
Principal Component Analysis Characterizes Shared
Pathogenetics from Genome-Wide Association Studies
Diana Chang1,2*, Alon Keinan1,2*

1 Department of Biological Statistics & Computational Biology, Cornell University, Ithaca, New York, United States of America, 2 Program in Computational Biology and

Medicine, Cornell University, Ithaca, New York, United States of America

Abstract

Genome-wide association studies (GWASs) have recently revealed many genetic associations that are shared between
different diseases. We propose a method, disPCA, for genome-wide characterization of shared and distinct risk factors
between and within disease classes. It flips the conventional GWAS paradigm by analyzing the diseases themselves, across
GWAS datasets, to explore their ‘‘shared pathogenetics’’. The method applies principal component analysis (PCA) to gene-
level significance scores across all genes and across GWASs, thereby revealing shared pathogenetics between diseases in an
unsupervised fashion. Importantly, it adjusts for potential sources of heterogeneity present between GWAS which can
confound investigation of shared disease etiology. We applied disPCA to 31 GWASs, including autoimmune diseases,
cancers, psychiatric disorders, and neurological disorders. The leading principal components separate these disease classes,
as well as inflammatory bowel diseases from other autoimmune diseases. Generally, distinct diseases from the same class
tend to be less separated, which is in line with their increased shared etiology. Enrichment analysis of genes contributing to
leading principal components revealed pathways that are implicated in the immune system, while also pointing to
pathways that have yet to be explored before in this context. Our results point to the potential of disPCA in going beyond
epidemiological findings of the co-occurrence of distinct diseases, to highlighting novel genes and pathways that
unsupervised learning suggest to be key players in the variability across diseases.
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Introduction

Comorbidity studies show that some distinct diseases tend to co-

occur [1–6], pointing to a shared genetic and/or environmental

component. In the era of genome-wide association studies

(GWASs), direct evidence of shared genetic risk factors of diseases

comes to light [7]. For example, while it has been previously shown

that rheumatoid arthritis and type-1 diabetes co-occur [1], GWASs

have identified 12 genes associated with both diseases [8–16]. More

broadly, disease genes obtained from the Online Mendelian

Inheritance in Man [17] were used to assemble the Human Disease

Network (HDN) [18,19], a visual representation of genetic similarity

between diseases. Pleiotropy of complex diseases and traits has also

been explored by searching genome-wide for variants implicated in

more than one disease [16,20,21]. Such studies promise to reveal

shared genes and offer an expanded understanding from a genetic

standpoint of why some diseases tend to co-occur.

Methods for exploring shared genetic risk factors between

diseases belong to two main categories (see also recent review [7]).

The first category of methods focuses on finding individual

variants that are associated with a pair or more of diseases being

investigated. In one set of such methods, a GWAS is carried out on

a pooled set of individuals with different diseases [10,16,20,21], or

by analyzing information for multiple diseases available for the

same individuals [22,23]. Alternatively, and based only on

summary statistics of the association test for each single nucleotide

polymorphism (SNP), one can simply combine p-values from

several GWASs using Fisher’s method [24]. The CPMA (cross-

phenotype meta-analysis) statistic [25] is another statistic that tests

whether a SNP is associated to more than one phenotype. In

addition, methods such as the conditional false discovery rate or

mixed-models for multiple traits have used known pleiotropy

between diseases or traits to increase power [26,27]. Studies

employing these methods have found shared associations between

pairs of diseases such as Crohn’s disease and celiac disease [16],

other autoimmune disease pairs [20,21], bipolar disorder and

schizophrenia [26] and multiple sclerosis and schizophrenia [28].

They have additionally shown that SNPs associated with one

autoimmune disease are likely to be associated to other (though

not all) autoimmune phenotypes [25].

The second category of methods focuses on using shared

variants to learn about the genetic similarity between diseases.

One method employed by Sirota et al. utilizes the correlation

between association signals across many SNPs to assess the

similarity between pairs of diseases and showed that there are

likely two distinct autoimmune classes where a risk allele for one

class may be protective in another [29]. Similar methods based on
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classifier [30] and linear mixed model approaches [27,31] have

also been proposed for assessing the shared genetic variation

between two diseases.

These exciting new methods are powerful for studying shared

genetic risk variants between diseases. At the same time,

overcoming some of their limitations can improve the study of

shared pathogenesis using data from multiple GWASs. First, some

methods have focused on analysis of individual SNPs. Though well

suited for scenarios of a single causal SNP in a locus, such methods

would suffer a reduction in power when several causal SNPs exist

or if different SNPs tag the same underlying causal variant, which

is especially relevant for diseases with rare causal variants [32,33]

and when the different GWASs are across different populations

[34] or have used different genotyping arrays. Second, when

considering the correlation between association statistics of

different studies, it might be beneficial to not consider all variants

equally (as is the case in [29]), whether or not they play a role in

disease susceptibility. Third, most methods assume as known

which diseases share pathogenesis, and while the shared patho-

genesis of autoimmune disease has been well established [25,29], it

is worthwhile to study shared pathogenesis of other disease classes

[6,35,36]. And fourth, while some approaches perform well for

two correlated traits or diseases, extending the analysis to more

than two traits can become difficult [27].

In this study, we present a novel method, disPCA, which uses

principal component analysis (PCA) to learn about the shared

genetic risk of distinct diseases. PCA maps data from the original

axes into new axes in principal component (PC) space via a stretch

and rotation of the original axes. Each new axis or PC captures the

maximal level of variation in the data not captured by previous

PCs. Thus, each PC can potentially capture a different, orthogonal

story told by the data. Our method is based on summary level

statistics from GWASs of different diseases. We combine data from

individual SNPs into gene-based statistics via several p-value

combination methods. PCA is applied to a matrix across genes and

GWAS datasets, with entries representing the strength of

association between a gene and the disease studied in a dataset.

Thus, disPCA reveals principal components that are linear

combinations of all genes, weighed in accordance with their role

in differentiating between the different GWASs. It can be applied

to study multiple diseases without prior knowledge of their shared

pathogenesis, thereby overcoming all the limitations of existing

methods outlined above. disPCA also accounts for potential

confounders due to methodological differences between studies,

such as in genotyping array, which can otherwise lead to these

differences being captured by the PCA.

Equipped with this novel method and with data from 31 GWAS

datasets, we considered the level of shared pathogenesis between

diseases and classes of diseases from all genes, which we term

shared pathogenetics. Diseases with more similar underlying

genetics are more likely to be located closer together in PC space.

As PCA is a non-parametric method, it makes no assumptions

regarding which diseases are more similar and does not aim to

model it, thereby allowing discovery of new relationships between

diseases by examining the top PCs. Each PC captures a different

combination of genes that distinguish well between some diseases,

or the remaining variation between diseases. No separation

between diseases along a PC indicates that they tend to share

the pathogenetics underlying that PC. By studying the set of genes

underlying each PC for enrichment in specific pathways, we

further assessed the function and relationship of genes that

separate different disease clusters in PC space.

Materials and Methods

disPCA
We developed a method, disPCA, for studying the relationship

between diseases based on their level of disease risk genes shared.

The method works on the gene-level by first combining

information from all SNPs in and around each gene. Considering

gene-level statistics compensates for different tag SNPs being

associated in different datasets even in cases where they capture

the same causal variant. It also aggregates information across

multiple tag SNPs in each dataset, as well as allows for different

underlying causal variants in the same gene being associated with

the risk of different diseases. To be widely applicable, disPCA is

based solely on the p-values of association of each SNP with the

disease under study. Importantly, all SNPs and consequently all

genes are considered, rather than focusing on genes that meet a

genome-wide significance level of association with a disease. We

apply PCA to many different GWASs to axiomatically find and

assign importance to genes based on their contribution to

distinguishing between diseases and disease classes. The ensuing

distance between different disease datasets in PC space inversely

corresponds to their level of shared pathogenetics.

Gene-level significance levels
For each protein-coding gene from the HGNC database [37], we

mapped all SNPs that are in the gene or within 0.01 cM from it

(genetic distances were determined via the Oxford genetic map

based on HapMap2 data [38,39]). We discarded all SNPs that were

not mapped to within 0.01 cM of any gene. If a SNP lay between

two genes, it was assigned to the closer gene. For each GWAS

dataset, we determined the significance of association of each gene

with the assayed disease using the following simulation procedure.

Let the observed p-value of a gene be the minimum p-value of the n
SNPs mapped to the gene. We compared the observed p-value to

that of 100,000 groups of n consecutive SNPs chosen in random.

Based on these groups, we assign a new p-value to each gene as the

proportion of groups for which the observed minimum p-value for

that gene is less significant than that of the group. This random

sampling procedure may be biased in regions of high linkage

disequilibrium (LD) when mapping SNPs to genes using genetic

distance (e.g. consecutive SNPs in regions of high LD will be more

Author Summary

Epidemiological studies have revealed distinct diseases
that tend to co-occur in individuals. As genome-wide
association studies (GWASs) have increased in numbers,
more evidence regarding the genetic nature of this shared
disease etiology is revealed. Here, we present a novel
method that utilizes principal component analysis (PCA) to
explore the relationships and shared pathogenesis be-
tween distinct diseases and disease classes. PCA groups
and distinguishes between data points by uncovering
hidden axes of variation. Applying PCA to 31 GWASs of
autoimmune diseases, cancers, psychiatric disorders, neu-
rological disorders, other diseases and body mass index,
we report several findings. Diseases of similar classes are
located near each other, supporting the genetic compo-
nent of shared disease etiology. Genes that contributed to
distinguishing between diseases are enriched for various
pathways including those related to the immune system.
These results further our knowledge of the genetic
component of shared pathogenesis, highlight possible
pathways involved and provide new guidelines for future
genetic association studies.

Inferring Shared Pathogenetics from GWAS
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correlated than those in regions of lower LD). However, for any

given gene, these will equally affect each of the datasets. To validate

this, we also applied disPCA to p-values obtained from mapping

SNPs to genes using physical distance: a SNP was mapped to a gene

if it was in the gene or within 10 kb of it. Comparing these results to

results based on mapping via genetic coordinates revealed the same

clustering of diseases (Figure S1). Furthermore, in studying the

loading of each gene, namely their contribution to each PC, we

found that the genes with the top 50 average loadings on the first

two PCs were significantly correlated (r.0.67, p-value,8.461028,

Table S1). Thus, in the main text we present results based on

mapping by genetic distance as described above.

To consider information from beyond only the most significant

SNP in a gene, we also implemented the truncated tail strength

[40] and the truncated product methods [41] to combine p-values

in each gene in replacement of the minimum p-value, and

followed a similar procedure for assigning new gene-level p-values.

For the analyses presented in the following, results from all

methods were similar though results with the minimum p-value

approach clusters similar diseases better (Figure S2, S3). We thus

only report in the main text results from the minimum p-value

approach. Code to carry out this procedure is publicly available at

http://keinanlab.cb.bscb.cornell.edu/content/tools-data.

PCA implementation and confounders
Assume a matrix Z, a d6g matrix of the 2log10 gene-level p-

values, where d is the number of GWAS datasets, and g is the

number of genes present in all datasets. We center the matrix by

subtracting the column means from each column. Thus the

centered matrix B has entries:

Bi,j~Zi,j{

Pd

k~1

Zk,j

d
ð1Þ

To obtain the PCs of matrix B, we must find the eigenvectors

and eigenvalues of its covariance matrix BBT. Let vi be a vector of

length d and let li be a scalar. vi is the eigenvector and l the

eigenvalue of BBT if the following is satisfied:

(BBT )vi~livi ð2Þ

The principal components of B are the normalized eigenvectors

of its covariance matrix, BBT, where the eigenvectors are ordered

such that the largest eigenvalue corresponds to the first principal

component. Each eigenvector is additionally orthogonal to all

other eigenvectors. Thus, from (2), we can decompose BBT as

follows:

BBT~U
X

UT ð3Þ

Where the columns of U contain the principal components and

g is a diagonal matrix with entries equal to the eigenvalues of B’s

covariance matrix. One can similarly construct the singular value

decomposition (SVD) of B. The SVD of B can be written as:

B~VDW T ð4Þ

where V is a d6d matrix, D is a d6g diagonal matrix, and W is a

g6g matrix. V and W contain the left and right singular vectors of

B, respectively, and D contains the singular values of B in its

diagonal. Substituting equation (4) for B in equation (3), we find

that

BBT~(VDW T )(WDVT )~VD2VT~U
X

UT ð5Þ

Thus, the principal components of B, the eigenvectors of its

covariance matrix, are equivalent to the left singular vectors of B.

In addition, the eigenvalues of B are equivalent to the square of its

singular values.

We applied SVD to the matrix B using the R [42]

implementation of PCA/SVD (prcomp), with no scaling of the

data. Due to the heterogeneity of the GWAS datasets (Table S2),

variation uncovered by PCA can also reflect differences in features

such as genotyping array, association method, and sample size,

rather than underlying disease risk genes. To ensure that these

features did not influence our results, we first tested each gene for

association with each of these features. Let zi = Zi,? be the vector

corresponding to the association statistic for gene i across the d
datasets. We considered a linear regression of zi as a function of the

covariates: zi~azbi,1C1zbi,2C2zbi,3C3z", where C1, C2, C3

are vectors of length d that represent the genotyping array,

association method and the log10 of the sample size respectively, in

each of the studies (Table S2). Testing the significance of

regression coefficients can reveal genes that are associated with

any of these potential confounders. In our following analysis, 19

genes were significantly associated with association method.

However, genes not significantly associated to the above

confounders may similarly have an effect. Hence, we also applied

SVD (as described above) to the residualized matrix, namely

matrix R with rows Ri,.~zi{(azbi,1C1zbi,2C2zbi,3C3). We

found that applying SVD to R results in the top PCs capturing a

higher fraction of the variance of the data than when applied to

the original matrix Z, though results are qualitatively similar

between the two. We thus present results derived from the

residualized matrix R. Resulting distances between datasets were

assessed visually by plotting datasets in PC space. To quantify the

clustering of datasets, we additionally applied hierarchical

clustering in R [42] (hclust) to the Euclidean distance between

pairs of datasets across the first two PCs.

Simulation study
We simulated a matrix Z for two disease classes, each with 5

diseases (A1,A2,A3,A4,A5,B1,B2,B3,B4,B5) and 10,000 genes. In

general, under the null hypothesis of a region containing no risk

variant and assuming no confounding factors (e.g. population

stratification), p-values should be uniformly distributed between 0

and 1. On the other hand, associated risk variants should be enriched

for smaller p-values. We thus considered three sets of genes. The p-

values for the first set of genes was drawn from the U(0,1) distribution

for all diseases, thus no pleiotropy was captured in this set of genes.

The second set of genes was distributed U(0,0.05) for the first disease

class (A1,…,A5) and distributed U(0,1) for the second disease class

(B1,…,B5). Finally the third set of genes was distributed U(0,0.05) for

the following diseases: A1, A2, B1, B2 and distributed U(0,1) for all

other diseases. Thus the second set of genes simulates pleiotropy

between diseases in disease class A, while the last set of genes

simulates pleiotropy between diseases in both disease classes.

Disease and pathway enrichment analysis
Disease enrichment analysis was completed using the online tool

WebGestalt [43,44] to query the PharmGKB [45] database.

WebGestalt tests for enrichment of a category of genes in the

Inferring Shared Pathogenetics from GWAS
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observed set of genes using the hypergeometric test [43].

Bonferroni correction for multiple tests was applied and all

reported p-values are following this correction. We restricted

analysis to categories that contained a minimum of 5 genes in our

analysis with the largest 50 weightings in the top two PCs. For

gene categories with overlapping or the same set of genes, we list

the most significant category. To reduce biases introduced by the

clustering of genes with similar function, we filtered our list of

genes with the top 50 loadings on the top two PCs by removing the

latter gene out of a pair of genes within 0.1 cM of each other. We

then applied WebGestalt to this filtered subset of genes.

Pathway enrichment analysis was completed using the Gene Set

Enrichment Analysis (GSEA) tool [46]. GSEA sorts genes

according to a score, which here is the weighting of a gene in

the PC under study. It then assesses whether genes belonging to a

certain category (e.g. pathway) are non-randomly distributed in

the sorted list. As input to GSEA, we utilized the weights of genes

in the top two PCs. GSEA carried out 10,000 gene-set

permutations to determine FDR (false discovery rate) q-values.

We queried the BioCarta and KEGG pathway databases. We

restricted analysis to categories that contained a minimum of 5

genes in our analysis. Throughout we present enrichment analysis

only for the top two PCs, though other PCs are available and can

be assayed for further insight into the diseases studied. We

considered an FDR of 0.25, suggested by GSEA [46] (GSEA

manual online), though this entails that 1 in 4 of our results are

false positives on average. As above, to reduce biases introduced

by the clustering of genes with similar function, we filtered our full

list of genes by removing the latter gene out of a pair of genes

within 0.1 cM of each other and reanalyzed this subset of genes

(n = 5,298) with GSEA.

Testing for non-random distribution of p-values
We followed a similar approach to that implemented in

Zhernakova et al. 2011 [21] while applying it to genes instead of

individual SNPs to test for non-random distribution of association

values. For each disease pair we retained all k genes that were

nominally significant in one disease (p-value,0.01). We then

tested the null hypothesis of a uniform distribution of p-values in

the second disease using Fisher’s method for combining p-values:

x2
2k~{2

Pk

i~1

ln(pi), where pi is the p-value for association of gene i

in the second disease. Nearby genes in linkage disequilibrium may

violate the independency assumption in Fisher’s method. We thus

performed a separate analysis after removing the latter of the two

genes that were within 0.1 cM of each other and nominally

significant in one disease.

Application of disPCA to 31 GWAS datasets
We analyzed a total of 31 GWAS datasets [10,47–76] that

spanned different types of cancers, autoimmune diseases, neuro-

logical disorders, psychiatric disorders, type-2 diabetes (T2D),

ischemic stroke and body mass index (BMI) (Table S2). Datasets

were publicly available, obtained from dbGaP or obtained via

collaborations. These datasets had non-overlapping samples and

were of European ancestry only. For Wellcome Trust Case

Control (WT) related datasets, we distributed controls between the

five datasets such that none had overlapping samples. For WT

type-1 diabetes, rheumatoid arthritis and Crohn’s disease, we

obtained further controls from the WT hypertension, cardiovas-

cular disease and bipolar disorder case data [10]. After obtaining

gene-level association statistics for 14,018–17,438 autosomal genes

for each dataset, we limited our analysis to the 11,927 genes that

overlapped all studies. Nineteen of these genes were significantly

associated with association method after multiple-testing correc-

tion (see above).

Replication of disPCA
We tested the replicability of disPCA when applied to real

GWASs using six datasets for which we had access to the original

data [10,57,60,61,74,75]. Each dataset was split into independent

subsets of equal size (+/2 two samples). We then used PLINK’s

logistic regression [77] to evaluate association of each SNP to

disease risk. We additionally incorporated covariates derived from

EIGENSOFT into the regression analysis [78] to control for

population structure. We randomly chose one subset of each of the

six datasets for one disPCA analysis, and the rest for another.

Hence, these two analyses consist of independent samples.

Results

We first applied disPCA to a simulated dataset (Materials and

Methods). We varied the number of genes that have correlated

association results across simulated datasets, thereby varying the

level of pleiotropy between the simulated diseases. disPCA clearly

clustered pleiotropic diseases when diseases shared at least 40

shared genes with p-values randomly distributed below 0.05 in

each disease (Figure 1a–b, S4, S5, S6). This can be seen both

visually via PCA plots, and via hierarchical clustering based on the

Euclidean distance between datasets in the presented space of the

first two principal components (PCs) (Figure 1, S4, S5, S6). When

diseases are indeed clustered by their simulated pleiotropy

according to disPCA (Figure 1b), the first two PCs explain a

similar fraction of the variance (Figure 1c), which may increase or

decrease depending on the number of genes contributing to

pleiotropy (Figure S7). We next examined the contribution of each

gene to each PC as captured by its absolute ‘‘loading’’.

Considering the first two PCs in this disPCA analysis, genes with

p-values,0.05 (Materials and Methods) are also enriched for

larger absolute loadings, stressing their role in differentiating

between the simulated disease classes (Figure 1d–e).

We next applied disPCA to empirical data from GWAS datasets.

First, we considered only diseases for which we had two datasets:

autoimmune diseases (for which we had the most pairs of datasets)

and a pair of schizophrenia datasets (as schizophrenia has a high

heritability [79]). We observed that datasets of the same diseases

were generally clustered together (Figure 2–3). We additionally

observed that Crohn’s disease is separated from other autoimmune

diseases. This result is consistent with previous reports that

inflammatory bowel disorders (IBDs) are distinct from other

autoimmune disorders [29]. As in the simulated scenarios, the

variance explained by each PC was similar (Figure 2b), and the

results suggest that less than a hundred genes contribute to the

similarity between each pair of datasets (Figure 3c–d).

To test the replicability of the results, we further divided each of

the six datasets, for which we had the raw data, into two subsets

consisting of the same or similar number of cases and controls

(Materials and Methods). We then performed two disPCA
analyses, one based on a randomly chosen subset of each of the

six datasets, and another based on the remaining subset of each

dataset. We found that both independent sets produced the same

clustering of diseases (Figure S8, S9). Loadings for 50 genes with

the largest average loading across the two disPCA analyses of PC1

and PC2 were also significantly correlated across the two (r.0.44,

p-value,1.261023, Table S3). These results point to disPCA
capturing some of the same pleiotropy in both cases, and further

support the replicability of its results.

Inferring Shared Pathogenetics from GWAS
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We applied disPCA to a final set of 31 datasets (Table S2),

including autoimmune diseases, cancers, obesity-related diseases

and traits, psychiatric disorders and neurological disorders. The

first two PCs capture visually-interpretable separation of diseases.

PC1 for the most part splits the two systemic lupus erythematosus

(SLE) and the one dataset of celiac disease from all other datasets

(Figure 4). Independent of that separation, PC2 splits autoimmune

diseases (in purple) from other diseases, and within autoimmune

diseases, inflammatory bowel disorders (Crohn’s disease and

ulcerative colitis) are clustered together (Figures 4–5). Schizophre-

nia, major depressive disorder, cancers, T2D and neurological

disorders lie on the negative end of PC2, while attention deficit

hyperactivity disorder (ADHD), and some autoimmune diseases

that are not well separated on this PC from other diseases, lie near

the origin. PCs beyond the first two explain almost the same

fraction of the variance (Figure 4b) and hence merit further

investigation (see Discussion).

As disPCA teases out the important genes of shared and distinct

pathogenetics across disease datasets, we next investigated which

genes strongly contribute to each PC based on their absolute

loadings. Specifically, we retrieved the genes with the top 50

absolute loadings for each of the top two PCs underlying Figure 4

and tested their disease enrichment (Materials and Methods). The

top genes underlying the first PC were significantly enriched for

genes associated with lupus and autoimmune related diseases,

while genes underlying the second PC were mostly enriched for

association to IBD (Table 1). These enrichment results are

consistent with the separation of studies across each of these 2

PCs with PC1 mostly separating studies of SLE and celiac diseases,

and PC2 mostly separating studies of IBD from other diseases.

The results were largely unchanged following filtering genes that

were within 0.1 cM of each other to account for linkage

disequilibrium and for similar genes being co-located to each

other, such as gene families (Table 1) (Materials and Methods).

Though the results of the disease enrichment analysis support

that disPCA extracts biologically relevant signals, the arbitrary

cutoff of the 50 top genes goes against the potential of PCs being

linear combinations of all genes. We thus used GSEA [46], which

supports analyzing a pre-ranked list of all genes, to perform

pathway enrichment of each PC. GSEA assesses whether genes

belonging to a certain pathway are non-randomly distributed in

the list of pre-ranked genes. We ranked all genes by the absolute

loading in the PC under study. Results of this pathway analysis

revealed enrichment for immune related pathways on the first 2

PCs (Table 2) at an FDR of 0.25. The top two pathways enriched

on PC1 were the antigen processing and presentation and the

intestinal immune network IgA production pathways, which are

crucial immune-related pathways. In particular, intestinal IgA

antibodies may have a role in celiac disease [80] and inflammatory

bowel disease [81,82]. On PC2, the most significant pathway was

the NOD-like receptor signaling pathway. NOD-like receptors

have been associated to Crohn’s disease, while other immune-

related genes likely interacting with NOD2 have been associated

to ulcerative colitis [83]. Other immune system pathways were

Figure 1. disPCA of ten simulated diseases. The p-values for ten diseases were simulated for 10,000 genes (Materials and Methods). Class A
diseases had p-values uniformly distributed between 0 and 0.05 for 40 of the 10,000 genes, while two diseases from class A (A_1, A_2) and two
diseases from class B (B_1, B_2) had p-values similarly distributed for a separate set of 40 genes (Materials and Methods). All other genes had p-values
that were randomly distributed in each disease between 0 and 1. A) The simulated data is displayed on PC1 and PC2. PC1 separates (A_1, A_2, B_1,
B_2) from all other diseases, while PC2 separates class A diseases from class B diseases. B) Dendrogram derived from a clustering analysis based on the
Euclidean distance between datasets in the space of the first two PCs (represented as the height of the branches). C) PC1 and PC2 account for a
similar amount of variance. D) Loadings for each gene are displayed sequentially for PC1. The 40 genes contributing to pleiotropy between the two
diseases in each class (displayed as the last 40 genes) are enriched for larger absolute loadings. E) Similar to (D), with loadings for PC2 displayed. A
separate set of 40 genes contributing to correlation between diseases in each class are also enriched for larger loadings.
doi:10.1371/journal.pcbi.1003820.g001
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enriched, including the Fc epsilon RI signaling pathway that is

related to the antibody IgE, which induces inflammatory response

[84]. Two enriched pathways are related to neurons (i.e. the

neurotrophin signaling pathway and the Trk-A pathway). In

particular, the neurotrophic factor BDNF (brain-derived neuro-

trophic factor), which is a part of the neurotrophin pathway, has

been previously associated to Alzheimer’s, Parkinson’s disease and

depression [85–87]. More recently, an intronic variant in this gene

has also been associated to BMI [88]. The contribution of genes in

these pathways to PC2 may explain the separation of neurological,

psychiatric and BMI studies along that PC. As above, we reran

GSEA after filtering genes that were within 0.1 cM of each other

(Materials and Methods). The top two pathways on the first PC

remained significant, while only the top pathway in PC2 remained

significant (Table S4). This is likely due to the contribution to

enrichment of several genes that are co-located, which should

hence not necessarily be discounted.

Many autoimmune diseases share associations from the HLA

region. We thus reran disPCA after removing all genes in and

around the HLA region, and found a slightly different visual PCA

map (Figure 6). SLE and celiac disease were no longer

distinguished from other autoimmune diseases and instead lay

near the origin. PC1 now differentiated IBD from other diseases,

and PC2 separated some autoimmune diseases from the rest on

one extreme, and schizophrenia from the rest on the other. This

was further supported by clustering results on the first two PCs

(Figure S10). A GSEA analysis of the PC loadings retained the

NOD-like receptor signaling pathway on PC1 instead of PC2

(Table 3). Analysis of PC2 loadings revealed additional immune

Figure 2. disPCA of datasets of the same disease. A) Pairs of datasets of the same autoimmune diseases and schizophrenia are displayed on PC1
and PC2. Dataset labels are indicated in the form of disease-type_ study-name. The size of points is proportional to the sample size of the original
study (Table S2). Diseases include systemic lupus erythematosus (SLE), vitiligo (Vit), multiple sclerosis (MS), schizophrenia (Schizo) and Crohn’s disease
(CD). Datasets of the same diseases tend to lie closer together on PC1 and PC2. B) The portion of variance explained by each PC is displayed. C) The
weightings for genes on PC1 are displayed and ordered according to their weights. D) Similar to (C) with loadings for PC2.
doi:10.1371/journal.pcbi.1003820.g002

Figure 3. Clustering dendrogram of datasets of the same
disease. Each pair of datasets of the same disease cluster together
based on hierarchical clustering applied to the Euclidean distance
between datasets in the first two PCs presented in Figure 2 (Materials
and Methods). The height of the branches represents the Euclidean
distance between datasets in the space of the first two PCs.
doi:10.1371/journal.pcbi.1003820.g003
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related pathways that were not enriched in our previous analysis

that included the HLA region.

Results such as PC1 in the main analysis clustering schizophrenia

close to some autoimmune diseases (Figure 4) prompted us to further

explore the shared pathogenetics between diseases by testing for the

non-random distribution of gene-based p-values in one disease based

on their nominal significance in another disease (Materials and

Methods). Generally, the results show that association statistics are

non-randomly distributed when considering most pairs of autoim-

mune diseases, i.e. testing for non-random distribution in one

autoimmune disease dataset based on significance in another

autoimmune disease dataset (Figure 7). As a control, we tested for

non-random distribution for a random set of genes and found that no

disease pair was significant for non-random distribution (Figure S11).

Our results reported a similar story as observed via disPCA. Genes

nominally significant in rheumatoid arthritis, type-1 diabetes and

ankyolosing spondylitis were non-randomly distributed in SLE and

vice versa. We also found that genes nominally significant for one

schizophrenia study were non-randomly distributed in a number of

autoimmune diseases (Figure 7). These signals remained even after

genes within 0.1 cM of another gene were removed (Figure S12)

(Materials and Methods).

Discussion

In this study we introduced a new method, disPCA, to explore

the shared pathogenetics of various diseases and disease classes

based on GWAS data. PCA has been widely used in population

and medical genetics. Applied to genome-wide genotyping data, it

can recapitulate population structure such as revealing European

geography [89], has been used as a tool to assess and correct for

population stratification in GWAS [78,90] and has also been

proposed as a tool for reducing the dimensionality of multiple

phenotypes for association analysis [91]. Our disPCA method

considers PCA on a different type of matrix, whereby different

GWASs are studied in the space of all genes. It can group GWASs

of different diseases together based on gene-level association

statistics, while accounting for biases due to heterogeneity in

sample size, association method, genotyping array and other

confounders between studies. This implementation of PCA assigns

weights to each gene and each PC in a manner that maximizes the

variation between diseases. Hence, the higher the level of shared

pathogenetics between diseases, the closer they will be in PC space.

This is in contrast to methods that considered the correlation

between diseases across all SNPs [29]. In fact, when we consider

such correlations in our data, it is generally very low, even when

considering it on the gene rather than on the SNP-level and even

when the same disease is studied. For example, the correlation

coefficient between the 2log10 p-values of the two Crohn’s disease

studies is 0.048, and it is 0.063 and 0.031 between ulcerative colitis

and each of the two Crohn’s disease studies. More generally, the

highest correlation between pairs of datasets of the same disease

was obtained for schizophrenia (0.13, p-value = 2.2610216) while

the lowest was obtained for type-2 diabetes (0.0031, p-val-

Figure 4. disPCA of all diseases and traits. A) Autoimmune diseases (purple), cancers (pink), psychiatric disorders (yellow), neurological disorders
(green), and other diseases and traits (grey) are shown on PC1 and PC2. PC1 accounts for 4.48% of the variance, while PC2 accounts for 4.21%.
Additional diseases include Alzheimer’s disease (Alz), amyotrophic lateral sclerosis (ALS), ankyolosing spondylitis (AS), attention deficit hyperactivity
disorder (ADHD), Behcet’s disease (Behcets), body mass index (BMI), breast cancer (BreastC), celiac disease (CeliacD), ischemic stroke (IscStroke), major
depression (MajDep), Parkinson’s disease (Parkin), prostate cancer (ProstateC), psoriasis (Psor), rheumatoid arthritis (RA), type-1 diabetes (T1D), type-2
diabetes (T2D), ulcerative colitis (UC). PC1 clusters celiac disease and SLE together, while PC2 separates inflammatory bowel diseases from other
diseases and traits. B) The portion of variance explained by each PC is displayed. Three additional PCs explain 0% of the variance corresponding to the
number of confounders we accounted for (Materials and Methods). C) The weightings for genes on PC1 are displayed and ordered according to their
weights. D) Similar to (C) where loadings are for PC2.
doi:10.1371/journal.pcbi.1003820.g004
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ue = 0.73). These results show that there is less power when

aggregating information across all genes and that disPCA is able to

tease out and weigh the suitable set of genes underlying shared

pathogenetics.

Though disPCA is designed to uncover shared disease etiology

between diseases, other sources of correlation between datasets can

also contribute to its results. Potential confounders include shared

samples between datasets, technical artifacts, and population

structure (if risk factors vary across ancestry). We accounted for

technical artifacts introduced by the genotyping array, association

method and sample size by regressing out variation in the data

attributed to these sources (Materials and Methods). To minimize

the impact of population structure and shared samples, we only

applied disPCA to studies of individuals of European ancestry and

datasets that had no overlapping case or control data. Though we

cannot account for other potential confounders that are unknown,

our results strongly suggest that the remaining correlation between

studies represent shared disease etiology.

We applied disPCA to data from 31 GWASs that cover a range

of diseases in four main classes: autoimmune diseases, cancers,

neurological disorders and psychiatric disorders. We additionally

analyzed GWASs on T2D, BMI and ischemic stroke. We first

observed that different studies of the same diseases tend to lie

closer together on the lead PCs (Figure 2). This is in support of

studies of the same disease replicating many of the same signals of

associations when samples are of similar ancestry. We additionally

find that disPCA positions diseases within the same class closer

together (Figure 4). This was especially the case for the major types

Figure 5. Clustering dendrogram of datasets of all diseases and traits. Dendrogram derived from hierarchical clustering analysis applied to
distance (in PC space) between datasets presented in Figure 4. Inflammatory bowel diseases are clustered together, in addition to SLE and celiac
disease.
doi:10.1371/journal.pcbi.1003820.g005

Inferring Shared Pathogenetics from GWAS

PLOS Computational Biology | www.ploscompbiol.org 8 September 2014 | Volume 10 | Issue 9 | e1003820



of IBDs (i.e. Crohn’s disease and ulcerative colitis), which clustered

close together (Figure 5). This points to distinct etiology shared

between IBDs, that is not shared between IBDs and most other

autoimmune diseases. Indeed, it has recently been suggested that

IBD is at least in part a primary immunodeficiency disorder

[92,93]. Between the different disease classes, the main 2 PCs in

disPCA found overlap between non-autoimmune diseases and

traits, as well as pointed to a potential connection between

schizophrenia and some autoimmune diseases.

Using the weightings of genes on each of the leading PCs, we

performed disease and pathway enrichment analysis. We found

that PC1, which mainly splits some autoimmune disorders from

other autoimmune disorders, is significantly enriched for genes

associated to immune and autoimmune disorders. PC2, which

splits IBD studies from studies of other diseases, is significantly

enriched for genes in some inflammatory related pathways and

genes associated with IBD. Further results in PC2 highlighted

neuron-related pathways that can be in line with evidence that

Table 1. Disease enrichment analysis for disPCA (Figure 1).

PC Disease P-value* P-value (distance pruned)*

1 Lupus erythematosus 1.5961026 3.061028

Arthritis 1.7261026 .0.01

Connective tissue diseases 5.0061024 .0.01

Autoimmune diseases 2.661023 2.0561026

Rheumatic Diseases 2.661023 .0.01

Immune system diseases 6.561023 2.261025

2 Gastroenteritis 5.79610213 2.9261029

Crohn’s Disease 2.12610212 1.7361028

Inflammatory bowel diseases 1.65610211 7.5361028

Fistula 4.0061029 1.3761027

Gastrointestinal diseases 3.4961028 7.1661028

Celiac disease 2.7561025 7.861026

Multiple sclerosis 261023 761024

Skin diseases, genetic 2.361023 8.161023

Rheumatic diseases 6.461023 2.361023

Autoimune diseases 9.661023 2.761023

*Bonferroni adjusted for multiple testing.
Table shows disease enrichment results for all diseases significantly enriched with an adjusted p-value,0.01. The distance pruned p-values refers to disease enrichment
after removing the latter out of a pair of genes that were within 0.1 cM of each other.
doi:10.1371/journal.pcbi.1003820.t001

Table 2. Gene enrichment analysis for disPCA.

PC Pathway FDR (q-value)

1 Antigen processing and presentation 0.034

Intestinal immune network for IgA production 0.042

Trk-A pathway 0.169

CK1 pathway 0.213

DREAM pathway 0.228

Valine leucine and isoleucine biosynthesis 0.228

O-glycan biosynthesis 0.243

Folate biosynthesis 0.246

2 NOD-like receptor signaling pathway ,161024

Intestinal immune network for IgA production 0.074

Neurotrophin signaling pathway 0.165

Chemokine signaling pathway 0.195

Fc epsilon RI signaling pathway 0.232

Terpenoid backbone biosynthesis 0.232

JAK-STAT signaling pathway 0.238

Table shows pathways that are enriched in the disPCA analysis based on the GSEA analysis.
doi:10.1371/journal.pcbi.1003820.t002
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abnormal neurotrophins levels in the brain have been associated to

schizophrenia [94,95]. Excluding the HLA region revealed

significant enrichment for genes in other immune-related path-

ways. Though the specific analysis presented in this paper focused

on the top two PCs, further PCs estimated by disPCA can be

examined. For example, PC4 of disPCA on all GWASs

distinguishes rheumatoid arthritis from other diseases (Figure

S13). Pathway enrichment analysis highlighted the calcineurin

pathway (FDR = 0.182), which is involved in T-cell activation.

Additionally, though schizophrenia and vitiligo datasets are

further apart on the first two PCs, each pair of datasets is

clustered closer together on PC3 and PC4. Altogether, these

results support the validity of the enrichment analysis based on

disPCA. The analysis in turn also raises new hypotheses of disease

etiology by pointing to additional pathways and enrichment for

other diseases that were not previously observed.

Prompted by the results of disPCA, we further explored shared

pathogenetics by testing for the non-random distribution of

association statistics between pairs of disease studies (Figure 7).

Autoimmune diseases show non-random distribution of associa-

tion statistics with one another. Interestingly, genes nominally

associated with one of the schizophrenia studies were non-

randomly distributed in studies of several autoimmune diseases

(i.e. ankyolosing spondylitis, systemic lupus erythematosus, and

T1D), in support of the above disPCA results. Interestingly, this

relationship was only observed for one of the two schizophrenia

studies we analyzed, which may be due to a number of factors,

including high number of risk factors for schizophrenia, with

Figure 6. disPCA of all diseases and traits excluding the HLA and surrounding region. A) Similar to Figure 4 where genes in the HLA and
surrounding region were removed. Though IBD remains separated as in the original disPCA, the clustering of celiac disease and SLE is no longer
captured by the top two PC’s. B) The portion of variance explained by each PC is displayed. C) The weightings for genes on PC1 are displayed and
ordered according to their weights. D) Similar to (C) where loadings are for PC2.
doi:10.1371/journal.pcbi.1003820.g006

Table 3. Gene enrichment analysis for disPCA without the HLA region.

PC Pathway FDR q-value

1 NOD-like receptor signaling pathway 0.006

Local acute inflammatory response pathway 0.143

2 Proteasome pathway 0.077

Th1–Th2 pathway 0.102

Proximal tubule bicarbonate reclamation 0.135

Adherens junction 0.142

RNA polymerase 0.171

CTLA-4 pathway 0.173

Table shows pathways that are enriched in the disPCA analysis based on the GSEA analysis after removing genes in the HLA and surrounding region.
doi:10.1371/journal.pcbi.1003820.t003
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different ones being associated in different studies. If indeed

autoimmune diseases and schizophrenia share disease etiology,

then just as one would not include individuals with ulcerative

colitis as controls for a Crohn’s disease GWAS since they both are

IBDs, one should also be wary of including individuals with

autoimmune disorders in a schizophrenia GWAS (and vice versa)

as doing so may decrease power in loci implicated in both diseases.

Lack of power due to such or other reasons might also underlie our

lack of observation of significant shared etiology between the

second schizophrenia dataset and autoimmune diseases.

Finally, we make a few recommendations for future applications

of disPCA to additional studies: (1) Biases can be introduced when

studies share sample data; (2) As disPCA maximizes variance

across diseases, genes that are implicated in all analyzed diseases

will not contribute to the lead PC as they do not distinguish

diseases from each other; (3) While here we only focused on using

the strength of association and on gene-level signals, the method

itself is highly flexible. One can further utilize the direction of

association (protective versus deleterious), the heritability at each

locus [96], an analysis at the pathway-level or in linkage

disequilibrium blocks, include other non-genic functional ele-

ments, and/or environmental risk factors; (4) disPCA can be used

to generate new hypotheses, which can then be tested by

conducting more focused association studies in independent data

or by using its output to better combine different diseases in an

independent meta-analysis. New hypotheses can also be generated

with regard to the genes that contribute to comorbidity between

diseases. In conclusion, disPCA offers users a unique general

overview of the disease landscape by studying their distinct and

shared pathogenetics and flagging pathways and genes for further

investigation. disPCA’s flexibility and computational efficiency

proves itself as an excellent tool to be applied to additional diseases

and disease classes to further our knowledge of shared pathoge-

netics.

Supporting Information

Figure S1 Clustering dendrogram of datasets of the
same diseases using physical distance mapping. SNPs

were mapped to genes if they were within 10 kb of the gene.

Clustering analysis of resulting disPCA revealed the same clusters

as disPCA with genetic coordinates (Figure 3).

(TIFF)

Figure S2 Clustering dendrogram of datasets of the
same diseases with the truncated product method.
Similar to Figure 3, with the truncated product method used to

combine SNP p-values per gene.

(TIFF)

Figure S3 Clustering dendrogram of datasets of the
same diseases with truncated tail strength method.
Similar to Figure 3, with the truncated tail strength method used

to combine SNP p-values per gene.

(TIFF)

Figure S4 Simulated diseases with ten nominally sig-
nificant genes. A) Similar to Figure 1 in main text with only ten

Figure 7. Non-random distribution of genes for all analyzed datasets from Figure 4. Genes nominally significant for diseases on the y-axis
were tested for non-random distribution in diseases on the x-axis (Materials and Methods), with 2log10 presented on the color scale on the right.
White entries denote p-values,1610217. The most significant results are for pairs of similar diseases and between pairs of autoimmune diseases. In
addition, pairs between some autoimmune diseases and schizophrenia also display significant results.
doi:10.1371/journal.pcbi.1003820.g007

Inferring Shared Pathogenetics from GWAS

PLOS Computational Biology | www.ploscompbiol.org 11 September 2014 | Volume 10 | Issue 9 | e1003820



nominally significant genes for each set of pleiotropic diseases

(Materials and Methods). Clustering of the diseases sets is not

observed. B) Clustering dendrogram as similarly presented in

Figure 1b. C) The portion of variance explained by each PC is

displayed. D–E) The loadings for PC1 and PC2 are displayed.

(TIFF)

Figure S5 Simulated diseases with twenty nominally
significant genes. A) Similar to Figure 1 with twenty nominally

significant genes for each set of pleiotropic diseases. As in Figure

S2, diseases are not clearly clustering according to the sets though

nominally significant genes are enriched for larger absolute

loadings (Materials and Methods). B) Clustering dendrogram as

similarly presented in Figure 1b. C) The portion of variance

explained by each PC is displayed. D–E) The loadings for PC1

and PC2 are displayed.

(TIFF)

Figure S6 Simulated diseases with thirty nominally
significant genes. A) Similar to Figure 1 with thirty nominally

significant genes for each set of pleiotropic diseases. The proper

clustering of diseases is beginning to emerge. B) Clustering

dendrogram as similarly presented in Figure 1b. C) The portion

of variance explained by each PC is displayed. D–E) The loadings

for PC1 and PC2 are displayed. Genes with nominally significant

p-values are enriched for larger absolute loadings.

(TIFF)

Figure S7 Simulated diseases with 100 and 200 nomi-
nally significant genes. A) Similar to Figure 1 with 100 and

200 nominally significant genes for the two sets of pleiotropic

diseases. Disease sets are tightly clustered and the first two PCs

explain a larger portion of the variance compared to other PCs. B)

Clustering dendrogram as similarly presented in Figure 1b. C)

The portion of variance explained by each PC is displayed. D–E)

The loadings for PC1 and PC2 are displayed.

(TIFF)

Figure S8 Clustering dendrogram of Replication Set 1
datasets. Clustering of the distance in PC space between datasets

in Replication Set 1. Diseases include vitiligo (Vit), multiple

sclerosis (MS), schizophrenia (Schizo) and Crohn’s disease (CD).

(TIFF)

Figure S9 Clustering dendrogram of Replication Set 2
datasets. Similar to Figure S8 with datasets from Replication Set

2.

(TIFF)

Figure S10 Clustering dendrogram of all diseases and
traits excluding the HLA and surrounding regions. Figure is

similar to Figure 5, with clustering analysis of distance between

datasets based on the disPCA between all diseases and traits presented

in Table S2 after removing the HLA and surrounding regions.

(TIFF)

Figure S11 Non-random distribution of randomly cho-
sen genes. A random subset of genes were chosen to be tested for

non-random distribution in diseases on the x-axis, with 2log10

presented on the color scale on the right. White entries denote p-

values,1610217.

(TIFF)

Figure S12 Non-random distribution for distance
pruned set of genes. Genes were filtered such that no two

genes were within 0.1 cM of another. The remaining subset of

genes was then tested for non-random distribution in diseases on

the x-axis. The 2log10 of the p-value is presented on the color

scale and white entries denote p-values,1610217. Results are

largely similar to the original without filtering of nearby genes.

(TIFF)

Figure S13 PC3 and PC4 of all diseases disPCA. Similar to

Figure 4 with data being presented for PC3 and PC4. A) PC1

accounts for 4.18% of the variance, while PC2 accounts for

4.08%. PC1 clusters schizophrenia and vitiligo datasets together

on the two extremes, while PC2 separates rheumatoid arthritis

from other diseases and traits. B) The portion of variance

explained by each PC is displayed. C) The weightings for genes

on PC1 are displayed and ordered according to their weights. D)

Similar to (C) where loadings are for PC2.

(TIFF)

Table S1 Comparison of loadings between disPCA with
mapping based on physical or genetic coordinates.
Loadings for the top 50 genes ranked by either a physical or

genetic coordinates based disPCA were compared. ‘Correlation’

denotes the Pearson’s correlation coefficient with its significance

denoted in the ‘p-value’ column. Rows denoted by

‘mean(PC1,PC2)’ indicate the correlation between the 50 genes

with the largest average loading of PC1 and PC2.

(DOC)

Table S2 Dataset attributes. Various attributes of datasets

utilized in this study.

(DOC)

Table S3 Comparison of loadings between Replication
Sets 1 and 2. Loadings for the top 50 genes ranked by either

Replication Set 1 or Replication Set 2 were compared.

‘Correlation’ denotes the Pearson’s correlation coefficient with

its significance denoted in the ‘p-value’ column. Rows denoted by

‘mean(PC1,PC2)’ indicate the correlation between the 50 genes

with the largest average loading of PC1 and PC2.

(DOC)

Table S4 Pathway enrichment after filtering nearby
genes. Pathway enrichment was applied to a subset of genes that

were located greater than 0.1 cM from each other.

(DOC)
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