi(t) and ri(t) in the model
A step-wise function used in time-dependent transmission parameters, bi(t), i ¼ 1, 2, represented the easing lock-down

measures in Alberta between January and June 2021. The baseline transmission value was obtained from the endpoints of
prior modeling results based on Alberta public health data in January 2021. One step-wise increase of 30% was introduced 18
days after the simulation start date of January 25, 2021. The simulation end date was June 30, 2021.

The time-dependent case-infection ratio ri(t), i¼ 1, 2, represented the effects of population health-seeking behaviours and
behavioural change during the COVID-19 pandemic. They were generated and scaled within the simulations. The minimum
and maximum values for ri(t) was obtained from prior fitting results between March and May 2020, informed by the testing
and health link call data from Alberta Health Services. During each simulation, a burn-in run would help generate a case
detection curve, which would be scaled such that the minimum and maximum values would be limited to previous fitting
results. The minimum value was limited between 2.5 � 10�2 and 3.8 � 10�2. The maximum value was limited between
6.6 � 10�2 and 7.9 � 10�2.

The Affine Invariant Ensemble Markov Chain Monte Carlo (MCMC) algorithm (Roda, 2020; Roda et al., 2020) was the cali-
bration procedure used to estimate time dependent terms r1(t)I1(t) and r2(t)I2(t), baseline transmission rates, the infectious
period, and initial conditions (I1, I2, S and R) using confirmed cases for variant 1 and 2 on day t, respectively. The Matlab 2020a
software was used to run the calibration procedures. Prior distributions of parameters at the start of simulations (January 25,
2021) were informed from epidemiological information and previous calibration results conducted before January 2022.

4.2.2. Dominance of alpha variant over the beta variant during the third wave in alberta and British Columbia
From Figs. 3 and 4, it is apparent that the Alpha variant dominated the Beta variant during the third COVID-19 waves in

Alberta and British Columbia, in both case number and case percentage. This suggested that the basic reproduction number of
the Alpha variant was sufficiently larger than that of the Beta variant in both provinces.

Based on the numerical simulations using model (7) (see Fig. 7), results showed that when the basic reproduction number
of the Alpha variant (variant 2) is 50% larger than the Beta variant (variant 1), namely, R02 ¼ 1:5R01, the Alpha variant will
dominate the Beta variant even when the Alpha variant had a smaller initial number of infected people.

4.2.3. Practical coexistence of the Alpha and Gamma variants during the third wave of COVID-19 epidemic in British Columbia
Fig. 3 describes VOC trends for COVID-19 from British Columbia during the third wave. Case numbers and percentage

contributions by variant type show that the Alpha and Gamma variants coexisted during the third wave and dominated the
Beta variant.

From our theoretical results in Theorem 1, two variants can coexist long-term if and only if they have the same basic repro-
ductionnumber. The observed coexistence of the Alpha andGammavariants during the third COVID-19wave inBritish Columbia
suggests that both the Alpha and Gamma variants may have similar basic reproduction numbers. We performed numerical
simulations on the model (7) to verify this possibility. From our simulation results in Fig. 8, we observed the following:

(1) When variant 1 (Alpha) and variant 2 (Gamma) have similar basic reproduction numbers, R01 ¼ 1:06R02, they can
coexist, in both the infection numbers and percentage contributions (see Fig. 8).
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Fig. 7. Simulations of model (7) demonstrating the dominance of the Beta variant (variant 1) by the Alpha variant (variant 2) in Alberta as observed in Fig. 4, with
a relationR02 ¼ 1:5R01. Parameter values used for simulations are b2 ¼ 1.5b2, g2 ¼ g2 ¼ 0.1, r2 ¼ r1, I01 ¼ 9000 and I02 ¼ 100. Evenwhen the initial number of the
infected is much lower for the Alpha variant, its sufficiently larger basic reproduction number allows the Alpha variant to become dominant.

Fig. 8. Simulation results of model (7) demonstrating the coexistence of the Alpha variant (variant 1) and Gamma variant (variant 2) when they have similar basic
reproduction numbers ðR02 ¼ 1:06R01Þ, as can be observed in both (a) case numbers and (b) case percentages. Parameter values used in the simulations are
b2 ¼ 1.06b2, g2 ¼ g2 ¼ 0.1, r2 ¼ r1, I01 ¼ 9000 and I02 ¼ 2000.
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(2) In Fig. 8, variant 2 had a slightly larger basic reproduction number but a smaller number of initially infected people
compared to variant 1. Based on this simulation, variant 1 had greater number of infections and percentage contri-
butions compared to Variant 2. This suggested that when the basic reproduction numbers are comparable between two
variants, the variant with the more infected people early on will produce a larger epidemic wave. This agrees with our
observations of theoretical coexistence in Sub-section 4.1.2. The use of real data asserts the importance of early public
health responses during an epidemic given an emerging variant.
4.2.4. Early public health responses given an emerging variant can help control replacement dynamics in a population: Alberta's
experience with COVID-19 variants, Alpha and Gamma

During the third wave, the Gamma and Alpha variant coexisted in British Columbia, while in Alberta, coexistence of the
Gamma variant occurred at low-levels with the Alpha variant dominating the epidemic wave (see Figs. 3 and 4). The practical
coexistence of the Alpha and Gamma variants in both provinces suggest that the two variants have similar basic reproduction
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numbers. In subsection 4.1.2, simulations showed that the variant with more initially infected people can lead to a larger
epidemic size (see Fig. 6). The following simulations aim to address differences in public health responses that may have
resulted in variant dynamics observed in both provinces.

As outbreaks of the Gamma variant emerged in Alberta, enhanced public health responses were implemented to contain
its spread through increased testing, contact tracing, and isolation measures ((Hinshaw, 2021), (Lachacz, 2022)). Can variant-
specific public health measures explain the low-level coexistence of the Gamma variant in Alberta?We carried out numerical
simulations to investigate the impacts of containment measures (i.e. testing, contact tracing, and isolation) on variant
dynamics.

These simulations aimed to investigate the impacts of increasing the case-infection ratio ri(t), which incorporates the
effects of case detection through testing, contact tracing, and isolation. Variant 1 (Alpha) and variant 2 (Gamma) had similar
reproduction numbers since they were able to coexist in both provinces. To reflect enhanced surveillance of the emerging
variant 2, the case-infection ratio r1(t) was increased to two times of r1(t). In Fig. 9, simulations show low-level coexistence of
the variant 1 and variant 2, with the latter was at much lower levels for both infection numbers and percentage contributions.
An important result in Fig. 9 was that while variant 1 and variant 2 had a similar basic reproduction number, the targeted
increase in testing, contact tracing, and isolation of the emerging variant was effective to mitigate the total number of
infections.

These simulations results highlighted that when an emerging variant has a similar reproduction number as the existing
variant, early public health measures that increase case-infection ratios (i.e. testing, contact tracing, and isolation) of the
emerging variant can prevent its replacement and/or allow for low level coexistence in the population. In addition, if the
emerging variant poses a greater population-level risk of severity, this targeted approach can be effective to reduce the level
of severe disease outcomes in the community. This was particularly evident in Alberta, where targeted public healthmeasures
that increased case-infection-ratios for the emerging Gamma variant was effective at mitigating its total infections and
percent contributions (Fig. 4).
5. Summary and discussions

We investigated disease transmission dynamics of two variants (strains) using deterministic modelling and focused on
coexistence of variants and dominance of one variant over the other. Analysis and simulations considered asymptotic limits
(termed theoretical coexistence) and finite-time horizon for e.g. within a single epidemic wave (termed practical coexis-
tence). While the simulations focused on COVID-19 specific data, the lessons learned can offer insights for general infectious
disease epidemics and public health interventions.

The theoretical concept of coexistence of variants and dominance of a variant in mathematical epidemiology is based on
the asymptotic limit in an infinite time horizon. The outcomes are determined by the variant-specific basic reproduction
numbers, irrespective of the respective number of initially infected individuals. In the case of simple competition, the
principle of competitive exclusion prevails: a variant with the largest basic reproduction number dominates and drive the
Fig. 9. Simulation results of model (7) demonstrating that variant-specific public health interventions can prevent the Gamma variant from taking hold in
Alberta. We have assumed that the Gamma variant (variant 2) has a slightly higher transmission rate b2 than the transmission rate b1 of the Alpha variant (variant
1), b2 ¼ 1.17b1. We also assumed that the Gamma variant has a higher r2(t) than the Alpha variant, r2(t) ¼ 2r1(t). The initial number of infected are chosen as
I01 ¼ 9000 and I02 ¼ 100. The choices of ri(t) and I0i reflect the additional effort in testing, DNA typing, contact tracing, and isolation directed at cases of the
Gamma variants implemented in Alberta.
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other variants to extinction. The theory focuses on the asymptotic limits without providing much information about finite-
time relations among the variants, and it is less useful when applied to actual epidemics such as seasonal influenza and
epidemic waves of COVID-19. One useful insight from this theory based on infinite-time horizon is the possibility that variants
can coexist when their reproduction numbers are similar and when they emerge concurrently. When applied to real-world
epidemics, this can help us to infer that two variants with comparable number of confirmed cases should have similar basic
reproduction numbers. In Fig. 8, we similar reproductive number and different initial conditions for infectious people.

Real-world epidemics typically last for only a short period of time and the number of infected caused by each variant will
rise at the start, peak, then decline to low levels. Assessing patterns of coexistence or dominance in simulations was chal-
lenging using the number of infections alone. Percentage contributions was a better outcome to assess coexistence and
dominance relations. Unlike the asymptotic theory of variant dominance that depends solely on the variant-specific basic
reproductive numbers, in finite-time variant dynamics, the number of initially infected individuals can also play an important
role to determine which variant may cause an higher level of epidemic or a greater final size.

The dynamics of the Alpha and Gamma variant in Alberta and British Columbia during the third wave was of particular
interest in this analysis since coexistence of both variants were observed in both provinces. However, the percent contri-
butions of these variants were shared more equally in British Columbia (Hogan et al., 2021) compared to Alberta (Figs. 3 and
4). Despite magnitude differences, the overall coexistence observed indicated that both variants likely had similar basic
reproduction numbers based on theoretical insights from mathematical epidemiology. Despite comparable reproductive
numbers for both variants, early and enhanced containment measures (e.g. testing, contact tracing, and/or isolation) targeted
on the emerging Gamma variant may have also been more effective in keeping infectious cases at lower levels in Alberta.
Given variants with comparable reproductive numbers, there may be some interaction between initial size of infectious
people (i.e. initial number and size of outbreaks) (Fig. 8) and the effectiveness of containment measures (including asymp-
tomatic testing (Fraser, Riley, Anderson, & Ferguson, 2004)) (Fig. 9) that could also explain differences in variant dynamics
between Alberta and British Columbia.

Overall, the mathematical analysis and simulations of real-world examples such as COVID-19 provided valuable insights
for future events involving variants emerging at similar times with comparable reproductive numbers. Earlier containment
measures that effectively target emerging variants that pose a greater risk for severity can impact finite-time variant
replacement dynamics by forcing the more severe variant to coexist at a much lower level in a population compared to less
severe variants. While differences in percent contributions of the Alpha and Gamma variants between Alberta and British
Columbiawere described usingmodeling, there may be other factors not captured in the mathematical model that could play
a role such as vaccine coverage and importation through travel. In Canada, as we transition from the pandemic to endemic
phase of COVID-19, the expectation of emerging VOCs is a reality. These valuable insights offered from the analysis of past
waves can help with the future management of COVID-19.
Declaration of competing interest

The authors claim no conflicts of interest.
Acknowledgements

The authors would like to thank the staff at Analytics and Performance Reporting Branch, Alberta Health, Alberta Health
Services, and Alberta Precision Laboratories for collecting, managing, processing, analyzing, and providing summary level
information from administrative data sources, which was fundamental to the model analysis and interpretation. The authors
would also like to thank Amy Colquhoun (Analytics and Performance Reporting Branch) for her valuable advice and insights
provided for this paper.

This research was funded in part by NSERC Alliance COVID-19 grant (ALLRP 555037-20), NSERC Discovery grant (RGPIN-
2020-04134 Li), the CIHR funded Mathematical Modelling of COVID-19 Task Force, and the NSERC-PHAC EIDM Network
“Mathematics for Public Health (MfPH)”. The high performance computing resources for the research were provided by the
Digital Research Alliance of Canada.

Appendix

In this section, we provide the technical details for the proof of stability results in Theorem 1. The Jacobianmatrix of model
(1) at a point P ¼ (S, I1, I2, R) is

JðPÞ ¼

2
664
�b1I1 � b2I2 � dS �b1S �b2S d

b1I1 b1S� g1 � r1 � dI1 0 0
b2I2 0 b2S� g2 � r2 � dI2 0
0 g1 þ r1 g2 þ r2 �d� dR

3
775:

We recall that the variant-specific basic reproduction numbers are:
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R01 ¼ b1
g1 þ r1 þ dI1

L

dS
; R02 ¼ b2

g2 þ r2 þ dI2

L

dS
;

and the basic reproduction number for model (1) is R0 ¼ maxfR01;R02g.
Stability of P0. The Jacobian matrix at P0 ¼ (S0, 0, 0, 0), S0 ¼ L/dS, is

JðP0Þ ¼

2
6664
�dS �b1S

0 �b2S
0 d

0 b1S
0 � g1 � r1 � dI1 0 0

0 0 b2S
0 � g2 � r2 � dI2 0

0 g1 þ r1 g2 þ r2 �d� dR

3
7775:

The eigenvalues of J(P0) are l1 ¼ �dS, l2 ¼ �d � dR, l3 ¼ b1S0 � g1 � r1 � dI1 , and l4 ¼ b2S0 � g2 � r2 � dI2 . Therefore.

(1) P0 is asymptotically stable if l3 < 0 and l4 < 0, namely ifR01 <1 andR02 <1. This is equivalent toR0 ¼maxfR01;R02g
<1.

(2) P0 is unstable if either l3 > 0 or l4 > 0, or equivalently, if R0 >1.

Stability of P1. Suppose thatR01 >1. Then S ¼ ðg1 þ r1 þ dI1 Þ=b1 < L
dS
, and P1 ¼ ðS; I1;0;RÞ exists in R4

þ. The Jacobian matrix at
P1 is

JðP1Þ ¼

2
664
�b1I1 � dS �b1S �b2S d

b1I1 b1S� g1 � r1 � dI1 0 0
0 0 b2S� g2 � r2 � dI2 0
0 g1 þ r1 g2 þ r2 �d� dR

3
775:

One of the eigenvalues is m4 ¼ b2S� g2 � r2 � dI2 , corresponding to an eigenvector that is transversal to the SI1R-subspace
(I2 ¼ 0) of R4, which is the invariant subspace of model when only the variant 1 is present.

The remaining three eigenvalues, m1, m2, m3, are eigenvalues of the 3 � 3 sub-matrix of J(P1)

M ¼
2
4�b1I1 � dS �b1S d

b1I1 b1S� g1 � r1 � dI1 0
0 g1 þ r1 �d� dR

3
5 ¼

2
4�b1I1 � dS �b1S d

b1I1 0 0
0 g1 þ r1 �d� dR

3
5;

since b1S� g1 � r1 � dI1 ¼ 0. Wewill apply Routh-Hurwitz criteria to show that all eigenvalues ofM have negative real parts.
First, trðMÞ ¼ � b1I1 � dS � d� dR <0. Next,

detðMÞ ¼ b1I1ðg1 þ r1Þd� b1I1b1SðdR þ dÞ ¼ �b1I1
�
dR

�
g1 þ r1 þ dI1

	þ ddI1


<0;
and thus the first two Routh-Hurwitz conditions hold. The sum of all 2 � 2 principal minors of M

a2 ¼ b1I1b1Sþ ðb1I1 þ dSÞðdþdRÞ>0;
and, using b1S ¼ g1 þ r1 þ dI1 , we have

trðMÞa2 ¼ �ðb1I1 þ dS þ dþ dRÞ½b1I1ðg1 þ r1 þ dI1 Þ þ ðb1I1 þ dSÞðdþ dRÞ�
< � b1I1ðg1 þ r1 þ dI1 Þðdþ dRÞ< � b1I1½ðg1 þ r1 þ dI1 ÞdR þ ddI1 �
¼ detðMÞ:
We have verified all three Rough-Hurwitz conditions forM, and hence the eigenvalues m1, m2, and m3 of J(P1) have negative
real parts.

Based on the preceding discussion, the stability of P1 is determined by the sign of m4 ¼ b2S� g2 � r2 � dI2 . It can be verified
that m4 < 0 if and only if R02 <R01, and thus P1 is asymptotically stable if R02 <R01, and unstable if R02 >R01.

The stability of P2 when R02 >1 can be analyzed similarly.
Stability of positive equilibrium P* when ¡u¿R01 ¼ R02¡/u¿. Under the assumption that

R01 ¼ b1
g1 þ r1 þ dI1

¼ R02 ¼ b2
g2 þ r2 þ dI2

;

* * * * * * * *
a positive equilibrium P ¼ ðS ; I1; I2;R Þ exists, where S ; I1; I2, and R* satisfy equations
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S* ¼ S ¼ g1 þ r1 þ dI1
b1

¼ g2 þ r2 þ dI2
b2

;

ðg1 þ r1 þ dI1 ÞI*1 þ ðg2 þ r2 þ dI2 ÞI*2 � dR* ¼ L� dSS
*;

ðg1 þ r1ÞI*1 þ ðg2 þ r2ÞI*2 � ðdR þ dÞR* ¼ 0:

(8)
There are infinitely many solutions to this linear system, and they all lie on the 3d hyperplane S ¼ S in R4. On the 3-
dimensional hyperplane S ¼ S, the solutions of linear system (8) lie on the line of intersection of the two 2-dimensional
planes defined by the last two equations of system (8), whose normal vectors (on the hyperplane S ¼ S) are

N1 ¼ ðg1 þ r1 þ dI1 ;g2 þ r2 þdI2 ; � dÞ; N2 ¼ ðg1 þ r1;g2 þ r2; �ðdR þ dÞÞ:
Therefore, the directional vector of the line of equilibria (in the 3d hyperplane S ¼ S) is the cross product

v ¼ N1 � N2 ¼ �� ðg2 þ r2ÞdR � ðdR þ dÞdI2 ; ðg1 þ r1ÞdR þ ðdR þ dÞdI1 ;
ðg2 þ r2ÞdI1 � ðg1 þ r1ÞdI2

	
:

4
In R , vector v is given as

v ¼ �
0;�ðg2 þ r2ÞdR � ðdR þ dÞdI2 ; ðg1 þ r1ÞdR þ ðdR þ dÞdI1 ;

ðg2 þ r2ÞdI1 � ðg1 þ r1ÞdI2
	
:

The Jacobian matrix of any positive equilibrium P* ¼ ðS*; I*1; I*2;R*Þ on the line is

JðP*Þ ¼

2
666664

�b1I
* � b2I

* � dS �b1S
* �b2S

* d

b1I
*
1 0 0 0

b2I
*
2 0 0 0

0 g1 þ r1 g2 þ r2 �dR � d

3
777775
:

Here, we have used the relations b1S* ¼ g1 þ r1 þ dI1 and b2S* ¼ g2 þ r2 þ dI2 . Straightforward calculations show that

JðP*Þv ¼ 0;

which implies that the directional vector v of the line of equilibria is an eigenvector of J(P*) with eigenvalue 0, at each
equilibrium on the line. This shows that each positive equilibrium P* is neutrally stable in the direction v of the line of
equilibria.

Next, we show that the remaining eigenvalues of J(P*) all have negative real parts, for all positive equilibria P*. The
characteristic polynomial of J(P*) is

jlI � JðP*Þj ¼

�����������

lþ b1I
*
1 þ b2I

*
2 þ dS b1S

* b2S
* �d

�b1I
*
1 l 0 0

�b2I
*
2 0 l 0

0 �g1 � r1 �g2 � r2 lþ dR þ d

�����������
¼ lPðlÞ;
where P(l) is the following cubic polynomial

PðlÞ ¼ l3 þ l2ðb1I*1 þ b2I
*
2 þ dS þ dR þ dÞ

þl
��
dR þ dÞðb1I*1 þ b2I

*
2 þ dSÞ þ b1I

*
1b1S

* þ b2I
*
2b2S

*

�d

�
b1I

*
1ðg1 þ r1Þ þ b2I

*
2ðg2 þ r2Þ


þ ðdR þ dÞðb1I*1b1S* þ b2I
*
2b2S

*Þ:
The remaining three eigenvalues of J(P*) are roots of the polynomial P(l). We use the Routh-Hurwitz conditions for cubic
polynomials P(l) ¼ l3 þ a1l

2 þ a2l þ a3, namely, a1 > 0, a3 > 0, and a1a2 > a3, to show that all roots of P(l) have negative real
parts.

It is clear that a1 ¼ b1I
*
1 þ b2I

*
2 þ dS þ dR þ d>0. Also,
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a3 ¼ �d
�
b1I

*
1ðg1 þ r1Þ þ b2I

*
2ðg2 þ r2Þ


þ ðdR þ dÞ�b1I*1b1S* þ b2I
*
2b2S

*	
¼ �d

�
b1I

*
1ðg1 þ r1Þ þ b2I

*
2ðg2 þ r2Þ


þ ðdR þ dÞ�b1I*1�g1 þ r1 þ dI1
	þ b2I

*
2
�
g2 þ r2 þ dI2

	

� �d

�
b1I

*
1ðg1 þ r1Þ þ b2I

*
2ðg2 þ r2Þ


þ d
�
b1I

*
1
�
g1 þ r1 þ dI1

	þ b2I
*
2
�
g2 þ r2 þ dI2

	

>0:

Furthermore,
a1a2 � a3 ¼ �
b1I

*
1 þ b2I

*
2 þ dS þ dR þ d

	ðdR þ dÞ�b1I*1 þ b2I
*
2 þ dS

	
þ�

b1I
*
1 þ b2I

*
2 þ dS þ dR þ d

	�
b1I

*
1b1S

* þ b2I
*
2b2S

*	
þd

�
b1I

*
1ðg1 þ r1Þ þ b2I

*
2ðg2 þ r2Þ


� ðdR þ dÞ�b1I*1b1S* þ b2I
*
2b2S

*	
¼ �

b1I
*
1 þ b2I

*
2 þ dS þ dR þ d

	ðdR þ dÞ�b1I*1 þ b2I
*
2 þ dS

	
þ�

b1I
*
1 þ b2I

*
2 þ dS

	�
b1I

*
1b1S

* þ b2I
*
2b2S

*	þ d
�
b1I

*
1ðg1 þ r1Þ þ b2I

*
2ðg2 þ r2Þ



>0:
The Routh-Hurwitz conditions are verified, and J(P*) has an eigenvalue 0 in the direction of the line of equilibria, and the
remaining three eigenvalues have negative real parts. Accordingly, P* is asymptotically stable in the directions transversal to
the line of equilibria. This completes the proof of Theorem 1.
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