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Simple Summary: Biological invasions in the forests of Europe are becoming more frequent, and bark-
and wood-boring insects are increasingly important invasive forest pests. Global trade intensification
facilitates the introduction and spread of these species across new areas, while climate change
and humans contribute to their establishment and spread. If such species enter new territories, the
application of appropriate management measures requires—among other things—a better knowledge
of their distribution. Using traps with different attractants, we attempted to establish the current
distribution in Romania of three of the beetle species that are predicted to be important forest pests:
Ips duplicatus, Xylosandrus germanus and Neoclytus acuminatus.

Abstract: Ips duplicatus (Sahlberg, 1836), Xylosandrus germanus (Blandford, 1894) and Neoclytus acuminatus
(Fabricius, 1775) are invasive species reported in Romania, but their current distribution is poorly
known. The research aim was to provide new information on this issue. A survey was conducted
over the period 2015–2017 in 82 locations, using flight-interception traps and bottle traps, baited with
different attractants. Data obtained in our other unpublished studies were also taken into account.
A total of 35,136 I. duplicatus beetles were collected in 30 survey locations. The highest captures
were in the log yards of some factories processing logs of Norway spruce (Picea abies (L.) H. Karst.).
Considering all known records so far, most of these are in the eastern part of Romania, where an
outbreak took place during the years 2005–2014, mainly in spruce stands growing outside their
natural range. During the survey, 4259 specimens of X. germanus were collected in 35 locations, but
in our other studies the species was found in 13 additional places. It was collected at altitudes of
18–1200 m, and the largest catches were from beech stands, growing at 450–950 m. N. acuminatus
was found in only six locations, in the western and southern parts of the country, at low altitudes,
in tree stands composed of Fraxinus excelsior L., Quercus spp. and other broadleaf species, as well
as in broadleaf log yards. The results suggest that I. duplicatus is established in most parts of the
Norway spruce’s range, X. germanus is still spreading in the country, with some areas having quite
high populations, while N. acuminatus is present only in the warmest regions of the country.

Keywords: Ips duplicatus; Xylosandrus germanus; Neoclytus acuminatus; distribution; Romania

1. Introduction

Biological invasions are one of the major challenges facing forests today, and their neg-
ative effects are becoming more serious, especially in tropical and temperate forests [1–7].
They are partially facilitated by global climate change but, almost without exception, are
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mediated by human activity, which helps a huge diversity of organisms to overcome
geographical barriers [8–11].

Various alien organisms have been introduced and are established in forest ecosystems
in different parts of the world, with insect species being among the most numerous and
having a significant ecological and economic impact [4,5,7,12–14].

Although most alien insect species that have established in the forest ecosystems over
time are sap feeders and foliage feeders, the rate of introduction of insects that feed on
phloem or wood has markedly increased in the last decades [5,15].

In Europe, more than 20 alien species of bark and ambrosia beetles (Coleoptera: Cur-
culionidae: Scolytinae) [15–17] and 20 alien species of longhorn beetles (Coleoptera: Ceram-
bycidae) [18,19] are listed. Three of them have also been found in Romania: Ips duplicatus
(Sahlberg, 1836), Xylosandrus germanus (Blandford, 1894) and Neoclytus acuminatus (Fabri-
cius, 1775) [20–22]. A fourth species, Trichoferus campestris (Faldermann, 1835), may also
have been established in Romania [23], but we did not find any examples in our study, and
consequently it is not discussed in this paper.

Ips duplicatus, the northern bark beetle (NBB) or double-spined bark beetle, is a boreal
species. Apart from the single specimen used by Eichhoff (1877) to describe the species as
Tomicus infucatus, which would have been collected in Steiermark during the 19th century,
it was found only in the Euro-Siberian taiga [24–26]. However, in the first half of the
20th century, it was more frequently found in the territories of the modern-day countries
Poland, Czech Republic and Slovakia [27–39]. During this period, the species was just a
faunistic element in Central Europe; it became an economically important pest only in the
north-eastern part of Poland, and even there it was less important than Ips typographus
(Linnaeus, 1758) [40]. This region is regarded as the southern border of the native area
of occurrence of I. duplicatus [41]. The situation remained apparently unchanged until
the early 1990s [42,43], when local outbreaks of this species occurred in the north–eastern
territory of the Czech Republic and in the south–western part of Poland [39,44,45].

Since 1989 it has also been repeatedly reported in Austria [46–48] and has spread to the
whole territory of the Czech Republic and Slovakia [49,50], as well as to other countries. It is
currently present in the following European countries: Austria, Belgium, Belarus, Bulgaria,
Central and North European Territory of Russia, Croatia, Czech Republic, Estonia, Finland,
France, Germany, Hungary, Latvia, Liechtenstein, Lithuania, Norway, Poland, Romania,
Serbia, Slovakia, Sweden, Switzerland and Ukraine [51–53].

NBB usually inhabits spruces (Picea spp.), but when populations reach high densi-
ties and primary host trees are missing, pines (Pinus spp.) and other conifers may also
be affected [27,42,43,54,55]. Consequently, the cultivation of the Norway spruce at low
altitudes in the Central European countries supported the expansion of the double-spined
bark beetle’s area and the fusion of boreal and alpine ranges [39]. The expansion of NBB
was also favoured by the import of un-debarked timber from Russia and Baltic coun-
tries, which served as the main entry pathway for this species to Central and Western
Europe [39,46–48,56–58] in the last decades. This introduction pathway was confirmed by
genetic analyses [59]. The transportation of infested wood between affected and unaffected
zones also favoured the general distribution of the species in some countries [60].

Both in the Czech Republic and Poland, the mass outbreaks of NBB took place in
artificial spruce stands located at low altitudes, under 600 m above sea level (a.s.l.), where
this bark beetle species has 2–3 generations per year [61,62] and where the spruce trees
are severely affected by abiotic factors such as severe drought and heat waves, which are
predicted to occur more frequently as a result of climate change [63,64], and biotic factors
such as root fungi (Armillaria spp.) [45,49,54,65,66]. Although there is a progressive decline
in spruce stands, attacks are increasing in the north-eastern part of the Czech Republic and
also in other regions [50].

In Romania, I. duplicatus was first collected in 1948, in the Eastern Carpathians (Rarău
Mountain) close to the border with Ukraine [67]. Later, it was sporadically found in
many other locations, mainly in the Eastern Carpathians, at altitudes between 175 m and
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1200 m a.s.l. [67,68]. After 2002, when large volumes of infested wood were transported
from the mountains to hilly areas, where artificial spruce stands were suffering from
drought, an outbreak took place between 2005 and 2014 in the north–eastern part of the
country, killing more than 1.3 million trees (0.4 million cubic metres) [21,69].

Xylosandrus germanus, the black timber bark beetle or black stem borer (BSB), originated
in South-East Asia [15]. It was first reported in Europe by Groschke [70], who found this
species in 1952 near Darmstadt, Germany. However, Wichmann [71] suggested that it
could have been introduced from Japan, with oak wood, during the years 1907–1914 and
1919–1929. The introduction from Japan, most likely from Honshu, was demonstrated by
Dzurenko et al. [72], who suggested that it happened before the Second World War.

From Germany, BSB spread rapidly across Europe, especially after 2000, and is now
reported in Austria, Belgium, Croatia, the Czech Republic, Denmark, France, Germany,
Georgia, Hungary, Italy, Netherlands, Romania, Slovenia, Spain, the South European
Territory of Russia, Sweden, Switzerland, Turkey, Ukraine and the UK [51,73].

This species is an ambrosia beetle, feeding on the fungus Ambrosiella grosmanniae
C. Mayers, McNew & T.C. Harr., which is cultivated by females inside the galleries [74].
Consequently, it does not depend on the tree species itself but on the temperature and
the humidity, which ensure fungus growth. It is a very polyphagous species, colonizing
mainly broadleaves but also conifers [75]. Usually, it attacks dying or recently dead trees,
stumps and logs [42], but can also attack apparently healthy trees, which release ethanol
after exposure to stress factors (drought, flood, freezing, etc.) [76–79].

Although considered a secondary pest in Europe [42], in recent decades, with the
expansion of its geographical range, probably exacerbated by climate change, it has caused
damage both in the forest industry, by colonizing logs of beech, oak, Norway spruce and
silver fir [80,81], and in young plantations of fruit trees [82,83] and grape yards [84,85].

In Romania, BSB was first collected in 2009, in an uneven-aged mixed forest of Euro-
pean beech (Fagus sylvatica L.) and sessile oak (Quercus petraea Liebl.) located in the western
part of the country, and then in 2011–2014 in old-growth European beech and mixed (beech
and conifers) forests in the northern and central parts of the country [22,86].

Neoclytus acuminatus, the red–headed ash borer (RHAB), is a North American species [87]
that was first collected in Europe in the mid-19th century in Rijeka (then Fiume), Croatia [88].
From that place, it spread west and east to other countries [89], but there were also other
repeated introductions from North America into England, Germany and Italy with ash
(Fraxinus spp.) wood [90]. It has been reported in Austria, Bosnia and Herzegovina, Croatia,
the Czech Republic, France, Germany, Hungary, Northern Ireland, Portugal, Serbia and
Montenegro, Slovakia, Slovenia, Switzerland and the United Kingdom [18,89,91,92], with
established populations in Croatia, Italy, Hungary and Montenegro [89]. RHAB is a highly
polyphagous species, found mainly on broadleaves, with ash trees (Fraxinus spp.), oak trees
(Quercus spp.) and hackberry (Celtis occidentalis L.) being the preferred hosts in its native
range [87,93].

The insects attack weakened, dying or recently dead trees, as well as recently cut logs
with bark. The larvae develop in the inner bark and sapwood of the trunk and branches.
The attacked young trees become prone to wind breakage, because the larvae gnaw tunnels
vertically along the trunk, as well as around the circumference. When infestation is high,
the wood quality of the logs is severely reduced [87].

RHAB is one of the most common wood borers throughout the eastern United States
and in south-eastern Canada, and it heavily attacks fresh logs of ash, oak and hickory [87,94].
In Europe, there has been no significant damage reported so far, but it is considered to be a
potentially important pest of Celtis australis L. in Slovenia, Croatia and Hungary [95].

In Romania, prior to our research, only one RHAB individual had been collected, in
2002 [20], and therefore it was not known whether the species was already established or
whether this was a simple interception of a specimen arriving at Timisoara from south-
eastern Hungary, where it was already relatively common in the late 1990s [96].
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As they are secondary pests, which mainly attack weakened, dying or recently fallen
trees, it is expected that NBB, BSB and RHAB, like other pest species, will be favoured
by current climate change, which will amplify the frequency and magnitude of natural
disturbances and will weaken the defences of trees [97–105].

In addition, these species could be very easily transported over long distances through
trading infested wood at the regional, national or international scale [106–108], because
they live for quite a long time under the bark or in the wood.

In this context, it is very important to take into account the presence of new pests both
in the management of forests and in the harvesting, transportation, processing and trading
of wood products such as timber, fuel wood, dunnage, wood for packaging, etc. [49,109,110].
For this purpose, knowledge of the distribution of these species in the country is needed.
Consequently, the purpose of our study was to obtain information on the distribution of
these species in Romania and to highlight the contribution of human activities to their
introduction, establishment and spread at a national level.

2. Materials and Methods
2.1. Study Areas

Knowing that the presence of the three species (NBB, BSB and RHAB) has already
been reported in Romania, extensive field research was carried out in 82 locations between
2015 and 2017 to determine their distribution throughout the country (Figure 1). The
research was also aimed at detecting any other alien scolytid and cerambycid species whose
presence had not been reported previously. The study locations were chosen randomly,
taking into account mainly the ecological requirements of the targeted insect species, in
order to increase the chances of detection (capture). At the same time, we also attempted to
highlight the possible influences of human activities (mainly the expansion of softwoods,
especially spruce, outside their natural ranges and the transportation of infested wood
from affected stands in other parts of the country) on the distribution of these species in
the country.

In 2015, the study focused on BSB. The presence of this species was verified in 13 loca-
tions, situated in mountain or hilly areas, at altitudes between 200 m and 1340 m a.s.l., in
mixed or broadleaf forests, most of them aged 70–110 years, composed of native tree species.
Fagus sylvatica L. was present in all locations, in pure stands or mixed with coniferous
trees (Picea abies (L.) H. Karst., Abies alba Mill., Larix decidua Mill.) or other deciduous trees
(Quercus petraea (Matt.) Liebl., Carpinus betulus L., Tilia cordata Mill., etc.).

In 2016 and 2017, the study was extended to the detection of invasive beetles be-
longing to the Scolytinae subfamily and Cerambycidae family. Thus, field observations
were conducted in 69 new locations (53 in 2016 and 16 in 2017), covering almost the
entire country’s territory, between sea level and 950 m a.s.l., predominantly in the hilly
and plain areas. Most locations (43) were situated in tree stands (coniferous, decidu-
ous or mixed forests) that were 25–135 years old. The tree stands were mainly com-
posed of native tree species (P. abies, A. alba, L. decidua, Pinus nigra Arn., Acer campestre L.,
A. platanoides L., A. pseudoplatanus L., Alnus glutinosa L., Betula pendula Roth, C. betulus,
Fraxinus excelsior L., F. ornus L., F. sylvatica, Prunus avium L., Quercus cerris L, Q. fraineto Ten.,
Q. petraea, Q. pubescens Willd., Q. robur, Populus tremula L., T. cordata), with fewer exotic
species (Acer negundo L., Pseudotsuga menziesii var. glauca (Schwer.), Robinia pseudoacacia L.).
Another 26 locations were chosen outside the forests, in places where alien beetle species
could be detected (near wood processing factories, ornamental plant stores, wood yards,
the vicinity of international airports, a seaport and customs areas). Descriptive information
for each location is provided in Table S1.
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Figure 1. Location of study sites in the survey conducted during 2015–2017, as well as those of our
other studies that allowed the collection of NBB and BSB specimens. (The correspondences between
point numbers and names of locations are given in Table S1).

2.2. Insect Sampling

The studied insect species (NBB, BSB and RHAB) were caught using flight-interception
traps similar to Intercept™ Panel Traps (PT) and bottle traps (BT). PTs were chosen because
they are effective in capturing bark beetles and longhorn beetles [111–113], while BTs are
especially effective in capturing X. germanus beetles [114,115]. The bottle traps used in the
study were constructed of two clear plastic 1.5 L bottles with the mouths connected by a
plastic tube. The upper bottles had three vertical slits of 11 × 3 cm to allow the entrance of
insects. The lure was hung within the upper bottle, at the level of the openings. The lower
bottle served as a collection jar. All the traps, except those used in 2015, were wet traps,
with collection cups containing water with salt (sodium chloride) and traces of detergent.

The traps were baited with synthetic pheromones or kairomones (Tables 1 and S1).
AtraDUP® pheromone lures, containing the main pheromone components of I. duplicatus,
Ipsdienol and E-myrcenol [116–118], were used for the collection of NBBs. Ethanol was
chosen as an attractant for X. germanus, because the females of this species respond quite
well to alcohol [114,115,119]. A combination of ethanol and (-)-alpha-pinene, released
from two separate dispensers, was used to attract the adults of N. acuminatus. This
combination had previously allowed the detection of this species in Slovenia [120,121].
AtraTYP® and AtraLINEA® pheromone lures, normally used to attract I. typographus and
Trypodendron lineatum (Olivier, 1795), respectively, have been deployed to attract other alien
scolytid beetles that we expected to find during the survey. All lure types and panel traps
were provided by the Raluca Rîpan Institute for Research in Chemistry, Cluj-Napoca.

In the field, the traps were placed in groups, with three to five traps in each location
(Table 2), at a distance of 50–100 m from each other. In the coniferous and mixed forests,
the traps baited with pheromone lures for bark beetles were set up in the open at a distance
of 10–15 m from the tree stand’s edge, while the other traps were placed at the stand’s edge
or 5–10 m within the tree stand, but at a distance of at least 2 m from the nearest tree. The
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PTs used to collect bark beetles and longhorn beetles were installed with the mouth of the
collecting funnel at a height of 1 m above the ground, as in other studies concerning these
species [121–124], while those used for BSB were placed 0.5 m closer to the ground, and the
BTs were placed with the openings 0.5 m from the ground, because these beetles fly near
the ground [114,125].

Table 1. The lure types used in the study and their characteristics.

Target Species Lure Type Lure Composition Release Rate
(mg d−1) at 20 ◦C

Functioning
Period (Weeks)

I. duplicatus AtraDUP® (D)
E-myrcenol, Ipsdienol,
2-methyl-3buten-2-ol 28 5–6

X. germanus Ethanol (E) Ethyl alcohol 96% 430 6

N. acuminatus Ethanol + alpha-pinene (E + P) Ethyl alcohol 96%
(-)-α-pinene

430
1300

6
1

Other species AtraTYP® (T)
2-methyl-3-buten-2-ol

(-)-cis-Verbenol 31 6–8

AtraLINEA® (L)
2-methyl-3-buten-2-ol

Ethyl alcohol,
(S)-α-Pinene, Lineatin

30 12

Table 2. The number of locations with different types of traps and lures.

Year Number of
Locations Lures 1 Number and Type of Traps 2

in Each Location

2015 13 E 3 PTd

2016

29 D, E, E + P, L, T 4 PTw + 1 BT
12 E, E + P, L 2 PTw + 1 BT
4 E, P, L 2 PTw + 1 BT
3 D, P, L, T 4 PTw
2 D, E + P, T 3 PTw
1 D, E, P, T 3 PTw + 1 BT
1 D, E, P, L, T 4 PTw + 1 BT
1 E, E + P 1 PTw + 2 BT

2017
15 D, E, E + P, L, T 5 PTw
1 D, E, E + P, T 4 PTw

1 Lure type: E—Ethanol, D—AtraDUP, E+P—Ethanol + Alpha-Pinene, L—AtraLINEA, T—AtraTYP. 2 Trap type:
PTd—dry panel trap, PTw—wet panel trap, BT—bottle trap.

In 2015, the field work was conducted over 3–6 weeks, from mid-June to mid-August,
while in 2016 the traps were installed in the field between 5 May and 10 June, and insect col-
lection lasted 12–20 weeks. The field work started much earlier in 2017, between 28 March
and 27 April in most places, and the survey was generally stopped after 16–21 weeks,
except in one place where it lasted only 8 weeks. We collected insects from traps every
2–3 weeks, and replaced lures when necessary, depending on field life. After collection,
the biological material was conserved in 70% ethanol and kept cold (at −20 ◦C) until it
was analysed.

2.3. Additional Data concerning NBB, BSB and RHAB Presence

Some additional data on the presence of NBB and BSB were collected within several
field experiments we conducted during the years 2009–2018 in different locations (Table S1).
Other additional data concerning the presence of NBB are taken from our unpublished
studies on the NBB outbreak in the north-eastern region of Romania (Table S2). Historical
data concerning the presence of NBB in the country were assembled by searching the
information available in the literature [21,126].
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In order to obtain a full updated picture of RHAB’s current distribution in Romania,
we also took recently published data into account [127,128].

2.4. Species Identification

The taxonomical identification of the collected specimens at species level was per-
formed by the first author using the latest identification keys, including those of Pfeffer
(1995) [43] for the Scolytinae subfamily and Bense (1995) [129] for the Cerambycidae family.

2.5. Climatic Data

To interpret the spread and current distribution of the three species in Romania, we
used a series of climatic indicators for the period 1950–2017 for every study location: mean
annual temperature (MAT), mean annual precipitation (MAP), de Martonne aridity index
(IdM), minimum temperature in January (Tmin-Jan) and the minimum, mean and maximum
temperatures of each season (winter (DJF), spring (MAM), summer (JJA) (Tmin-S, Tmean-S,
Tmax-S) and autumn (SON)). Climatic data were derived from the daily gridded dataset
E-OBS, with a resolution of 0.25◦ × 0.25◦ [130].

2.6. Wood Import Data

The distribution of BSB and its very rapid spread in the country suggests that the
introduction took place mainly via the importation of infested wood. Since there is no
interception report published on this issue by the authorities, we attempted to verify
this hypothesis by analysing data concerning Romania’s round-wood imports since 1997,
from all regions where BSB was present (South-East Asia, North America and Europe).
According to the FAO (2018), Romania imported a volume of 8,819,977 m3 between 1997
and 2016, with 99.9% coming from Europe. From all European partners, we selected only
those countries from which more than 50,000 m3 were imported in these 20 years.

2.7. Data Analyses

Since the main objective of the research was to determine the current distribution of
species in the territory, all catches of the three species were taken into account, regardless
of the attractants with which the traps were baited (Table S3). However, for analysing the
relationship between NBB and BSB catches and altitude, only insects from traps baited with
AtraDUP® and ethanol, respectively, were taken into account. If no individuals of NBB
and BSB were captured in the specifically baited traps, those locations were removed from
the analysis, even if there were infrequent catches in traps baited with other attractants.
For this analysis, data from other studies conducted during a whole season (Table S3), e.g.,
2016–2017, were also taken into account. The total number of BSB individuals collected in
2015 was divided by three, because in that year three ethanol-baited traps were placed in
each location.

The presence of increasing or decreasing trends in seasonal climatic data was tested
using the non-parametric Mann–Kendall trend test Z statistic [131]. Positive values of Z in-
dicate increasing trends, while negative Z values show decreasing trends. If Z is lower than
the theoretical value at the significance level (p = 0.05), then no trend is observed. Statistical
analysis was carried out using the trend package in the R environment (version 4.1.0) [132].

2.8. Maps

All distribution maps were generated in the ArcMap 10.2.2 software (Esri, Redlands,
CA, USA), using the STEREO 70 projection system based on the “Dealu Piscului” Datum
(EPSG: 31700). The layer of forest areas was generated using Corine Land Cover (CLC) 2012,
Version 18.5.1 (European Environment Agency, 2016), while the layer of climatic influences
was extracted from the map “Climate regions and topoclimates” [133]. The map of average
summer temperatures in Europe was obtained from the Atlas of the Biosphere [134].
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3. Results
3.1. Ips duplicatus

During 2016–2017, a total of 35,136 NBB individuals were captured (Table S3), most of
them (77.3%) with pheromone traps baited with AtraDUP® and 22.3% with pheromone
traps baited with AtraTYP®. The species was collected in only 30 of 52 locations, mainly
in conifer and mixed species stands or within wood yards, but also in broadleaf stands
and in places without forest vegetation (Table 3, Figure 2). More than half of the captures
(53.6%) were from the six log yards for conifer timber (Dumbrava Ros, ie, Bras, ov_2, Sebes, ,
Vermes, ti, Reci, Reghin) and 41.9% from the five most infested conifer and mixed stands
(Piatra S, oimului, Hemeius, , Borsec, Lunca Bradului, Praid), located in the eastern and
central parts of the country, while in the remaining places the captures totalled less than 5%
(Figures 2 and 3).

Table 3. Distribution of locations where pheromone traps for NBB were set up and its pres-
ence detected.

Captures of
I. duplicatus

Conifer
Stands

Mixed
Stands

Broadleaf
Stands

Wood
Yards Airports Other

Categories

Yes 7 9 4 6 2 2
No 2 2 9 1 2 6

Insects 2022, 13, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 2. Number of locations and habitats with different NBB capture sizes. 

 
Figure 3. NBB capture variation according to tree stand composition. 

Figure 2. Number of locations and habitats with different NBB capture sizes.

Most of the 30 locations were in or close to the Carpathian Mountains, where previous
studies had documented the presence of this species, but some of them were far from the
mountains in the hilly or plain areas of the country, and one of them was even on the shore
of the Black Sea (Figure 4). In such places, located at low altitudes (<300 m), the numbers
of captures were very low (≤10 beetles/location/season), except in the cases of log yards.
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Figure 4. Geographic distribution of places where NBB presence was detected between 1948 and
2017. (The correspondences between point numbers and names of locations are given in Table S1).
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Taking into account all existing investigations on this species, most records are from
the north-eastern part of the country, where the climate is influenced by Baltic and eastern
continental air masses. In this region, NBB developed active foci between 2005 and 2014
(Table S2). This explains the higher values of the catches presented as “other own data” in
Figure 5.
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The sizes of captures in the forests, during the years 2016–2017 and also in other years
(Table S3), varied with tree stand composition (Figure 3) but also with altitude (Figure 5),
and the data suggest a higher level of populations at 350–600 m a.s.l., where Norway spruce
was planted 50–65 years ago, outside its natural range.

3.2. Xylosandrus germanus

During the study conducted between 2015 and 2017, a total of 4259 BSB adults
were collected, with 835 collected in 2015 using dry PTs baited with ethanol and 3424
in 2016–2017, when wet PTs and BTs baited with different attractant types were used
(Table S3). In 2016–2017, 80% of BSB captures were from traps baited with ethanol, and
9.6% and 9.7% from traps primed with ethanol plus alpha-pinene and AtraLINEA®, re-
spectively, while the remaining proportion was shared equally between traps baited with
AtraDUP® and AtraTYP®.

The species was collected in 35 of the 79 monitored sites, especially in broadleaf and
mixed tree stands, but also in conifer stands, log yards and other places (Table 4). However,
the captures were very low (≤10 beetles/trap/season) in most locations (Figure 6), and
substantial captures (>100 beetles/trap/season) were found in only seven places, especially
within stands with more than 50% beech in their composition (Figure 7). In contrast to the
findings in the case of the previous species, very few specimens of BSB were captured in
wood yards. Beetles captured in wood yards represented only a very small part (0.8%) of
the total captures, and most of them were collected in the wood yard at Bras, ov_2.
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Table 4. Distribution of locations where kairomone traps for BSB were set up and the species’
presence detected.

Captures of
X. germanus

Conifer
Stands

Mixed
Stands

Broadleaf
Stands

Wood
Yards Airports Other

Categories

Yes 3 12 12 5 1 2
No 1 10 20 7 3 3

Insects 2022, 13, x FOR PEER REVIEW 11 of 27 
 

 

9.7% from traps primed with ethanol plus alpha-pinene and AtraLINEA®, respectively, 
while the remaining proportion was shared equally between traps baited with AtraDUP® 
and AtraTYP®. 

The species was collected in 35 of the 79 monitored sites, especially in broadleaf and 
mixed tree stands, but also in conifer stands, log yards and other places (Table 4). How-
ever, the captures were very low (≤10 beetles/trap/season) in most locations (Figure 6), 
and substantial captures (>100 beetles/trap/season) were found in only seven places, es-
pecially within stands with more than 50% beech in their composition (Figure 7). In con-
trast to the findings in the case of the previous species, very few specimens of BSB were 
captured in wood yards. Beetles captured in wood yards represented only a very small 
part (0.8%) of the total captures, and most of them were collected in the wood yard at 
Brașov_2. 

Like NBB, BSB was mainly found in and close to the Carpathian Mountains, in for-
ested areas where the average temperatures in the summer months fall within the range 
of 16–21 °C. BSB was found in the lowland area and in the floodplain of the Danube in 
only a few cases and was not collected at all in the most arid regions of the country (Figure 
8). Consequently, although BSB catches were recorded from 18 m to 1185 m a.s.l., most of 
them, both in this study and in our other studies (Table S3), were found at altitudes of 
450–920 m (Figure 9). In the case of this species, the higher catches from other studies 
conducted by us were due to the intentional choice of places with a higher level of popu-
lations, to achieve the specific objectives of those studies. 

 
Figure 6. Number of locations and habitats with different BSB capture sizes. Figure 6. Number of locations and habitats with different BSB capture sizes.

Like NBB, BSB was mainly found in and close to the Carpathian Mountains, in
forested areas where the average temperatures in the summer months fall within the range
of 16–21 ◦C. BSB was found in the lowland area and in the floodplain of the Danube in only
a few cases and was not collected at all in the most arid regions of the country (Figure 8).
Consequently, although BSB catches were recorded from 18 m to 1185 m a.s.l., most of them,
both in this study and in our other studies (Table S3), were found at altitudes of 450–920 m
(Figure 9). In the case of this species, the higher catches from other studies conducted by us
were due to the intentional choice of places with a higher level of populations, to achieve
the specific objectives of those studies.
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Figure 7. BSB capture variation according to tree stand composition.
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Figure 8. Geographic distribution of places where the BSB presence was detected between 2009 and
2017. (The correspondences between point numbers and names of locations are given in Table S1).
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Figure 9. Variation of BSB captures with altitude in different years. Mainly studies carried out
throughout the vegetation season were taken into account.

3.3. Neoclytus acuminatus

Only 15 RHAB specimens were collected during the years 2016–2017, from only six
places. Ten specimens were caught with pheromone traps primed with AtraLINEA®,
three with ethanol and only two with ethanol plus alpha-pinene. All captures were from
places located at very low altitudes (15–220 m); two in the western part of the country
(with oceanic climatic influences), three in the south-western part of Romania (with sub-
Mediterranean influences) and one in the southern part (with transition climatic influences
between sub-Mediterranean and continental) (Figure 10). In those locations, the average
annual temperature is 9.5–12 ◦C, while the average summer temperature is 19.0–22.8 ◦C
(Table S4).

The species was collected within three tree stands which had different oak species
(Q. cerris L., Q. frainetto Ten. and Q. petraea (Matt.) Liebl.) in their composition, within two
wood yards where there were logs of different broadleaf species, including Fraxinus sp.
and Quercus sp. and within one locality (Dorobant, i, near Curtici) with scattered trees. Most
of the captures (10) were recorded in the wood yard at Oltenit,a, near the Danube River.
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Figure 10. Geographic distribution of places where RHAB presence was detected between 2002 and
2020, based on data from own and other studies [128]. (The correspondences between point numbers
in our study and names of locations are given in Table S1).

4. Discussion
4.1. Ips duplicatus

As expected, NBB beetles were captured not only in the Eastern and Southern Carpathi-
ans and in the neighbouring areas, where the species had been repeatedly collected before,
but also on the Transylvanian Plateau and in the Western Romanian Carpathians, the
Western Hills and Getic Subcarpathians. However, the highest numbers of captures were
from the Eastern Carpathians and Moldavian Subcarpathians, suggesting that the level of
the NBB population in this zone is higher than in the rest of the country.

The higher NBB populations in the sub-mountainous areas of the Eastern Carpathians,
Moldavian Subcarpathians and Moldavian Plateau is the result of a complex of factors
that acted synergistically to support beetles’ multiplication. First of all, in the northern
part of Romanian Eastern Carpathians (REC), the species has been present for the longest
period, being first collected here in 1948, in the natural spruce area [67]. It probably arrived
through the gradual dispersal of insects from Central Europe (Czech Republic, Slovakia)
along the Carpathians [126] and remained as just a faunistic element until 2000 [21].

Secondly, in the northern part of the REC, the spruce (the main NBB host) is the
dominant species in the forests, even in the belt of mixed forests (spruce, fir and beech),
because its proportion was artificially increased to the detriment of the other species in the
second part of the 19th century and during the early part of the 20th century [135]. In the
second half of the 20th century, especially between 1960 and 1985, spruce was planted in
the hilly areas, at altitudes of about 300 m in the north of the country and 500 m in the south
and west [136,137]. In this way, spruce, a species that optimally grows at annual average
temperatures of 4–7 ◦C and annual precipitation of 800–1200 mm [138], has reached places
located far beyond the eastern boundary of its area at Romania’s latitude [139], where
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average annual temperatures are 8–9 ◦C and average annual rainfall is under 600 m [136]
(Table S4 gives values computed for the years 1950–1983).

The spread of NBB across the country, and especially in the eastern part, occurred
in conditions where the average annual and seasonal temperatures were generally ex-
periencing an upward trend after 1984, while the rainfall remained relatively constant
(Figures S1 and S2).

Due to recent climate change, which has been felt more strongly in north-eastern Roma-
nia than in other areas where spruce has been planted outside of its natural area [140–142],
many of these forest stands are now in areas with annual temperatures above 9 ◦C, annual
rainfall below 550 mm and an annual de Martonne aridity index (IdM) lower than 30 [143]
(Table S4 gives data for the years 1984–2017). According to Botzan et al. [144], such IdM
values are characteristic of steppe rather than forest zones.

Since spruce has low drought tolerance and requires an adequate supply of soil mois-
ture [145,146], the trees have been affected by water scarcity under the new circumstances.
The situation has become more and more serious with the aging of the trees and the increase
in water demand, as many of these spruce stands have not been properly thinned and have
more than 2000 trees/hectare after 40–50 years [69,137]. Such dense stands have higher
transpiration rates and higher water losses due to rain interception in the canopy than
thinned tree stands [147].

Site conditions like those in places at low altitudes where spruce has been artificially
introduced, adversely affect the physiological functioning of spruce trees and diminish
their ability to defend against bark beetles and other harmful organisms, especially in
drought years [148–153], which seem to have become increasingly common in this area in
recent decades [154]. Consequently, during the years 2011–2012, when the Standardized
Precipitation Index (SPI–12) averaged at country level was between −1.5 and −1.0 [155],
we noted that spruce trees at low altitudes were so dehydrated that they did not release
any resin when the beetles penetrated the bark. This could explain why even the large trees
(with DBH over 30–40 cm) in sub-mountain areas were almost exclusively colonized by
I. duplicatus and not by I. typographus, as such severely stressed trees are less attractive to
the eight-toothed bark beetle [152].

In this context, on 6–7 March 2002, a strong storm hit the REC forests, affecting trees
amounting to 7.6 million cubic metres in an area of 539 thousand hectares. The most
severely affected were the forests in the county of Suceava: 6 million cubic metres on
256 thousand hectares. Since 2003, in the windthrow-affected area, a large-scale outbreak
of bark beetles took place, and more than 0.5 million standing trees were attacked [156].
The trees killed by wind and bark beetles trees were logged between 2002 and 2005, and
considerable quantities of bark-beetle-infested timber reached the hill area of the counties in
the eastern part of the country, thus increasing the populations of bark beetles considerably,
including NBB, in the zones with spruce stands outside the natural range.

The first foci of bark beetles in this area occurred in old spruce forests (80–100 years),
where I. typographus was the dominant species, such as in the mountain area. Furthermore,
attacks began in the young spruce stands (30–50 years), where the dominant species was
I. duplicatus. One possible explanation for the NBB becoming a dominant species could be
that it escaped I. typographus’s competition, because the later species cannot colonize trees
with bark thinner than 2.5 mm [157], and the young trees, grown in dense stands, had a
relatively thin bark.

At low altitudes, the climate not only weakened the vigour of spruce trees but also
favoured the faster development of beetles. In such areas, NBB could produce 2–3 gener-
ations per year [61,158]. Consequently, the spruce stands at low altitudes were partially
decimated by bark beetles [69], and in recent years the tendency of attacks to advance to
higher altitudes has become increasingly apparent. This may well be due to the global
warming of the last decades, which is felt more strongly at low and middle elevations of the
mountain area, especially in spring and summer, and is associated locally with a reduction
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in precipitation in the winter and spring and increased climatic water deficit on the eastern
side of the Eastern Carpathians and on the Moldavian Plateau [142,159].

In 2018, two NBB foci were found in the inner part of the REC, one at Crucea
(45.352400◦ N, 25.615726◦ E, 738 m a.s.l.) and one at Valea Putnei (47.479208◦ N, 25.380858◦ E,
1000 m a.s.l.). However, each focus was not far (less than 500 m) from a wood yard, and the
concentration of infested logs in these yards could have facilitated the local increase in the
NBB population. High levels of NBB populations at lower altitudes (up to 600–800 m a.s.l.),
were mentioned also in the Czech Republic, Poland and Slovakia [50,160,161].

In the other regions of the country, especially in the west and south, the capture
numbers suggest a much lower level of NBB populations; in some locations, they could be
only the result of the interception of passing insects, without established populations in
those areas. However, the situation may change as a result of infested wood transportation
from tree stands to other areas, as revealed by the very large catches in wood yards,
including that located in Sebes, . The same conclusion is suggested by catches from Constant,a
seaport, as well as from the areas around Timis, oara and Otopeni airports, which are places
located far away from any spruce tree stands.

Furthermore, more intensive research should clarify whether the captures from west-
ern and southern parts of the country correspond to established populations or not, because
the climatic characteristics of those zones are not an impediment to the survival and de-
velopment of this species. At any rate, given increasing global warming and considering
the magnitude of the attacks during the 2005–2014 outbreak, NBB should be considered
an increasingly important pest of Norway spruce in Romania, especially in the hilly and
sub–mountainous areas. Consequently, to avoid damage caused by NBB, forest managers
should take into account both climate change [162,163] and the presence of this species.

4.2. Xylosandrus germanus

Although it was collected for the first time in Romania only a decade ago (in 2009),
this species was found in 2015–2017 in many places, spread throughout the country. Of
these places, two locations (Gros, ii Noi and Voievodeasa), situated more than 320 km apart,
were identified as early as 2009 and 2011. As a result, although the species spreads at a rate
of tens of kilometres per year [164], it is supposed that its current distribution in Romania
is the result of several introductions in different places in the country. In addition, it is very
likely that the species arrived in the country some years before it was detected, as it has
been reported in Hungary since 2005 [165]. A similar situation was observed in Slovakia,
where the species was first reported in 2010 [73]. It is very likely that the species arrived for
the first time in Romania during the period of rapid increase in wood imports after the year
2004, when tens of thousands of cubic metres of round wood were imported from countries
where the pest was already present (Figure S5).

The very large variability in catches suggests the existence of populations with varied
densities throughout the country, with the largest catches at altitudes ranging from 450 m
to 950 m, in stands with at least 50% beech in their composition. These data confirm that the
species finds optimal development conditions in beech forests [73]. In addition, in Belgium,
the species is widespread and has reached high population levels, especially in mixed
hardwood forests dominated by beech [164], but at much lower altitudes than in Slovakia
and Romania. Other relatively large populations, which can be considered as established,
have been identified at altitudes between 250 m and 450 m, both in the eastern part of the
country (Roznov, Valea Budului, Sărata) and in the south (Tismana) in the Subcarpathian
area. However, in most study sites located at an altitude of under 450 m, no or very few
insects were captured.

In the survey conducted during 2015–2017, the largest catch (1058 beetles/trap/season)
was recorded in Braşov, but similar and even larger catches (up to 7426 beetles/trap/season)
were obtained in our other studies conducted in the northern part of the Romanian Eastern
Carpathians, at Cacica, Voievodeasa and Palma (Table S3). In each of these two regions,
there is a large industrial woodworking unit, which is supplied with wood not only from
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the country but also from imports, and several BSB specimens were captured in the log
yard of the Braşov wood processing factory (Braşov_2 in Table S3). This could mean that
log yards play the role of hubs in the spread of BSB in the country.

On the other hand, BSB was captured in only 5 of the 12 wood yards in which ethanol-
baited traps were installed (Table 4 and Table S1), and the number of catches was very low
at each site (1–29 specimens) (Table S3), a fact which may suggest that the spread of this
species in the country is facilitated to a lesser extent by the transport of infested wood,
compared to NBB, since no log or firewood infestations with BSB have been reported so
far in Romania. However, it must be kept in mind that the results we present are also
determined by the biology of this species. BSB females remain in the colonized wood
throughout the development of the new generation and, as a result, can no longer be
intercepted in flight. In addition, in areas where the species has only one generation per
year, the young beetles emerge from the substrate in which they developed only in the
following spring [75] and can be captured during the flight period only if wood is not
processed in the meantime or the insects are not destroyed during processing.

In the case of this species, a single viable female is sufficient to lay the foundations of a
new population, because mating takes place almost exclusively before leaving the galleries
in which the beetles developed [166,167], they can develop in a large number of wood
species [125], and colonization of the substrate does not require the concentration of a large
number of individuals, as in the case of bark beetles attacking seemingly healthy trees.

Very small catches recorded in some low-altitude localities could mean a much lower
population level due to a too-dry climate, as observed in Slovakia [73], but at the same
time, it could be the result of the very low sampling effort (only one ethanol-baited trap per
location) or of installing the traps too late (in 2015). However, the lack of catches in many
places in the western part of the country (where BSB was first collected in Romania) is
problematic and requires more careful sampling, as it is known that the number of catches
depends greatly on the habitat where the traps are located and their distance from the
ground [78,114,168]. The species prefers shady sites within the forest [169,170], and the
beetles fly near the ground [171,172].

In the western and central parts of Europe, permanent populations of this species
have been recorded only at altitudes below 600 m [164,173–176], with the sole exception
of Slovakia, where spruce logs were attacked by X. germanus at an altitude of 1020 m [73].
In Romania, the species was collected in four different places at altitudes above 1100 m
(in Bădeanca at1185 m, in Bobeica at 1195 m, in Cârlibaba at 1270 m and in Căpăţâneni at
1520 m). In all four cases, only one specimen was captured, and it is thought that these could
be isolated specimens entrained by upward air currents from lower altitudes and from
relatively large distances. Additional investigations are needed to determine the extent to
which the species is present in the inner part of the mountains, where spruce predominates,
and up to what altitude this species can survive in the mountain range. However, it is
certain that at the periphery of the Carpathian chain there are large populations at altitudes
of 850–900 m in the northern part of the Romanian Eastern Carpathians and at altitudes of
more than 900 m in the Southern Carpathians.

It has been suggested that species spreading at high altitudes is limited by minimum
winter temperatures [164,175]. However, in the Voievodeasa forest reserve, where the
presence of the species was documented in 2011, no reduction in 2012 catches was noted [22]
after the frosty weather that affected all of Eastern Europe in January and February 2012. At
that place, the average daily minimum temperature in the period 25 January to 16 February
2012 was −17.4 ◦C, and on February 2nd and 3rd, the daily minimum temperatures
dropped to −25.8 ◦C and −25.0 ◦C, respectively [130,177].

It is likely that the apparently negligible effect of the frost on the insect population
was due to the protection afforded by the snow on the ground, since this species usually
colonizes appropriate breeding material lying on or in the soil, and the standing trees are
mostly colonized at the base of the stem [75,178,179]. According to the WMO [177], in the
Voievodeasa area, the maximum snow depth in the period 1 December 2011–29 February
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2012 was between 21 cm and 50 cm, and the number of days with snow on the ground
in the same period was between 61 and 80. According to these observations, negative
temperatures of up to −25 ◦C do not necessarily seem to affect the survival of beetles of
this species if there is a thick layer of snow in the area during frost. Similar results have
been reported in Slovakia by Dzurenko et al. [180].

On the other hand, the data suggest no positive trend of minimum temperatures
during the winter in the last 34 years (Figure S4). Consequently, the extension of the
BSB-infested area to higher altitudes is not the result of rising winter temperatures but of
other factors.

An alternative explanation for the limited spreading of species at high altitudes might
be insufficient warmth in summer. It is known that the optimal temperature for the
development of X. germanus insects is 21–23 ◦C [181], and this overlaps with the optimal
temperature range for the BSB’s symbiotic fungus, which is 20–25 ◦C [182]. In addition,
if the maximum daily temperature does not exceed 20–21 ◦C for at least two consecutive
days, the beetles do not fly and do not colonize the available substrate [76]. As a result,
areas where there are fewer days per year with maximum temperatures above 20 ◦C may
be considered less favourable for colonization by X. germanus, regardless of altitude, while
in areas with daily maximum temperatures that are optimal for the development of insects
throughout the summer, large population growth is expected. Thus, in the places where we
found the largest BSB populations, in Bras, ov and Cacica, and in Palma and Voievodeasa,
the average daily maximum temperatures in the summer (Tmax-S) were 23.1 ◦C and 22.1 ◦C,
respectively (Tables S3 and S4).

Consequently, it is expected that the spread of BSB will extend to higher altitudes due to
global warming that is felt mainly during the spring and summer months (Figures S1 and S3),
especially in the Eastern Carpathians and the Apuseni Mountains [159].

In areas with optimal conditions for population growth, it is expected to become an
important pest, both in forests and in orchards, as mentioned in the Introduction, especially
where the orchards are located near forests. The attack on fruit trees in an orchard in Vileacu
de Beiuş in the vegetation season of 2018 (Ecaterina Fodor, Oradea University, personal
communication) is the first reported case in Romania.

4.3. Neoclytus acuminatus

During our study, this species was collected in only six locations and—apart from
one location—only one specimen was captured in each place, suggesting that the species
is relatively scarce in Romania and that populations are very low or there is still no
established population within the country. However, the actual distribution of RHAB in
Romania may be much greater than suggested by our trapping survey data, because the
lures used (ethanol, alpha-pinene) are much less effective than the species aggregation
pheromone syn-2,3-hexanediols [183,184]. For example, in Georgia, USA, funnel traps
baited with a combination of syn-2,3-hexanediols plus ethanol had mean captures of about
100 RHAB individuals, compared to zero or nearly zero catches in traps baited with ethanol
alone [185]. In addition, in nine of the western and southern locations, the traps were
baited by mistake with alpha-pinene only. Moreover, trap checking and replacement of
alpha-pinene dispensers was conducted only at intervals of 2–3 weeks, despite the fact
that operators who worked in the field were warned that alpha-pinene dispensers do not
function for longer than a week. Practically, those traps were inoperable for at least 50% of
the time. This explains why only two of the captured specimens were found in traps baited
with ethanol and alpha-pinene.

The type of trap and the locations of traps in the field, both in relation to the edge
of the forest and the height from the ground, could also have had a negative impact on
the size of the catches. Experiments performed in other countries [186] have shown that
multiple funnel traps are much more effective than panel traps in capturing N. acuminatus
specimens, and Fluon–treated panel traps are 10 times more effective than untreated panel
traps such as those used in this study. In addition, when traps were placed with the mouth
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of the collecting funnel at about 1 m from the ground, those located outside the forest or at
the forest’s edge captured considerably fewer specimens than those inside the forest [187].

Recently, Rassati et al. [188] showed that N. acuminatus adults are much more fre-
quently captured in traps placed in the tree crowns than in those under the canopy close to
the ground, probably because the adults of this species prefer to lay their eggs in the cracks
in the bark of the branches from the crown (more than 10 m from the ground) and not on
those on the soil [189]. However, Miller et al. [184] captured more N. acuminatus in traps
placed at a height of 1.5 m than in traps placed in the canopy.

Taking into account all the above-mentioned aspects, the small numbers of detections
and catches for this species in our survey is understandable. The fact that the species was
found in the western and south-western parts of the country suggests that it probably
came to Romania from Hungary, where it has been relatively common since the 1990s [96].
However, it is now also present in the eastern part of the country, with apparently estab-
lished populations [128], and this fact could be due to other introductions. For now, its
distribution seems to be linked to forests where the preferred host species (mainly Fraxinus
and Quercus) are present. These sites are also characterized by a warmer climate. Due to
the warm climate in the infested area, insects are likely to end their development in just one
year, as in southern Europe [95]. The presence of the species in wood yards suggests that
the transport of infested wood contributes to the spread of the species in the territory. Since
this species attacks weakened or dying ash trees, it is supposed that it will benefit from ash
dieback caused by Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz & Hosoya, which
is progressing from the east of the country to the west [190]. It could also become a major
pest of the black locust, as in North America it has been reported as attacking seemingly
healthy trees of this species [87].

5. Conclusions

The data we have considered so far suggest that NBB is present in most of the spruce-
growing areas in Romania and that it is expected to become more damaging as the global
climate changes, impacting both host trees and local entomofauna.

BSB is already largely present in the country and continues to spread along with
population growth in areas with permanent populations. It has already begun to appear as
a pest in orchards, and this is expected to become more frequent.

RHAB is widespread in the western, south-western, southern and eastern parts of
the country at low altitudes, but it is expected that its distribution area will continue
to expand, because forests with oak and ash species in their composition are becoming
more widespread.

Although our evidence is indirect, we consider that human activities (the expansion
of spruce outside its natural range, wood imports, domestic trade in infested wood) and
climate change in recent decades have contributed—to a greater or lesser extent, depending
on the species considered—to the introduction, establishment and spread of these three
species in our country.

In order to avoid the damage caused by these pests, those who manage the forests
and orchards of the country should take into account the presence of these new species.
The present study provides information on their distribution in Romania and the context
that led to the current situation. Past events should be lessons for better management in
the future.
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40. Nunberg, M. Klucze do Oznaczania Owadów Polski, Cz. XIX Chrząszcze—Coleoptera, Zeszyt 99-100, Korniki—Scolytidae, Wyrynniki—
Platypodidae; Panstwowe Wydawnictwo Naukowe: Warszaw, Polland, 1954; p. 106.

41. Turcani, M. Recent invasions of exotic forest insects in Eastern Central Europe. In Protection of World Forests from Insect Pests:
Advances in Research; Alfaro, R., Day, K., Salom, S., Nair, K.S.S., Evans, H., Liebhold, A., Lieutier, F., Wagner, M., Futai, K., Suzuki,
K., Eds.; IUFRO World Series: Vienna, Austria, 2001; Volume 11, pp. 99–106.

42. Postner, M. Scolytidae (=Ipidae), Borkenkäfer. In Die Forstschädlinge Europas. 2. Band; Schwenke, W., Ed.; Paul Parey:
Berlin/Hamburg, Germany, 1974; pp. 334–482.

43. Pfeffer, A. Zentral- und Eestpaläarktische Borken- und Kernkäfer: (Coleoptera: Scolytidae, Platypodidae); Pro Entomologia, c/o Naturhis-
torisches Museum: Basel, Switzerland, 1995; p. 310.

44. Knizek, M.; Zahradnik, P. Mass outbreak of Ips duplicatus Sahlberg (Coleoptera: Scolytidae). In Proceedings of the XX International
Congress of Entomology, Firenze, Italy, 25–31 August 1996; p. 527.

45. Grodzki, W. Parazytoidy, drapiezce i komensale kambiofagow swierka w warunkach zubozenia roznorodnosci biologicznej
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Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow. Ecohydrology 2015, 8, 378–386. [CrossRef]

http://doi.org/10.1002/ps.1867
http://doi.org/10.1093/aesa/76.3.455
http://doi.org/10.1016/j.ecolind.2019.01.038
http://doi.org/10.3897/travaux.64.e63053
http://doi.org/10.1029/2008JD010201
https://www.R-project.org
https://nelson.wisc.edu/sage/data-and-models/atlas/
http://doi.org/10.1175/2010WCAS1010.1
http://doi.org/10.5194/asr-10-21-2013
http://doi.org/10.1016/j.catena.2018.08.028
http://doi.org/10.1080/02723646.1998.10642640
http://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
http://doi.org/10.1007/s13595-012-0241-0
http://doi.org/10.1051/forest:19960108
http://doi.org/10.1051/forest:2006042
http://doi.org/10.1016/j.tplants.2012.09.006
http://doi.org/10.1002/eco.1536


Insects 2022, 13, 621 26 of 27

152. Netherer, S.; Matthews, B.; Katzensteiner, K.; Blackwell, E.; Henschke, P.; Hietz, P.; Pennerstorfer, J.; Rosner, S.; Kikuta, S.; Schume,
H.; et al. Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol. 2015, 205, 1128–1141.
[CrossRef]

153. Matisons, R.; Bardulis, A.; Kanberga-Silina, K.; Krisans, O.; Jansons, A. Sap flow in xylem of mature Norway spruce: A case study
in Northwestern Latvia during the season of 2014–2015. Balt. For. 2017, 23, 477–481.

154. Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. Meteorological Droughts in Europe: Events and Impacts-Past Trends and Future Projections;
Publications Office of the European Union: Luxembourg, 2016; p. 129.

155. Ionita, M.; Scholz, P.; Chelcea, S. Assessment of droughts in Romania using the standardized precipitation index. Nat. Hazards
2016, 81, 1483–1498. [CrossRef]

156. Simionescu, A.; Vlădescu, D.; Mihalciuc, V.; Olenici, N.; Chira, D.; Negură, A.; Filip, Ş.; Tulbure, C.; Rotariu, C.; Lupăştean, D.
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