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Abstract

Neurogenesis in the developing neocortex begins with the generation of the preplate, which

consists of early-born neurons including Cajal-Retzius (CR) cells and subplate neurons.

Here, utilizing the Ebf2-EGFP transgenic mouse in which EGFP initially labels the preplate

neurons then persists in CR cells, we reveal the dynamic transcriptome profiles of early neu-

rogenesis and CR cell differentiation. Genome-wide RNA-seq and ChIP-seq analyses at

multiple early neurogenic stages have revealed the temporal gene expression dynamics of

early neurogenesis and distinct histone modification patterns in early differentiating neu-

rons. We have identified a new set of coding genes and lncRNAs involved in early neuronal

differentiation and validated with functional assays in vitro and in vivo. In addition, at E15.5

when Ebf2-EGFP+ cells are mostly CR neurons, single-cell sequencing analysis of purified

Ebf2-EGFP+ cells uncovers molecular heterogeneities in CR neurons, but without apparent

clustering of cells with distinct regional origins. Along a pseudotemporal trajectory these

cells are classified into three different developing states, revealing genetic cascades from

early generic neuronal differentiation to late fate specification during the establishment of

CR neuron identity and function. Our findings shed light on the molecular mechanisms gov-

erning the early differentiation steps during cortical development, especially CR neuron

differentiation.
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Author summary

Neural stem cells and progenitor cells in the embryonic brain give rise to neurons follow-

ing a precise temporal order after initial expansion. Early-born neurons including Cajal-

Retzius (CR) cells and subplate neurons form the preplate in the developing cerebral cor-

tex, then CR neurons occupy the layer 1, playing an important role in cortical histogene-

sis. The molecular mechanisms governing the early neuronal differentiation processes

remain to be explored. Here, by genome-wide approaches including bulk RNA-seq, sin-

gle-cell RNA-seq and ChIP-seq, we comprehensively characterized the temporal dynamic

gene expression profile and epigenetic status at different stages during early cortical devel-

opment and uncovered molecularly heterogeneous subpopulations within the CR cells.

We revealed CR neuron signatures and cell type-specific histone modification patterns

along early neuron specification. Using in vitro and in vivo assays, we identified novel

lncRNAs as potential functional regulators in preplate differentiation and CR neuron

identity establishment. Our study provides a comprehensive analysis of the genetic and

epigenetic programs during neuronal differentiation and would help bring new insights

into the early cortical neurogenesis process, particularly the differentiation of CR

neurons.

Introduction

The mammalian cortical neurogenesis occurs on a precise time schedule during development.

Neural stem cells (NSCs), the neuroepithelial cells and radial glial cells (RGCs) in the ventricu-

lar zone (VZ), first undergo symmetric cell divisions to expand, then begin to produce neurons

[1,2]. The first-born neurons are generated as early as E10 in mouse and form the preplate or

the primordial plexiform layer, which situates above the VZ and beneath the pial surface

[1,3,4]. The preplate then split into the marginal zone (MZ, layer 1) and the subplate by immi-

grating cortical plate neurons around E13.5 in mouse and the seventh to eighth week of gesta-

tion in human [5–7], setting up of the upper and lower borders of the cortical plate. The

formation and splitting of preplate are the first steps in the establishment of the highly orga-

nized cortical layers.

The preplate and its derivatives play a critical role in regulating subsequent inside-out neu-

ronal migration, cortical lamination and the establishment of topographic connections [8].

Subplate neurons contribute to the guidance of corticofugal and thalamocortical axons during

early development and are important for the functional maturation and plasticity of the corti-

cal circuitry [9,10]. Cajal-Retzius (CR) neurons are the major cell type in layer 1, the most

superficial cortical layer. Discovered more than a century ago by Retzius and Ramon y Cajal,

CR neurons have been studied extensively [4,11]. Best known for their expression of Reln, CR

neurons regulate the inside-out migration of cortical neurons, correct layer formation, mainte-

nance of RGC and cortical patterning [12]. Loss of Reln or mislocalization of CR cells contrib-

utes to defective migration and disordered cortical layer formation that are associated with

human brain malformation such as lissencephaly [13] and dystroglycanopathy [14]. Although

the functional importance of these early differentiating neurons is well recognized, characteri-

zation of cell-intrinsic, dynamic gene expression patterns in these cells remain incomplete.

Recent studies have identified the genes enriched in subplate neurons by microarray and

RNA-seq analysis [15–17], providing a comprehensive gene expression profile of the subplate

at different developmental stages, which offers valuable insights on molecular mechanisms
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underlying neurodevelopmental disorders [18]. However, how gene expression is dynamically

regulated during the transition from the preplate to CR neurons remains unclear.

We previously have shown that in the Ebf2-EGFP transgenic mice (GENSAT project), the

GFP signal is expressed specifically in early differentiating preplate neurons and persistent in

CR cells [19–21]. After preplate splitting, virtually all of the EGFP-positive cells exhibit mor-

phological and molecular features of CR neurons in the embryonic and postnatal brain, consis-

tent with the pattern of the Ebf2GFPiCre [19,22], making this line suitable for tracing the

development and profiling genetic and epigenetic pattern of early-born neurons including CR

neurons. In addition, ablation and fate mapping studies have revealed diverse origins other

than cortical neuroepithelium for CR neurons, such as cortical hem, septum, ventral pallium,

which could be recognized by specific molecular markers [23,24]. However, whether CR cells

from different origins maintain their distinct regional identities after they reach the layer 1 in

the neocortex remains to be addressed.

Single-cell gene expression profiling allows further dissection of the heterogeneity and

developmental trajectory within a cell population [25,26]. While multiple types of neurons in

adult cortex and hippocampus have been identified by single-cell RNA-sequencing [26,27], a

full characterization of early differentiating neurons at single-cell level has not been done

before. In this study, we used FACS-purified Ebf2-EGFP-expressing cells to probe the dynamic

molecular mechanisms of preplate and CR neurons during the early stages of forebrain devel-

opment. Whole genome transcriptome analysis identified the initial differences between the

preplate and progenitor cells at E11.5, reflecting the genetic choice during the first cell fate

decision in neural differentiation. We also recognized clusters of genes that displayed temporal

changes corresponding to different developmental trajectories. Genome-wide active

(H3K27ac) and repressive (H3K27me3) histone modifications in preplate neurons, CR neu-

rons and NPCs revealed that occupancies of histone marks around TSS and distal regions

were distinct between different cell types, and unique histone modification pattern emphasized

on promoter regions to reinforce CR neuron specification, suggesting an epigenetic role in

acquisition and maintenance of cell type-specific identities. By bioinformatic functional assess-

ments, we also identified and validated the functions of lncRNAs that were enriched in CR

neurons during neuronal differentiation. Furthermore, we identified novel subpopulations of

CR neurons from the E15.5 neocortex using single-cell sequencing and uncovered distinct

developmental states within the pure population. Analysis of CR neuron lineage revealed

molecular cascades along generic neuronal differentiation to CR cell-specific fate

determination.

Results

Characterization of Ebf2-EGFP-expressing cells in the early cerebral cortex

To investigate the molecular mechanisms and temporal dynamic gene network during the

early stages of neural differentiation, we performed bulk RNA-seq of Ebf2-EGFP+ and

Ebf2-EGFP- cells at multiple early neurogenic time points as E11.5, E13.5 and E15.5. Previous

studies have provided comprehensive gene profiles and analysis of temporal transcriptomic

changes of subplate neurons [15,17,18], hence here we focused on the CR neurons. In addition,

we previously have shown that at E11.5, Ebf2-EGFP+ cells are mostly preplate neurons includ-

ing both subplate neurons and CR neurons. At E13.5, Ebf2-EGFP expression is diminishing in

subplate neurons but maintains in CR neurons. By E15.5, Ebf2-EGFP+ cells are mostly CR

neurons [19]. Therefore, in this study we purified Ebf2-EGFP-expressing cells by FACS from

the embryonic mouse forebrain at E11.5, E13.5 and E15.5, to compare the developmental gene

expression dynamics during preplate formation and CR neurons differentiation (Fig 1A). At
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Fig 1. Transcriptome sequencing of Ebf2-EGFP+ and Ebf2-EGFP- cells in the early embryonic stage. (A) Schematic illustration of FACS purification

of Ebf2-EGFP+ and Ebf2-EGFP- cells from early embryonic developmental stages E11.5, E13.5 and E15.5, respectively. (B) The percentages of

Ebf2-EGFP+ cells collected from FACS at each stage are calculated and shown in the graph. (C) Heatmap of all differential expressed genes (FDR<0.05)

in Ebf2-EGFP+ & Ebf2-EGFP- samples at the three early embryonic stages are shown. (D) Venn diagrams displaying the extent of overlapping between

DEGs at the three embryonic stages. (E) Expression of 7 CR-specific coding genes are found to be selectively expressed in cortical layer 1 of E14.5 mouse

embryos (In situ hybridization images from GenePaint.org). Scale bar, 650 μm. Another CR-specific coding gene Nhlh2 is shown in the S1D Fig. (F)

qRT-PCR analysis comparing the expression levels of CR-specific genes in primary neural cell culture assay after virus infection with control (H1) or

Ebf2-overexpression. Data represent mean ± SEM (n = 3 independent experiments, �P<0.05, Student’s T test).

https://doi.org/10.1371/journal.pgen.1009355.g001
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E11.5, Ebf2-expressing cells consisted of 17.10% ± 1.07% of the total cells. At E13.5 and E15.5,

the percentage of Ebf2-expressing cells gradually decreased to 8.37 ± 2.29% and 3.90 ± 1.59%,

respectively (Fig 1B). 100% of FACS-sorted Ebf2-EGFP+ cells were β-III tubulin+ at three

stages, indicating these cells have committed neuronal fate decision, consistent with our previ-

ous in vivo analysis [19]. Accordingly, after culturing sorted and unsorted cells for 4 days,

almost all of the Ebf2-EGFP+ cells maintained single and extended processes, while the

Ebf2-EGFP- cells proliferated and generated large clones similar to the unsorted cell group,

indicating a good separation of differentiating neurons from progenitor cells (S1A Fig).

Identification of Ebf2-EGFP+ cell-enriched genes in the developing mouse

forebrain

Next, we collected FACS-selected Ebf2-EGFP+ cells and Ebf2-EGFP- cells from the three neu-

rogenic stages and isolated total RNA for whole-genome transcriptome sequencing. Two bio-

logical replicates for each cell type (Ebf2-EGFP+ and Ebf2-EGFP- cells) were sequenced and

their expressed transcripts were identified as described in Methods. To verify the reproducibil-

ity of our samples, we analyzed the Pearson’s correlation coefficient (Pearson’s r) for the repli-

cates and there was a strong association between different preparations/batches of FACS-

sorted cells from the same stage (S1B Fig). To validate the RNA-seq results, we selected several

coding genes, including CR neuron markers (Ebf2 and Calb2) and genes associated with CR

neurons fate regulation (Foxg1, Tbr1, Ebf1, and Ebf3) [11,19,23,28–30], and verified by qPCR.

The results showing the temporal dynamic expression levels of these genes were in accordance

with that detected by RNA-seq (S1C Fig). Furthermore, the temporal expression trends were

consistent with the mRNA expression pattern by in situ hybridization (ISH) from the data

available in Allen Brain Atlas (S1C Fig) [31].

We used DE-Seq to analyze the dynamic expression profiles during the early cortical differ-

entiation period. 4859 genes exhibited significant differences in expression level between the

two cell populations during the time courses and were selected as DEGs for further analysis

(Fig 1C and S1 Table). We analyzed DEGs expressed in any of the developmental stages

sequenced (E11.5, E13.5 and E15.5). Genes with expression level (FPKM) more than 1, and

2-fold higher in Ebf2-EGFP+ population than that in Ebf2-EGFP- population were defined as

Ebf2-EGFP+ cell-enriched genes, CR-enriched genes in short. We found that there were 1044

genes at E11.5, 643 genes at E13.5, and 541 at E15.5 enriched in Ebf2-EGFP+ cells, respectively.

Considerable overlaps were found between the different stages (Fig 1D). In total, 1513 genes

displayed enriched expression in Ebf2-EGFP+ population at least at one stage, and 1894 such

genes in Ebf2-EGFP- population. Of these, 166 genes were consistently enriched in

Ebf2-EGFP+ population throughout all three embryonic stages, and 420 genes were consis-

tently enriched in Ebf2-EGFP- population (Fig 1D). The 166 DEGs included known CR neu-

ron markers such as Reln and Trp73, and genes known to be expressed in CR neurons such as

Calb2, Tbr1, Ebf3, Cdkn1a. We further defined the DEGs with FPKM� 5 in Ebf2-EGFP

+ cells, and fold change� 2 at all three stages as CR-specific genes. After excluding 10 subplate

genes [17,32] and 14 CR genes reported in previous studies [23], 77 genes were considered

novel candidates associated with CR neurons as we have not found reported association of

these genes with CR neurons in the literature. With references to the public ISH imaging data-

base (Allen Brain Atlas and Eurexpress)[31], we were able to confirm the mRNA expression

pattern of 56 genes among the 77 CR-specific genes in the layer 1 of the developing cerebral

cortex, where cortical CR neurons resided. We also noticed that there were genes showing

high expression levels in both Ebf2-EGFP+ cells and Ebf2-EGFP- cells although their expres-

sion levels met the fold change criteria. To obtain the genes specifically expressed in
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Ebf2-EGFP+ cells but not in Ebf2-EGFP- cells, we added a cutoff of FPKM� 15 in

Ebf2-EGFP- cells considering that CR-specific genes should be expressed at low level in

Ebf2-EGFP- cells at these stages. 33 genes remained after the filtering and we confirmed that 8

with specific expression in layer 1 cells: the 8 genes are Nhlh2, Ppp2r2c, Chst8, Slit1, Brinp1,

Sncb, Dnm3, Jph3, belonging to transcription factors, synapse molecules, and axon guidance

molecules (Figs 1E and S1D and S1E and S1 Table). Hence, these genes could serve as CR-spe-

cific markers for future studies.

Previous studies have shown that Ebf2 marked CR neurons and regulated the generation of

this cell population in the cerebral cortex layer 1 [19,21–23], so we hypothesized that genes

responding to Ebf2 overexpression or knockdown were likely to be correlated with CR neuron

regulation. Remarkably, the expressions of these 8 genes were affected by overexpression or

knockdown of Ebf2 (Figs 1F and S1E). For example, Sncb, Ckmt1 were significantly upregu-

lated or inhibited by overexpression and knockdown of Ebf2, respectively. Nhlh2, Ppp2r2c
responded to Ebf2 overexpression but not knockdown, the expression of Slit1 and B3gat1 were

decreased by Ebf2 knockdown (Figs 1F and S1E). These genes were all involved in cell prolifer-

ation, differentiation and migration processes [33–38], so they might also participate in CR

neuron generation and differentiation during early neurogenic stage. Specifically, similar to

Ebf2, Nhlh2 also played a role in neuroendocrine and controled GnRH neuron migration [35],

so it could be possible that Nhlh2 might be involved in Ebf2 signaling pathway in regulating

CR neurons.

Cortical CR neurons are considered to have multiple extra-cortex origins [39]. We and oth-

ers have shown previously that Foxg1 suppressed cortical CR neuron fate [28,29], therefore we

hypothesized that CR-specific genes identified by our RNA-seq analysis could be regulated by

Foxg1 expression. Indeed, silencing Foxg1 using shRNA up-regulated the mRNA levels of

Ebf2, Reln, and CR-specific genes (Nhlh2, Ppp2r2c and Cd200) (S1F Fig).

We performed Gene Ontology analysis using the DAVID program to predict the potential

functions of DEGs that were enriched in the Ebf2-EGFP+ and the Ebf2-EGFP- cell population,

respectively (Fig 2A–2D and S2 Table). The GO terms associated with neuronal differentiation

and functions were highly enriched in the DEGs expressed in the Ebf2-EGFP+ cell population,

including “synapse”, “neuron projection”, “neuron differentiation”, “cell morphogenesis

involved in neuron”, “axonogenesis” and “neuron migration” (Fig 2A). In contrast, the GO

terms enriched in the Ebf2-EGFP- cell population were mostly correlated with progenitor cell

properties, such as “forebrain development”, “regulation of cell proliferation”, “growth factor

binding”, “regulation of neurogenesis” and “dorsal/ventral pattern formation” (Fig 2A).

In addition, we utilized the KEGG pathway repository to help determine the relative repre-

sentation of specific pathways in our global RNA-seq expression data. The results showed that

significantly enriched KEGG pathways of the global DEGs pointed out many signaling path-

ways implicated in normal neural development (Fig 2E and S2 Table). For example, genes fall-

ing under “MAPK Signaling Pathway”, “Wnt Signaling Pathway” and “DNA replication” were

enriched. The “Focal Adhesion” and “Axon Guidance” pathways were also enriched, indicat-

ing that regulation of cell morphology and neuronal differentiation were involved. Moreover,

we performed the KEGG pathway analysis focusing on the DEGs enriched in Ebf2-EGFP+ cell

population (Fig 2F and S2 Table). As expected, the major groups of KEGG categories enriched

in this data set were “Calcium Signaling Pathway”, “Axon Guidance”, “Neuroactive Ligand-

receptor Interaction”, “Gap Junction”, “GnRH Signaling Pathway”, signifying neuronal differ-

entiation properties. Interestingly, as Ebf2 is an important factor in GnRH neuron differentia-

tion [40], the enrichment of GnRH Signaling pathway suggests that it would regulate similar

pathway genes in cortical neurons.
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Temporal transcriptome analysis of Ebf2-EGFP+ cells reveals early

neuronal specification and CR neuron differentiation dynamics

The high enrichment of these GO analysis terms and KEGG pathways imply the transcrip-

tional differences between the two cell populations are consistent with their different cell type

identities. The components of Ebf2-EGFP+ and Ebf2-EGFP- cell population change as devel-

opment proceeds. Ebf2-EGFP+ cells are mainly preplate neurons including both subplate and

CR neurons at E11.5, while Ebf2-EGFP+ cells are purely CR neurons by E15.5 [19]. In con-

trast, at E11.5 most if not all of the Ebf2-EGFP- cells are progenitor cells while at E13.5 and

E15.5 the Ebf2-EGFP- population also include cortical plate neurons. Therefore, the genes that

are highly enriched in Ebf2-EGFP+ cells at all three stages, particularly those with increased

enrichments, could be specifically involved in CR neuron differentiation, while the genes that

are highly enriched in Ebf2-EGFP+ cells at E11.5 but not at E13.5 or E15.5 could be involved

in regulating general neuronal differentiation processes. Hence, we further compared temporal

changes in global DEGs at the three different stages. Genes with expression level (FPKM) in

Ebf2-EGFP+ population 2 folds higher than that in Ebf2-EGFP- population were defined as

“up-regulated”. If the ratio of FPKM (Ebf2-EGFP+/ Ebf2-EGFP-) was between 2 and 1, these

Fig 2. Temporal dynamic DEGs in Ebf2-EGFP+ cells and Ebf2-EGFP- cells show early neuron differentiation progression. (A) Enriched functional

assessments (including biological processes, cellular components and molecular function) of highly expressed DEGs (fold change� 2) in Ebf2-EGFP+ or

Ebf2-EGFP- cell population. (B-D) Enriched functional assessments of highly expressed DEGs in Ebf2-EGFP+ cell population at E11.5, E13.5 or E15.5,

respectively. (E-F) Significantly (p<0.001, FDR<0.001) enriched KEGG pathways within DEGs from all RNA-seq samples and DEGs enriched in

Ebf2-EGFP+ samples, respectively. (G) Temporal dynamic expression patterns of DEGs across the three different early neurogenic stages (y axis = Fold

Change between Ebf2-EGFP+ cells and Ebf2-EGFP- cells). Noted the dynamic pattern is related to functions of associated genes.

https://doi.org/10.1371/journal.pgen.1009355.g002
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genes were defined as “unchanged”. If the ratio was between 1 and 0, these genes were defined

as “down-regulated”. Theoretically, we expected 27 possible combinations of expression

change patterns over the three time points, while our analysis showed 26 classes, missing the

pattern of “E11up—E13down—E15up”. These 26 classes could be classified into 6 groups rep-

resenting various aspects of early neurogenesis, and 6 typical classes were shown in Figs 2G

and S2 and S3 Table. We hypothesized that CR-specific genes were consistently higher at the

three stages, while the difference in genes involved in global neuronal differentiation would no

longer be evident after E13.5 as the Ebf2-EGFP- population at this stage also included newly

generated cortical plate neurons. Indeed, as expected, the genes in the group “E11up—E13up

—E15up” included the well-known CR marker genes, such as Reln, Ebf2, Trp73 and Lhx5
[19,22,41], and mature neuronal genes related to axon regeneration such as Cacna2d2 [42]. In

contrast, genes in the “E11down—E13down—E15down” maintained higher expression in

Ebf2-EGFP- cells, showing that they might function in regulating NSC proliferation, such as

Sox2, Pax6 and Hes5 [43,44]. Genes that are first expressed in the progenitor cells then in corti-

cal neurons other than preplate and CR neurons may also be included in this group, such as

Tle1 [45]. The “E11up—E13unchange—E15down” group included the subplate genes identi-

fied previously, such as Syt4, Igfbpl1, Myt1 [17,32], reflecting that subplate genes were highly

expressed in the preplate on E11.5, and with decreased expression in layer1 when the preplate

splitted later on E13.5 and E15.5. In addition, it also contained genes responsible for radial

migration of neurons including Rnd2 and Plxna4 [46,47]. Interestingly, looking up in the pub-

lic In Situ Hybridization image resources such as Allen Brain Atlas, we found particular

expression patterns of the 22 genes in the “E11down—E13unchange—E15up” group. 77.3%

(17/22) of these genes initially had higher expression in the cortical hem or the medial gangli-

onic eminence (MGE) at E11.5, then appeared in layer 1 at E13.5 and E15.5, implying that

these genes might be involved in CR neurons migration from various origins. For example,

Zic1 and Zic2 were expressed in the progenitor cells in the septum and cortical hem, and Bmp7
was expressed in the cortical hem, meninges, and choroid plexus. These were all typical CR

neuron origins [48,49]. The genes in the “E11down—E13unchange—E15down” group

included Foxg1, Bcl6 and Miat, which were expressed along the lineage of neural progenitor

cells [50,51]. The “E11unchange—E13unchange—E15unchange” group was enriched with

genes associated with basic cellular organelles or activities that required for various eukaryotic

cells. For example, Atp6v0c and Atp6v0e2 in this group were vacuolar ATPase and played

essential roles in maintaining the PH value in the cellular compartments, and during protein

degradation [52,53]. Rab11fip5 is reported to participate in protein trafficking between differ-

ent organelle membranes [54]. We also performed qPCR tests to validate the temporal dynam-

ics of these gene expressions and obtained generally consistent results (S1C and S2B Figs).

Taken together, our analysis reveals that temporal gene expression dynamics reflects distinct

developmental processes, allowing us to identify novel factors that play specific roles in early

cortical neurogenesis and CR development.

Identification of potential functional lncRNAs enriched in Ebf2-EGFP

+ cells

From our RNA-seq analysis, we identified 2417 long non-coding RNA transcripts in cortical

cells using the Cufflinks method. 200 lncRNAs were differentially expressed between the

Ebf2-EGFP+ and the Ebf2-EGFP- population and termed DElncRNAs (FDR < 0.05, P-

value < 0.01) (Fig 3A). 58 lncRNAs were highly expressed (2 folds higher) in Ebf2-EGFP

+ cells compared to Ebf2-EGFP- cells, while 64 lncRNAs showed the opposite pattern. We fur-

ther filtered DElncRNAs with these criteria: 1) specifically expressed in Ebf2-EGFP+ cells with
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FPKM at least 2-fold higher than that in Ebf2-EGFP- cells (Fig 3B); these lncRNAs also showed

temporal specific expression patterns. 2) lncRNAs from 1) with FPKM� 15 in Ebf2-EGFP-

cells during all three stages, and FPKM� 5 in Ebf2-EGFP+ cells at E15.5. We identified 9

lncRNAs that met the criteria and these had never been studied before in the context of neural

development (S4 Table). We defined these lncRNAs as CR-specific lncRNAs and called Ln-
CR# for simplicity. Next, the qPCR results to validate the lncRNAs mRNA expression level

were generally in agreement with the RNA-seq data (Figs 3C and S3A). Notably, we detected

strong expression of Ln-CR2 in E11.5 Ebf2-EGFP+ cells, but comparably lower or even no sig-

nals in Ebf2-EGFP- cells, indicating Ebf2-EGFP+ cell-specific expression of Ln-CR2 (Fig 3C

and S4 Table). ISH on E11.5, E13.5 and E15.5 mouse embryonic brain sections revealed that

Ln-CR2 was selectively expressed in the known CR neuron origins such as Sp (septum), Ch

(cortical hem) regions, as well as the TE (thalamus eminence), one of the extra-cortical origins

of CR neurons, indicating cell-type specificity (Fig 3D).

Furthermore, we performed GO analysis (for more details, see S1 Text) of DElncRNAs to

predict their potential functions (Fig 3E). We found significant enrichments of neuronal devel-

opment process related GO terms, such as “nervous system development”, “neuron migra-

tion”, “negative regulation of neuron apoptotic process” and “neuron differentiation”,

Fig 3. Characterization of differentially expressed lncRNAs in the Ebf2-EGFP+ and Ebf2-EGFP- cells. (A) Heatmap representing all differential

expressed lncRNAs (FDR<0.05, p-value<0.05) in Ebf2-EGFP+ & Ebf2-EGFP- cell samples at the three embryonic stages. (B) Venn diagram displaying

the extent of overlapping between DElncRNAs at the three embryonic stages. (C) The expression pattern of DElncRNAs between Ebf2-EGFP+ or

Ebf2-EGFP- cells is consistent revealed by RNA-seq and qRT-PCR. Data represent mean ± SEM (n = 3 independent experiments). (D) In situ
hybridization showing the endogenous expression of CR-specific lncRNA Ln-CR2 at E11.5, E13.5 and E15.5, respectively. Regions with specific

expression are labeled and higher magnification images of boxed areas are shown below. Abbreviations: Sp, septum; Vp, ventral pallium; Th, thalamus;

Dp, dorsal pallium; Ch, cortical hem; Str, striatum; TE, thalamus eminence. Scale bar, 900 μm. (E) Enriched functional assessments (including biological

processes, cellular components and molecular function) of highly expressed DElncRNAs (fold change� 2) in Ebf2-EGFP+ or Ebf2-EGFP- cell

population. (F) qRT-PCR analysis comparing the expression levels of lncRNAs in primary neural cell culture assay after virus infection with control (H1)

or Ebf2-overexpression. Data represent mean ± SEM (n = 4 independent experiments, �P<0.05, Student’s T test).

https://doi.org/10.1371/journal.pgen.1009355.g003
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neuronal identities related GO terms such as “neuron projection”, “axon” and “dendrite”, as

well as transcription factors regulation related GO terms such as “transcription factor com-

plex”, “transcription factor binding”. The functional annotation of DElncRNAs identified

from our sequencing data suggests that these lncRNAs are potential players in the processes of

neurogenic lineage progression, neuronal maturation and transcription factor regulation (Fig

3E). Similar to CR-specific coding genes study, we also performed Ebf2-overexpression and

Foxg1-knockdown experiments to predict lncRNAs’ potentials involved in CR neuron differ-

entiation. Overexpression of Ebf2 significantly up-regulated expression levels of CR-specific

DElncRNAs Ln-CR1, Ln-CR4 and Ln-CR8 but not others such as Ln-CR2 (Figs 1F and 3F). We

also performed knockdown of Foxg1, which significantly up-regulated Ln-CR3 and Ln-CR5.

Some lncRNAs, for example, Ln-CR1 also had the trends of up regulation, while others had

not, such as Ln-CR2 and Ln-CR7, implying that CR-specific lncRNAs might be involved in dif-

ferent regulatory pathways of CR neuron development (S3B Fig).

Functional validation of CR-specific lncRNAs from in vitro and in vivo
In this study we have identified CR-specific lncRNAs, however the functional roles of these

lncRNAs in neurogenesis have not been studied before. Using lentivirus-mediated overexpres-

sion, we performed in vitro and in vivo functional assays. We cultured single E11.5 cortical

progenitor cells in adherent assays for 5 days (DIV5), then fixed the culture and stained for

neuronal markers β-III tubulin (immature neurons) and Reln (CR neurons) (Figs 4A and

S4A). In the control culture 29.89% of the cells were β-III tubulin+ neurons, of which 3.16%

were Reln+ (Figs 4B and S4B). Overexpression of Ln-CR1, Ln-CR2 and Ln-CR3 increased the

number of β-III tubulin+ cells and reduced total cell number (Figs 4C and 4D and S4C and

S4D). Notably, Reln+ neurons were increased to 11.56% by Ln-CR1 overexpression, 6.09% and

6.83% by Ln-CR2 and Ln-CR3 overexpression, respectively (Figs 4B and S4B). Interestingly,

the number of small clones with less than 4 cells and all β-III tubulin+ cells increased in CAG-

Ln-CR1, CAG-Ln-CR2 and CAG-Ln-CR3 compared to CAG-control, while the number of

clones with more than 8 cells were much fewer than that in control group (Figs 4C and 4E;

S4C–S4E). These results suggested that overexpression of CR-specific lncRNAs promoted neu-

ronal differentiation. To investigate whether the loss in cell number is due to cell apoptosis, we

stained the culture of control and Ln-CR1 overexpression groups for Caspase-3 and found

Caspase-3+ cells appeared significantly more in Ln-CR1 overexpression group. As the total

number of β-III tubulin+ cells and Reln+ cells were actually increased, it is likely that overex-

pression of Ln-CR1 promoted neural progenitor cell-specific cell death (Fig 4F and 4G).

During the postnatal stage, CR neurons developed complex morphology [55]. We also

observed that overexpression of Ln-CR1 altered the morphology of Reln+ neurons, increased

whole processes length, branch depth and branch levels, while no significant differences were

detected in neuron soma size (Figs 4A, 4H and S4F). To investigate whether overexpression of

Ln-CR1 affects neural maturation, we stained the cells for PSD-95, a synaptic marker, and

found that PSD-95+ cells were significantly more in Ln-CR1 overexpression group compared

to that in the control group (Fig 4I and 4J). We further analyzed the effects of Ln-CR1 on cell

morphology in an ex-vivo culture system using the wholemount cortical hemispheres isolated

from E15.5 Ebf2-EGFP+ embryos and cultured for 10 days (DIV10) to mimic late embryonic

to postnatal development. Compared to control, we found that overexpression of Ln-CR1
increased the morphological complexity of CR neurons, leading to filopodia, spine-like struc-

tures and bouton-like structures (S4G and S4H Fig). We observed similar results in P3.5

embryos in which Ln-CR1 was overexpressed by in utero electroporation into the layer 1 of the

cerebral cortex at E15.5 (Fig 4L).
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Fig 4. Functional validation of CR-specific lncRNAs Ln-CR1 in vitro and in vivo. (A) Immunostaining of neural cells treated

with control (CAG-control) or overexpression lentiviruses for CR-specific lncRNA Ln-CR1 (CAG-Ln-CR1) after in vitro
culture for 5 days. RELN (red), TUJ1 (cyan), or DAPI (blue) for CR neurons, neurons, and nucleus, respectively. Scale bar,

50 μm. (B-G) Overexpression of CR-specific lncRNA Ln-CR1 significantly increased CR neurons number, promoted NSC

differentiation, generated more neuron-like small cell clones and also increased cell apoptosis. Caspase3 (green), DAPI (blue)

for apoptotic cells (arrowheads) and nucleus, respectively. Scale bar, 20 μm. All the experiments were performed at least 3

times, and 6 randomly selected microscopy fields were counted each time. Data represented mean ± SEM. P values indicated

were calculated by Student’s t test (unpaired). ��p<0.01, �p<0.05. (H) Quantification of process branch depth, branch levels,

total dendrites length and soma size of CR neurons after overexpression of CR-specific lncRNA Ln-CR1 compared to control.

All the experiments were performed 3 times, and 8 randomly selected microscopy fields were counted each time. Data

represented mean ± SEM. p values indicated were calculated by Student’s t test (unpaired). ��p<0.01, �p<0.05. (I-J)

Immunostaining of neural cells treated with control (CAG-control) or overexpression lentiviruses for CR-specific lncRNA Ln-
CR1 (CAG-Ln-CR1) after in vitro culture for 5 days shown more mature neurons in Ln-CR1 overexpression group. PSD-95

(magenta), DAPI (blue) for mature neurons and nucleus, respectively. Scale bar, 10 μm. The experiments were performed at

PLOS GENETICS Integrative genomic analysis reveal temporal genetic program for early neuron differentiation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009355 March 24, 2021 11 / 31

https://doi.org/10.1371/journal.pgen.1009355


To uncover how overexpression of these CR-specific lncRNAs molecularly affected CR

neuron development, we assessed the mRNA levels of several known CR neuron-related genes

by qPCR (Figs 4K and S4I). We found genes highly expressed in CR neurons such as Reln,

Ebf2, Calb2 and Trp73, Ebf1, Ebf3, Tbr1, Nhlh2 and Lhx1, were selectively altered when overex-

pressing CR-specific lncRNAs candidates Ln-CR1, Ln-CR2 and Ln-CR3. The fact that typical

CR markers expressed in major CR neuron populations such as Reln, Ebf3, Ebf2 and Trp73
were significantly upregulated under one particular lncRNA overexpression (Figs 4K and S4I),

implying that these lncRNAs might have great potentials in regulating the molecular pathways

for CR neuron differentiation.

Single-cell analysis identifies heterogeneities within a pure CR neuron

population

We have previously shown that in the Ebf2-EGFP transgenic mice, EGFP is specifically

expressed in layer 1 neurons and more than 80% of dissociated E15.5 Ebf2-EGFP+ cells are

Reln+ [19]. In the cortical brain sections of E15.5 Ebf2-EGFP mice, 98.67% were Reln+, indi-

cating that Ebf2-EGFP+ cells consist of a nearly pure population of Reln+ neurons (S3D Fig).

The Ebf2-expressing cells consist of CR neurons from different origins including cortical hem,

septum and ventral pallium [22,23,55]. To investigate the molecular heterogeneity and charac-

terize the developmental states of CR neurons at single cell level, we performed single-cell

RNA-seq (10X genomic Chromium) of 3000 Ebf2-EGFP+ cells purified by FACS of E15.5 cor-

tical cells. After filtering out potential noises as multiplet cells and mitochondria genes, then

normalization and PCA analysis, the acquired gene expression data sets were selected for the

following analysis (S5A–S5C Fig). Through K-Means clustering, Ebf2-EGFP+ cells at this

stage were molecularly clustered into eight major subpopulations, well separated and visual-

ized in the t-SNE plot (Fig 5A and 5B). These eight cell clusters had distinct gene expression

patterns and were distinguished by highly differential expressed gene markers (Figs 5A and

S5D). Notably, Cluster 2 was the most segregated group from the others, with high expression

level of typical CR markers such as Reln (Fig 5A). Interestingly, we found that 46% of E13.5

CR genes and 50.6% of P2 CR genes identified from a previous study [23] were included in

Cluster 2 (29 genes, and 44 genes, respectively), indicating high enrichments of common CR

genes in this cluster.

CR neurons were reported to be generated from many areas of developing pallium and

redistributed across the cortical surface via tangential migration [23,41,56,57]. It is still elusive

whether CR neurons arising from different origins are molecularly distinguishable and main-

tain their different original identities, or develop to the same type of cells with identical gene

expression profile after they reach the cortical layer 1. We investigated whether the eight cell

clusters expressed different regional genes. We found that typical CR marker genes such as

Reln and Calb2 were detected in all cell subpopulations. Surprisingly, we did not detect segre-

gation of region-specific genes in the differential expressed genes (DEGs) of eight cell clusters.

In contrast, we observed genes expressed in various CR cell original territories were enriched

in the same cell cluster. For example, Cxcr4 (cortical hem), Emx2 (VZ), Lhx1 (septum, ventral

least 3 times, and 6 randomly selected microscopy fields were counted each time. Data represented mean ± SEM. P values

indicated were calculated by Student’s t test (unpaired). �p<0.05. (K) Quantification expression level of CR neuron molecular

markers as Reln, Ebf2, and Calb2 at 72h after lentiviral transduction in the NSC culture assay comparing the effects of

overexpression of Ln-CR1 to control. Data represented mean ± SEM (���p<0.001, ��p<0.01, n>3, Student’s t test (unpaired)).

(L) Comparison of dendritic spine, filopodia and processes in cortical wholemounts overexpressing Ln-CR1 (CAG-Ln-CR1) to

CAG-control. Scale bar, 20 μm. Ebf2-EGFP+ cortical wholemounts were collected from P3 pups after in utero electroporation

to cerebral cortex layer 1 on E15.5.

https://doi.org/10.1371/journal.pgen.1009355.g004
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pallium), Lhx5 (cortical hem, septum and ventral pallium) [41,56,57] were all included in Clus-

ter 2 (Figs 5C and S5E), suggesting single cells expressed genes of different positional origins.

Therefore, our results showed that different CR neuron origins cannot be segregated by unsu-

pervised molecular clustering, implicating the possibility that CR neurons may lose the origi-

nal region identities once they migrate into the cerebral cortex layer 1, and molecular and

functional maturation of CR neurons may follow a general path regardless of their origins.

Reconstruction of CR neuron developmental lineage reveals a transition

from activation of a common neuronal differentiation program to

repression of other neuronal subtypes to establish the CR cell-specific

identity

To characterize the developmental insights of the CR neurons, we performed pseudotime

reconstruction using Monocle analysis [58]. We chose genes that were expressed across more

than 10 cells and their average expression levels were more than 1 for this analysis (Figs 5D

Fig 5. Single cell RNA-seq identify heterogeneities within CR neuron population and reveal genetic program for early neuron differentiation. (A)

Heatmap of differential expressed genes in E15.5 Ebf2-EGFP+ cells subpopulations. (B) The K-means algorithm-based plot showing eight major

subpopulations. (C) Violin plots showing genes expressed in CR neuron origins with high and specific expression in some cell subpopulations. Each dot

represents a single cell. (D) Pseudotime trajectories of Ebf2-EGFP+ cells computing reconstructed by Monocle. Cell states are indicated by colors and

sequential numbers are in the black circles. (E) Heatmap shows gene dynamics along pseudotemporal cortical neuron differentiation. X-axis shows

pseudotime ordering from early to late, Y-axis shows a single gene expression level dynamic per row. Gene expression level from high to low is indicated

by colors from red to blue. (F) Expression level dynamics across pseudotime ordering of C157 genes Neurod1, Rnd2, C0346 genes Tle4, B3gat1, and C2

genes Reln, Nhlh2 are shown. (G) Functional GO analysis for EBF2 target genes in C157 and C0346, respectively. (H) The distribution of FEZF2

targeting induced genes and repressed genes across C157, C0346 and C2.

https://doi.org/10.1371/journal.pgen.1009355.g005
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and S5F). We found that the eight major cell subpopulations clustered from t-SNE plot corre-

sponded to the temporal cortical neuron development progression from early to late stages

(Fig 5E). Genes in Cluster 5 could be the first activated population during the pseudo-temporal

ordering, sequentially followed by Cluster 1 and 7 genes, which displayed high expression lev-

els at the beginning of the time period, dropped to low levels later. For example, Cluster 5 gene

Neurod1 is known to be expressed in committed neuronal progenitor cells in the upper SVZ

and in newborn neurons at the lower IZ and plays a prominent role in cell fate specification

[59]. Cluster 1 gene Rnd2 functions in the downstream of Neurog2 to promote neuron migra-

tion [46]. Other genes in these three cell clusters such as Plxna4 is also reported to regulate

neuronal migration in neocortex development (Fig 5E and 5F) [47]. Thus, Cluster 1, 5, 7

(C157 in short) genes might be involved in initial transition from progenitor cells to neuronal

differentiation. In contrast, genes in Cluster 2 were expressed at lower expression levels at the

starting site, but higher expression levels at the end. The top differentially expressed genes in

this cluster were CR neuron markers, such as Reln, Trp73, Calb2, Ebf2, Lhx5, implying a more

committed CR neuron state (Figs 5E and 5F and S5G). Cluster 0, 3, 4, 6 (C0346) genes were in

an intermediate state, displaying higher expression levels during the middle period of the

pseudo-temporal axis than the start and terminal points. Other layer-specific neuron markers

fell into C0346, showing transient expression in Ebf2-EGFP+ cells. For example, the deep layer

neuron marker Fezf2 and Tle4 were enriched in Cluster 3 and 4 respectively (Figs 5E and 5F

and S5G). Therefore, our pseudo-timing analysis implies that differentiation of CR neurons

starts first from a general neuronal differentiation program, then goes through a refinement of

gene expression to suppress other cell type-specific genes, and finally reaches an establishment

of the CR neuron-specific genes.

To investigate whether the temporal dynamics in gene expression derived from single cell

sequencing analysis are consistent with the in vivo developmental progression, we compared

the gene expression profile of the three pseudo-reconstructed subpopulations (C157, C0346,

C2) with the temporal pattern identified at the three developmental stages (E11.5-E13.5-E15.5)

(Figs 2G and 5E and 5F). To better represent each cluster’s specific gene expression pattern,

we focused on the top 20% of the highly expressed genes of each cell cluster. Interestingly, we

found that 38.6% (64/166) of the “up-up-up” class genes were C2 genes, including reported CR

genes (e.g. Reln, Trp73, Lhx5, Calb2, Ebf2, Ebf3, Lhx1, Cdkn1a), CR-specific genes identified in

this study (e.g. Nhlh2, Ppp2r2c), and other genes related to mature neurons (Kcnip2, Nxph3,

Tmem163) (Figs 2G, 5E, 5F and S5G and S1 and S3 Tables). Neurod1, Rnd2 and Plxna4, genes

appeared in the early state C157 cluster were found in the “up-unchange-down” and “up-

down-down” classes (Fig 1E and 1F and S3 Table), in line with their trends with higher expres-

sion at the initial stage and lower expression later. Genes in the “unchange-unchange-up” and

“unchange-up-up” classes genes tended to be in the intermediate state C0346, such as Tle4,

Fezf2 (Figs 5E and 5F and S5G and S3 Table). Hence, both transcriptome analysis at single and

bulk cell level identify a transcriptional cascade from general neuronal differentiation to speci-

fication of a neuronal subtype.

Transcriptional factors involved in transitions in gene expression during

constraining terminal cell fates to CR neurons

To understand the molecular mechanisms underlying the transition from general neuronal

fate to committed CR neurons identities, we focused on the genetic network of key transcrip-

tion factors that may predominate the differentiation progression. Ebf2 is enriched in Cluster

2 and its target genes has been identified in Neurog2-induced neurogenesis assays recently

[60]. We found that 457 of the early phase C157 genes and 611 of the intermediate C0346

PLOS GENETICS Integrative genomic analysis reveal temporal genetic program for early neuron differentiation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009355 March 24, 2021 14 / 31

https://doi.org/10.1371/journal.pgen.1009355


genes were EBF2 target genes during neural differentiation, implying that it might affect the

molecular pathways of CR neuron differentiation (S5 Table). Through GO analysis, we found

the target genes in C157 were involved in neuron differentiation and neuron migration, while

the target genes in C0346 were more correlated with synapse, axon, learning and memory

properties (Fig 5G). Similarly, 132 genes in C157 and 172 genes in C0346 were the target genes

of CR marker ZIC2 (Cluster 2) (S5H Fig and S5 Table) [61]. Therefore, it raised a possibility

that these genes might interact and regulate non-CR genes to allow CR-specific traits to be

established. On the other hand, Foxg1, a gene known to suppress CR cell fate [28,62], is highly

expressed in C157 and C0346 but low in C2 (S5I Fig). From our results and former studies,

knockdown of Foxg1 also significantly increased C2 genes expression like Reln, Ebf2, Nhlh2
and promoted CR neuron generation from in vitro and in vivo assays (S1F Fig) [28,29,62],

while Ebf2 suppressed the expression level of Foxg1 (S1E Fig). This implies that suppression of

C157 and C0346 genes facilitates the expression of C2 genes. Interestingly, Fezf2 is an interme-

diate state C0346 gene. It is known to encode a key transcription factor for deep layer neurons.

Fezf2 regulates the expression of gene sets that are responsible for establishing mouse corti-

cospinal motor neurons identities [63]. Here, we found that FEZF2-induced genes were more

frequently appearing in C2 than C157, while FEZF2-repressed genes were less in C2 than in

C157 (Fig 5H and S5 Table), suggesting the C0346 gene Fezf2 might induce CR neuron identi-

ties via activation of C2 genes and inhibition of the general cortical neuron fate by repressing

C157 genes. Taken together, a subset of key transcription factors might play a pivotal role in

controlling distinct differentiation events through combinatorial actions on a variety of tempo-

ral genetic targets and networks, thus guiding initial generic cortical neuron program to termi-

nal CR neuron-specific cell fate determination.

Distinct H3K27ac and H3K27me3 histone modification patterns in

Ebf2-EGFP+ cells

Histone modification is a critical determinant of transcriptionally active or silent chromatin

states [64]. To gain a comprehensive view of cell type-specific histone modification in early

neural progenitor cells and differentiating neurons, we performed H3K27ac and H3K27me3

chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in

Ebf2-EGFP+ cells at early cortical developmental stages (E11.5, E13.5, E15.5) and Ebf2-EGFP-

cells at E11.5 (mostly NSCs and neural progenitor cells at this stage). We analyzed the genome

wide and gene-specific occupancy of these histone modifications in combination with the

RNA-seq results on these cell types. First, our data showed strong concordance in H3K27ac

and H3K27me3 bindings across two biological replicates (S6A and S6B Fig). According to a

general strategy used to classify regulatory elements (REs) [65,66], we classified H3K27ac and

H3K27me3 bound TSS (± 5kb) by the pattern of histone modification as TSS activation

(monovalent H3K27ac), repression (monovalent H3K27me3) and poised (bivalent H3K27ac

and H3K27me3). We observed bivalent H3K27ac and H3K27me3 bindings at 58.3% of all

detected genes TSS sites in Ebf2-EGFP- cells (monovalent H3K27ac bindings at only 0.9% of

the genes and monovalent H3K27me3 bindings at only 4.5% of the genes). In contrast, bivalent

H3K27ac and H3K27me3 bindings at only 16.4% of the TSS sites of all genes in Ebf2-EGFP

+ cells, while monovalent H3K27ac bindings occurred in the majority of genes (72.4%), mono-

valent H3K27me3 bindings occurred in only 0.5% of the genes (Fig 6A and 6B). Such observa-

tions were consistent with previous studies that bivalent histone modification patterns formed

a poised state to be ready for initiation of further developmental events in the ES cells or pro-

genitor cells, while monovalent states presented in the differentiated cells indicated more orga-

nized states in the established specific cell identity [66,67]. Compared to E11.5 Ebf2-EGFP-
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Fig 6. Genomic features of H3K27ac and H3K27me3 histone modification in the early differentiating neurons. (A) Heatmap

representation of ChIP-seq signal density for H3K27ac and H3K27me3 for 10 kb centered on predicted gene TSSs in Ebf2-EGFP-

cells (E11.5) and Ebf2-EGFP+ cells (E11.5, E13.5 and E15.5), respectively. (B) A profile plot showing normalized H3K27ac (left)

or H3K27me3 (right) enrichments around TSS of all detected genes in Ebf2-EGFP- cells (E11.5) and Ebf2-EGFP+ cells (E11.5,

E13.5 and E15.5), respectively. (C) Genomic features of H3K27ac and H3K27me3-bound genes in Ebf2-EGFP+ cells. (D)
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progenitor cells, in which H3K27ac enrichments at TSS were the weakest while H3K27me3

were the strongest among the tested groups, in E11.5 Ebf2-EGFP+ cells, H3K27ac enrichments

at TSS were stronger and became increasingly stronger while H3K27me3 bindings remain

steady at a weaker level as development proceeded from E11.5 to E15.5 (Fig 6A and 6B). These

patterns suggest that histone modification patterns are different between early differentiating

neurons and neural progenitor cells, and dynamically change as early-born neurons

differentiate.

We further analyzed the genomic location of H3K27ac and H3K27me3 bindings in

Ebf2-EGFP+ cells (Figs 6C and S6C–S6H). We found that the majority of H3K27ac and

H3K27me3 binding peaks were located in the intergenic and intron regions, while less than

10% of the peaks were distributed in the promoter regions (Figs 6C and S6C and S6D). At

E11.5, the genomic distribution patterns of H3K27ac and H3K27me3 in Ebf2-EGFP- cells

were similar to that in Ebf2-EGFP+ cells (S6E–S6H Fig).

Interestingly, a distinct histone modification pattern emerged when we focused on the

TSS regions and the distal regions (within 100kb) of DEGs. TSS and distal regions were

reported to have important regulatory potentials in the development system [68,69], so we

concentrated on these two regions of DEGs in Ebf2-EGFP+ cells. We found that for the

H3K27ac bindings, 88.2% (4410) of the genes had peaks around TSS, 46.5% (2325) had

peaks around distal region. The majority of the genes either had H3K27ac peaks on only

TSS (50.5%, 2526 genes) or on both TSS and distal regions (37.7%, 1884 genes), while

much fewer genes had peaks on only distal regions (8.8%, 441 genes) (Fig 6D). Conversely,

for the H3K27me3 modification, 55.0% (2753) of the genes had bindings on distal regions,

only 16.7% (838) of the genes had bindings on TSS. The majority of genes had H3K27me3

peaks on only distal regions (45.9%, 2296 genes), while a small portion of genes showed

peaks in both TSS and distal regions (9.1%, 457 genes), or only TSS (7.6%, 381 genes) (Fig

6D). These comparisons revealed that more genes occupied with H3K27me3 enrichments

on distal region than on TSS, which is quite different from the H3K27ac pattern. Hence,

DEGs might be activated in the Ebf2-EGFP+ cells as the most of the genes (88.2%) were

occupied with H3K27ac enrichments, for example, CR marker genes Calb2, Trp73 and

Tbr1, and novel CR-specific coding genes and lncRNAs identified in this study, especially

Sncb, Ppp2r2c, Jph3, Ln-CR2 and Ln-CR3. The histone modification pattern of DEGs with

H3K27ac at TSS region and H3K27me3 at distal region in Ebf2-EGFP+ cells might contrib-

ute to maintenance and promotion of CR neuron differentiation.

Proportion of TSS and distal H3K27ac, H3K27me3 bindings distributed in DEGs in Ebf2-EGFP+ cells, respectively. (E) mRNA

expression (FPKM) of DEGs with H3K27ac signals around TSS region from E11.5 to E15.5. Data represent mean ± SEM, N = 334

genes, independent experiments, ����P<0.0001, T-test. (F) The number of DEGs that steadily increase expression level from

E11.5 to E15.5 with TSS and distal region H3K27ac, H3K27me3 occupancies in Ebf2-EGFP+ cells. The percentage indicate the

proportion of all E11.5 to E15.5 expression increased DEGs (with and without histone modification). Chi-square test showing the

significant correlation between H3K27ac signals in the gene TSS regions and gene expression, P<0.01. (G) Percentage of DEGs

that steadily increase expression level from E11.5 to E13.5, E13.5 to E15.5, with (blue) or without (grey) TSS H3K27ac

enrichments, respectively, in the Ebf2-EGFP+ cell populations, that is, during CR neuron differentiation progression. (H)

Functional GO analysis for those TSS H3K27ac binding DEGs in Ebf2-EGFP+ cells with steadily increased expression level from

E11.5 to E15.5. Genes for analysis derived from Fig 6G. (I) Percentage of gene number (DEGs, CR-enriched DEGs and CR-

specific DEGs) with positive correlation between expression (FPKM) and H3K27ac signals in the gene TSS region. Notable CR-

specific genes are listed. (J) The number of DEGs that lowly expressed (FPKM<1) and steadily decreased expression level from

E11.5 to E15.5 with TSS and distal region H3K27ac, H3K27me3 occupancies in Ebf2-EGFP+ cells. The percentage indicate the

proportion of all E11.5 to E15.5 low and decreased expression DEGs (with and without histone modification). (K) The TSS

regions of CR-specific genes B3gat1, and CR-specific lncRNAs Ln-CR2 demonstrate a similar pattern of histone modification

during early embryonic development (bivalent in NPCs and become more activated with monovalent H3K27ac in Ebf2-EGFP

+ cells from E11.5 to E15.5).

https://doi.org/10.1371/journal.pgen.1009355.g006
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Differentiation genes are facilitated during CR neuron specification

accompanied by TSS H3K27ac bindings

It has been shown that chromatin state around TSS or distal region is a strong indicator of RE

function [67,68]. We noticed that among 1555 CR-enriched genes, 97.1% of them were occu-

pied by H3K27ac bindings (S6I Fig). Distal H3K27ac bindings are known to activate gene

expression in many development systems including the nervous system [68,69]. Interestingly,

we found that 46.5% (2325) of DEGs had distal H3K27ac bindings in Ebf2-EGFP+ cells (Fig

6D), however only 52 genes showed increased expression level from E11.5 to E15.5 (Fig 6E

and 6F). In contrast, we found that genes with H3K27ac bindings surrounding TSS regions

tended to have increasing expression levels as development proceeds. Genomically, 88.2%

(4410) of DEGs carried TSS H3K27ac bindings in Ebf2-EGFP+ cells (Fig 6D), 45.7% (2288) of

DEGs had consistent TSS H3K27ac modification across the three stages, and 31.0% (709) of

them showed stably increased expression from E11.5 to E15.5 (48.9% of all increased DEGs),

suggesting H3K27ac modification around TSS significantly increased temporal genes expres-

sion (Chi-squared test: p-value< 0.01) (Fig 6E and 6F). These genes significantly encoded

early differentiating neuron characters and functions, like “neuron projection”, “synapse”,

“axon”, “chemical synaptic transmission”, “regulation of neuron differentiation” (Fig 6G and

6H). Genes accompanied by TSS H3K27ac bindings across the three developmental time

points also occupied 75% (93) of the highly expressed C2 genes (top 20%) from single cell

pseudotime lineages (S6J Fig), implicating their constraints to CR neuron termination. For

CR-enriched DEGs, 340 with TSS H3K27ac modifications showed steadily increased expres-

sion along the time period (48.2% of all increased CR-enriched DEGs). For CR-specific DEGs,

32 were such genes (55.2% of all increased CR-specific DEGs), including Reln, B3gat1, Ln-
CR6, Xpr1, Clstn2, Caly, Snca, Jph3, Dnm3, Ctsf, Ckmt1, Spock1, Spock2 (Fig 6I). We wondered

whether TSS H3K27ac also contributed to repression of gene expression, however, only 1.4%

(32) of such histone modified DEGs showed low (FPKM<1) and decreased expression from

E11.5 to E15.5 (16.8% of all low and decreased expressed DEGs) (Fig 6J). Hence, promoter but

not distal region H3K27ac modifications contribute to up-regulated gene expression, especially

CR-specific genes along differentiation. We noticed that 16.7% (838) and 55% (2753) of DEGs

had TSS and distal H3K27me3 bindings in Ebf2-EGFP+ cells, respectively (Fig 6D), while only 2

and 24 genes showed increased expression over the three stages (Fig 6F). On the other hand, dis-

tal H3K27me3 was not associated with suppressing gene expression because only 11 low

expressed genes carried this type of modification (S6K Fig). Therefore, the data showed that

H3K27ac activation at promoter but not distal region in Ebf2-EGFP+ cells facilitated early neu-

ron differentiation. Examples reflecting involvements of H3K27ac and H3K27me3 modifications

in the differential expression level of CR-specific coding genes and lncRNAs included B3gat1,

Ln-CR2, Sncb and Ln-CR5 (Figs 6K and S6L). Their expression levels in Ebf2-EGFP+ cells

increased from E11.5 to E15.5, accompanied by increasingly stronger H3K27ac enrichments at

TSS regions during these stages. Meanwhile, these genes are expressed at low levels in

Ebf2-EGFP- cells on E11.5, corresponding to H3K27me3 enrichments at TSS of these genes in

Ebf2-EGFP- cells (Figs 6K and S6L). Ln-CR2, for example, which is increased in Ebf2-EGFP

+ cells from E13.5 to E15.5, exhibits a change in histone modification with low H3K27ac peaks

on the TSS region on E13.5 but high H3K27ac peaks on E11.5 and E15.5 (Fig 6K).

Discussion

In this study, we characterized a temporal dynamic transcriptome profile of early neurogenesis

and the gene expression signatures associated with preplate neuronal differentiation and sub-

sequent establishment of CR cell properties. Furthermore, we discovered unique histone

PLOS GENETICS Integrative genomic analysis reveal temporal genetic program for early neuron differentiation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009355 March 24, 2021 18 / 31

https://doi.org/10.1371/journal.pgen.1009355


modification patterns which particularly emphasized on promoter regions reinforcing CR

neuron specification. We also identified three distinct development states within a pure CR

neuron population and uncovered molecular hallmarks along CR neuron differentiation,

which had never been reported before. Our study unraveled the remarkable temporal dynam-

ics in gene expression during differentiation of a specific neuronal subtype and provided

molecular markers to extend the repertoire of preplate and CR neuron markers. Our findings

provided a comprehensive molecular depiction of the early neuronal differentiation events,

shedding new light on the mechanism underlying preplate differentiation and CR neuron

specification, the first step of cortical neurogenesis.

Molecular transition from preplate to CR neurons

As cortical neurogenesis proceeds, the preplate is physically separated into the subplate and

the layer 1 by migrating cortical plate neurons. We first identified over 1044 coding genes and

40 lncRNAs with higher expression in the newly differentiated preplate neurons (Ebf2-EGFP

+ cells) at E11.5 (Figs 1D and 3B and S1 and S4 Tables). At E13.5, 370 genes continue to show

enrichments in preplate neurons, while additional 20 genes also have higher expression levels

in subplate neurons. A subset of these genes continue to be differentially expressed in the

Ebf2-EGFP+ cells at E15.5, while the total DEGs at E15.5 are much less than earlier stages, sug-

gesting further specification of the CR cell fate. Indeed, we found fewer overlaps between the

confirmed subplate neuron-specific genes at this age (28 genes overlap, 2.3% of total DEGs at

E15.5) [18], confirming the molecular segregation of preplate neurons into the subplate and

layer 1 by E15.5. The fact that the number of DEGs is the highest at E11.5 reflects the degree of

the difference between the two populations: at E11.5, all Ebf2-EGFP+ cells are early differenti-

ating neurons, while the Ebf2-EGFP- cells are mostly cortical progenitor cells. As the Ebf2-ne-

gative population includes both cortical plate neurons and neural progenitor cells at E13.5 and

E15.5, genes common to neurons might not have significant changes. This dynamic transcrip-

tional profile may underlie the progression of preplate differentiation to the acquisition of

unique molecular identity of CR neurons and subplate. For example, 166 genes are enriched in

E11.5 and highly expressed in preplate, then later become restricted in CR neurons, while 851

genes which are also enriched in E11.5 but no longer specifically expressed in layer 1 at E15.5.

Our transcriptome analysis also reveals a surprising enrichment of genes categorized in the

GO terms (Fig 2B–2D and S2 Table) such as “neuron projection”, “neuron differentiation”,

“axonogenesis”, even “synapse” and “synaptic transmission” as early as E11.5. Terms such as

“gate channel activity” and “ion channel activity” also appear before E15.5. Interestingly,

whole-cell patch-clamp recording showed an inward sodium current in putative CR cells as

early as E12 [36]. In addition, dynamic expression of K+ channels and Ca2+ channels were

also described in pre- and postnatal CR cells [12,36,70,71]. We found that Ebf2-EGFP-positive

cells at E11.5 already expressed neurotransmitter receptors including ionotropic and metabo-

tropic glutamate receptors, AMPA glutamate receptors, at E11.5 (S2 Table). Interestingly, it

has been reported that at very early stages of neural development, subplate neurons form tran-

sient synapses with axons coming from the subcortical regions to guide later formation of cor-

tico-subcortical connectivity [72,73]. Our results suggest that populations of early

differentiating neurons, including Cajal-Retzius cells, are equipped with machineries suited

for electric or chemical synaptic connections shortly after they are born. It’s possible that func-

tional connections are established earlier than currently recognized. Alternatively, expression

of these synapse-related proteins may not necessarily confer electrophysiological properties,

but rather prime early differentiating neurons to be ready for synaptic connection once they

encounter other cortical plate neurons.
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GENCODE annotation suggests that nearly 40% of the differential expressed lncRNAs are

brain system specific [74]. Emerging evidence has uncovered the crucial functions of lncRNAs

relating to brain development, and defects of lncRNAs have also been revealed to cause severe

human neural diseases such as Alzheimer’s disease and schizophrenia [75,76]. As the functions

of lncRNAs are often cell type-specific, we are interested in identifying lncRNAs enriched in

CR neurons and explore their functions. In this study, we discovered novel lncRNAs enriched

in Ebf2-EGFP+ CR cells and selectively expressed in these CR neurons. We observed increased

expression of these lncRNAs corresponding to Ebf2 overexpression or Foxg1 knockdown,

implicating they might be regulated by these transcription factors during early corticogenesis.

We also tested the potential functions of lncRNA candidates during CR cell differentiation,

which establishes basis for further in-depth study.

Recent studies have shown that disease-related genes are highly expressed during early dif-

ferentiation period, for example, Nrxn1 is enriched in subplate neurons and it is an autism-

associated gene [18]. In our study, Ln-CR1 locates within the first exon of Klf7 which is a mem-

ber of the Kruppel-like factor family. Klf7 is highly expressed across the surface of the cerebral

cortex as early as E11.5 [31]. It functions in regulating neuronal differentiation and promoting

neurite outgrowth [77,78]. Our results show that Ln-CR1 promotes neuronal differentiation

and maturation, which is similar to Klf7’s function (Fig 4). As Klf7 with a 2q33.3q34 deletion

has been found to be a candidate gene for Autism, and the patients with this deletion also have

microcephaly feature [79], it is possible that Ln-CR1 could be also involved. In addition, over-

expression of Ln-CR1 greatly increase expression of Ebf3 (Fig 4K), a gene reported to be associ-

ated with Intellectual Disability [80]. These findings suggest that CR-specific genes could be

involved in the etiology of neurodevelopmental diseases.

Single-cell RNA-seq analysis reveals distinct developmental states within

pure CR neuron population

Pseudo-time analysis of single cell RNA-seq data has offered a way to further dissect the

transitional difference in gene expression within a heterogeneous population. Here, we

reported that by pseudo-time analysis, CR neurons could be classified into 3 subgroups.

The first group consisted of activated cluster 1, 5 and 7 genes, which were highly expressed

at the beginning of pseudo-temporal axis. We found that genes in this group were associated

with characteristics of cells located in the upper VZ and lower cortical plate such as Neu-
roD1, representing transitioning from neural progenitor cells to newborn neurons [59,81].

The second group was enriched with cluster 0, 3, 4, 6 genes that were activated during the

middle of pseudotime trajectory. These genes were categorized under “neural differentia-

tion” “neurite outgrowth” and “migration” GO terms using DAVID analysis. The third

group along the pseudo-time line consisted of mainly cluster 2 genes, which included many

CR marker genes, synapse and axonogenesis-related genes. Interestingly, we found that

genes first expressed in neural progenitor cells then in cortical plate neurons, such as Neu-
rod1 and Rnd2, were expressed higher first, then down-regulated in the third group, sug-

gesting when cells undergo fate decisions to become CR neurons, genes related to other

neuronal identities would need to be suppressed at the later differentiation stage. Indeed,

transcription factors, such as EBF2 and ZIC2, expression levels of which increase as CR neu-

rons differentiate, and FEZF2, which is highly expressed in the intermediate state, could

form dynamic regulatory cascades via corporately repressing non-CR genes and inducing

CR-specific genes to promote the fine molecular transition from a new-born neuron to a

fully committed subtype. Further studies will help resolve the biological relevances of these

analysis-acquired developmental trajectory of gene expression.
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Overall, our study provides a comprehensive profile of gene expression for the early-born

neurons in the cerebral cortex at both single cell and population level, unraveling the molecu-

lar dynamics during early neurogenesis.

Methods

Ethics statement

All animal protocols used in this study were approved by the Institutional Animal Care and

Use Committee (IACUC) of Tsinghua University and performed in accordance with guide-

lines of the IACUC. The laboratory animal facility has been accredited by Association for

Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

Mice

Transgenic mouse line Tg(Ebf2-EGFP)58Gsat/Mmcd in this study was created by the GEN-

SAT Project [20], and was obtained from the NIH Mutant Mouse Regional Resource Center.

The colony of this mouse line was generated in the animal facility of Tsinghua University. For

timed mice mating, the day of the vaginal plug was considered E0.5.

Dissociation and purification of CR cells and neural progenitor cells

Ebf2-EGFP positive and negative cells at E11.5, E13.5, E15.5 were dissociated, resuspended

and purified by the fluorescent-activated cell sorting (FACS). Experimental procedures were

as previously described [82]. Briefly, embryonic brains were dissected and transferred to HIB

solution (30 mM KCl, 5 mM NaOH, 5 mM NaH2PO4 anhydrous, 0.5 mM MgCl2 × 6 H2O,

20 mM Na Pyruvate, 5.5 mM Glucose, 200 mM Sorbitol), and kept in the solution during dis-

section procedures. Cortical regions were dissected and tissues were incubated at 37˚C for 30

min in papain solution containing DMEM medium (Life Tech), Na-pyruvate (Sigma), L-gluta-

mine (Life Tech), NAC (Amresco), papain (Worthington). Tissues were triturated 5–10 times

by 1ml pipette during papain treatment. After papain treatment, tissues were dissociated into

single cell, washed three times by DMEM and centrifuged 405g for 10mins. The cell pellet was

resuspended in HIB solution.

FACS sorting

After dissociation, the Ebf2-EGFP positive and negative cells were collected by BD FACS

inFlux v7 Cell Sorter using 100 μm nozzle diameter. The purity of FACS sorted Ebf2-EGFP

positive and negative cell population were nearly 100%, they were also confirmed by the fol-

lowing microscopy analysis (S1A Fig).

Bulk RNA-seq library preparation and sequencing

Ebf2-EGFP positive and negative cells were dissociated from the cerebral cortex and collected

by FACS on E11.5, E13.5 and E15.5 stages, respectively. Approximately 12 Ebf2-EGFP positive

embryos from three mice were used in each experiment at each stage and 10 million cells for

each sample were collected with two biological replicates. Total RNA was extracted using QIA-

GEN RNeasy Mini Kits and processed by Sera-Mag Oligo (dT) beads (Thermo Scientific),

libraries were prepared using the NEB Next mRNA Sample PreP Master Mix Set 1. All these

experiments were performed according to the manufacturer’s instruction. Samples were

sequenced on Illumina HiSeq 2000 using 100 base paired-end reads.
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Mapping and transcripts assembling

Average 60 million paired-end reads for each sample were obtained by HiSeq2000, then were

mapped to the mouse genome build mm10 using Tophat v2.0.8b with about 85% mapping

ratio [83]. To measure gene or lncRNA expression level, we calculated fragment per kilobase

per million (FPKM) using Cufflinks v2.2.0 [84] based on the annotations for protein-coding

genes (downloaded from UCSC, mm10, archive-2013-03-06-15-06-02) and known lncRNAs

(lincRNAs and antisense lncRNAs, downloaded from ENSEMBL Release M6, 201507) [85].

Cuffdiff was used to identify differentially expressed genes between every two conditions (with

2 biological replicates) (FDR< 0.05 and fold change > 2 as cutoff) [86].

scRNA-seq library preparation, sequencing and analysis

Ebf2-EGFP positive cells from E15.5 were dissociated and harvested by FACS, about eight

embryos from two timed-pregnant mice were used in the experiments. Approximately 3000

cells were processed for downstream reverse transcription, cDNA synthesis and library prepa-

ration according to 10× Genomics Chromium Single Cell protocol. Samples were sequenced

on Illumina HiSeq2500 platform using 150 base paired-end reads. Sequencing reads were ana-

lyzed by Cell Ranger (v2.0.0). The gene expression datasets were analyzed by Seurat (v2.0) and

Monocle package.

Primary neural cell culture assays and lentiviral overexpression

Embryonic cortical tissues were dissected and dissociated into single cells and cultured as pre-

viously described [29,87]. NSCs and lentivirus were added together in the adherent culture

assay in serum-free N-2/B-27/DMEM medium with 10 ng/ml FGF2 (Life Tech) on poly-L-

lysine (PLL, Sigma) pre-coated plates. Lentivirus infected cells were labeled by fluorescent pro-

tein GFP or RFP, and were used 3 days after plating for qPCR experiments (Figs 1F, 3F, S1F

and S3B), 5 days for neural stem cells differentiation assays (Fig 4A) as described previously

[87–89]. Ebf2 and Foxg1 lentiviral shRNAs were constructed as previously described [19,29].

Overexpression of lncRNA were constructed by cloning into a pLVX-pCAG-CDS-

pUBC-GFP/RFP vector. These vectors were packaged into lentivirus in 293FT cells.

Tissue collection and RNA in situ hybridization

Mouse brains at various developmental stages (E11.5, E13.5, E15.5) were collected and fixed in

4% paraformaldehyde (PFA) at 4˚C for 4h. After briefly rinsing in PBS, brains were dehy-

drated in 30% sucrose in PBS at 4˚C until the time they sank, and embedded in OCT (Sakura

Finetek, Torrance, CA). Frozen brains were cryosectioned to 16 μm and mounted to coverslip.

In situ hybridization was performed according to instructions as previously described [90,91].

Digoxigenin-labeled RNA probes were designed based on lncRNA sequences determined by

Cufflinks and Ensembl. Images were taken on a Zeiss Slide Scanner (Axio Scan. Z1) fluores-

cent microscope.

Chromatin-immunoprecipitation and sequencing (ChIP-Seq)

ChIP assays were performed using mouse Ebf2-EGFP positive cells dissociated at E11.5, E13.5,

E15.5 and Ebf2-EGFP negative cells at E11.5, with antibodies against H3K27ac (Ab4729,

Abcam) and H3K27me3 (Ab6002, Abcam) as previously described [92]. Briefly, Ebf2-EGFP

positive and negative cells (~1–5 million cells) were sorted and collected from FACS (BD

Influx), and fixed by 0.4% (v/v) formaldehyde at room temperature (RT) for 10 min. The reac-

tion was stopped by adding 0.125 M glycine for 5 min. After rinsing cells three times with cold
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PBS, the nuclei were resuspended in Nuclei Lysis Buffer (50 mM Tri-Cl, pH8.1, 10 mM EDTA,

1% SDS, 1 mM DTT, 1 mM PMSF and Sigma protease inhibitor cocktail, RT) and incubated

on ice for 10 min. Nuclear suspension were sonicated 6” on, 15” off, 20 cycles (power set at

25%) on ice. The fragmented chromatin was diluted for 5 folds in ChIP Dilution Buffer (16.7

mM Tri-Cl, pH8.1, 167 mM NaCl, 1.2 mM EDTA, 1.1% Triton X-100, 1 mM PMSF, and

Sigma protease inhibitor cocktail). Then 5 μg IP antibody was added and incubated overnight

at 4˚C. Chromatin-protein complex was pulled down with Dynabeads protein G

(Cat#10004D, Invitrogen) for 2h at 4˚C with rotation and followed by 5 sequential washes as

the following: 1. low salt wash buffer (20 mM Tri-Cl, pH8.1, 150 mM NaCl, 1 mM EDTA, 1%

Triton X-100, 0.1% SDS, 0.1% Na-deoxycholate); 2. high salt wash buffer (20 mM Tri-Cl,

pH8.1, 500 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% Na-deoxycholate); 3.

LiCl wash buffer (10 mM Tri-Cl, pH8.1, 250 mM LiCl, 1 mM EDTA, 0.5% NP-40, 0.5%

Deoxycholic acid (Na salt)); and the last two washes with TE buffer (10 mM Tri-Cl, pH8.1, 1

mM EDTA). Immunoprecipitated complex was eluted from the antibody in elution buffer (1%

SDS, 50 mM TrisCl (pH 8.1), 1 mM EDTA) by vortexing 10-15s once at 65˚C for 20min and

once at RT. Eluted chromatins were incubated at 65˚C overnight for reverse crosslinks and

chromatin fragmented purification with PCR column purification. ChIP-Seq libraries were

prepared using NEB Next Ultra II ChIP-Seq Library Prep Kit (Cat#E7645S & Cat#7335S,

NEB) according to the manufacturer’s instructions. ChIP-seq data were aligned to mouse

genome mm10, performing Bowtie v. 1.1.2 on the Galaxy platform with the following options:

-v 3 –M 1–5 15. Resulting output SAM files were converted to BAM format, and finally con-

verted to BED files. Peaks were called using MACS (Model-Based Analysis of ChIP-Seq), with

a p-value cutting off of 1e-5.

Supporting information

S1 Fig. Characterization of Ebf2-EGFP+ cell-enriched genes in the developing mouse fore-

brain. (A) Phase and fluorescent images of Ebf2-EGFP+ cells and Ebf2-EGFP- cells after

FACS at Day 0 and Day 4 in vitro culture showing the purity and growth of sorted and

unsorted cells (scale bar, 25 μm). (B) Sample to sample Pearson’s correlation (top-right quad-

rants) and pairwise comparison (bottom-left quadrants) of normalized gene expression

between the two biological replicates and cell types. (C-D) qRT-PCR and endogenous expres-

sion patterns (In situ hybridization data from Allen Brain Atlas) to validate the RNA-seq

results at different embryonic stages. CR neuron molecular markers as Calb2, Ebf2, Tbr1, and

CR neuron related genes as Ebf1, Ebf3, Foxg1, and newly identified CR gene Nhlh2 were

selected for validation. (E-F) qRT-PCR analysis of CR-specific genes in primary neural cell cul-

ture assay after lentiviral transduction of control (H1) or Ebf2-knockdown (E), or Foxg1-

knockdown (F). Data represent mean ± SEM (n = 3 independent experiments, ��P<0.01,
�P<0.05, T test).

(TIF)

S2 Fig. Annotation of temporal dynamic genes. (A) Gene Ontology analysis of selected genes

with distinct temporal dynamic expression pattern. (B) The qRT-PCR validation of DEGs

from temporal dynamic expression pattern analysis (y axis = Fold Change of Ebf2-EGFP+ cells

compare to Ebf2-EGFP- cells). Data represent mean (n = 3 independent experiments).

(TIF)

S3 Fig. Functional prediction of CR-specific DElncRNAs. (A) qRT-PCR analysis to validate

the RNA-seq results at three embryonic stages. CR-specific lncRNAs Ln-CR5 and Ln-CR6
were selected for validation. Data represent mean ± SEM (n = 3 independent experiments).
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(B) qRT-PCR analysis of CR-specific lncRNAs in primary neural cell culture assay after lenti-

viral transduction of control (H1) or Foxg1-knockdown. Data represent mean ± SEM (n = 4

independent experiments, ��P<0.01, �P<0.05, T test). (C) In situ hybridization showing no

expression in CR-specific lncRNA Ln-CR2 negative control (sense probe) at E11.5, E13.5 and

E15.5, respectively. Scale bar, 900 μm. (D) Immunostaining of E15.5 Ebf2-EGFP+ brain sec-

tions shown nearly all (98.67%) Ebf2+ cells were Reln+ cells. RELN (red), GFP (green), DAPI

(blue) for Reln+ CR neurons, Ebf2+ CR neurons, and nucleus, respectively. Scale bar, 50 μm.

(TIF)

S4 Fig. Functional validation of CR-specific lncRNAs In Vitro and Ex Vivo. (A) Immunos-

taining of neural cells treated with control (CAG-control) or overexpression lentiviruses for

CR-specific lncRNAs Ln-CR2 (CAG-Ln-CR2) and Ln-CR3 (CAG-Ln-CR3) after in vitro cul-

ture for 5 days. RELN (red), TUJ1 (cyan), or DAPI (blue) for CR neurons, neurons, and

nucleus, respectively. Scale bar, 50 μm. (B-E) Overexpression of CR-specific lncRNAs Ln-CR2
and Ln-CR3 increased CR neuron number, promoted NSC differentiation and generated more

neuron-like small cell clones. All the experiments were performed 4 times and were counted 8

randomly selected microscopy fields each time. Data represented mean ± SEM. p values indi-

cated were calculated by Student’s t test (unpaired), �p<0.05. (F) Quantification of process

branch depth, branch levels, total dendrites length and soma size of CR neurons after overex-

pression of CR-specific lncRNAs Ln-CR2 and Ln-CR3 compared to control. All the experi-

ments were performed 3 times and were counted 8 randomly selected microscopy fields each

time. Data represented mean ± SEM. p values indicated were calculated by Student’s t test

(unpaired), �p<0.05. (G) Comparison of dendritic spine, filopodia and processes of cultured

cortical wholemounts overexpressing Ln-CR1 (CAG-Ln-CR1), Ln-CR2 (CAG-Ln-CR2) and

Ln-CR3 (CAG-Ln-CR3) to wholemounts expressing CAG-control. 10 days culture. Scale bar,

15 μm. (H) Quantification of CR neuron processes branch depth, branch levels and total den-

drites length after overexpression of CR-specific lncRNAs, and compared to control group. All

the experiments were performed 3 times and were counted 4 randomly selected microscopy

fields each time. Data represent mean ± SEM. p values indicated were calculated by Student’s t

test (unpaired), ��p<0.01, �p<0.05. (I) Quantification of CR neuron molecular markers as

Reln, Ebf2, and Calb2 at 72h after lentiviral transduction in the NSC culture assay comparing

the effect of overexpression of CR-specific lncRNAs Ln-CR2 and Ln-CR3 to control. Data rep-

resented mean ± SEM (��p<0.01, �p<0.05, n>3, Student’s T test).

(TIF)

S5 Fig. Quality control and pseudotime lineage reconstruction analysis of single cell RNA-

seq. (A) Violin plots shows genes, UMIs and mitochondrion ratio in scRNA-seq. Left, violin

plot shows detected gene number in all sample cells. X-axis is sample name; Left, Y-axis is gene

numbers detected in a single cell; Middle, Y-axis is UMIs detected in a single cell; Right, Y-axis

is mitochondrion number detected in a single cell. (B) Scatter diagram of mitochondrion

ratio, gene numbers compared to UMI numbers, respectively. X-axis is UMI numbers; Left, Y-

axis is mitochondrion ratio detected in a single cell; Right, Y-axis is gene number detected in a

single cell. (C) Scatter diagram of all detected genes dispersion. X-axis is average expression of

a gene in all cells and Y-axis is dispersion value of that gene. (D) t-SNE clustering plot visuali-

zation of highly expressed molecular markers of each cell subpopulation. Each dot represents a

single cell. Dot color represents expression level (from grey to purple, expression levels from

low to high). (E) Visualization of typical CR origins as cortical hem, septum and ventral pal-

lium derived gene Lhx5, VZ derived CR gene Emx2 expression level across the eight major cell

subpopulations using t-SNE clustering. (F) Pseudotime trajectories of E15.5 Ebf2-EGFP+ cells

reconstructed by Monocle. Pseudotime points are indicated by colors and cell clusters are
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indicated by sequential numbers in the black circle. Dot color represents pseudotime points

(from black to blue, pseudotime points from early to late). (G) Expression level dynamics of

three developmental states genes as C157, C0346 and C2 coding genes and lncRNAs are

shown across pseudotime trajectories. (H) The distribution of ZIC2 targeting genes across

C157, C0346 and C2. (I) Violin plots showing Foxg1 expression level across the eight cell sub-

populations. Each dot represents a single cell.

(TIF)

S6 Fig. Distinct H3K27ac and H3K27me3 chromatin signatures in Ebf2-EGFP+ cells.

(A-B) Average profile of H3K27ac (A) or H3K27me3 (B) binding at called ChIP-seq peaks

comparing the two biological replicates. (C-H) Quantitative data showing genomic features of

H3K27ac and H3K27me3-bound genes in Ebf2-EGFP+ cells (C, D), E11.5 NPCs (E, F) and

E11.5 Ebf2-EGFP+ cells (G, H). (I) Comparison of Ebf2-EGFP+ cell-enriched gene numbers

with H3K27ac (red) and H3K27me3 (blue) bindings in Ebf2-EGFP+ cells. (J) Venn diagram

showing overlapped genes with TSS H3K27ac bindings from E11.5 to E15.5, and C2 genes (Fig

1E) from single cell analysis. (K) The number of DEGs that stably lowly expressed (FPKM<1)

from E11.5 to E15.5 with TSS or distal region H3K27ac, H3K27me3 occupancies in

Ebf2-EGFP+ cells, respectively. The percentage indicate the proportion of all E11.5 to E15.5

low expressed DEGs (with and without histone modification). (L) The TSS regions of CR-spe-

cific genes Sncb showing bivalent in NPCs and becoming more activated with monovalent

H3K27ac in Ebf2-EGFP+ cells from E11.5 to E15.5, its corresponding expression repressed in

E11.5 Ebf2-EGFP- cells, and increased in Ebf2-EGFP+ cells from E11.5 to E13.5, while

decreased in E15.5 as less H3K27ac enrichments. CR-specific lncRNAs Ln-CR5 demonstrate a

similar pattern of H3K27ac and H3K27me3 histone modification during early embryonic

development.

(TIF)

S1 Table. DEGs, DEGs enriched in Ebf2-EGFP+ cell population, CR-specific DEGs, CR-

specific DEGs specifically expressed in layer 1.

(XLSX)

S2 Table. GO terms related to the Fig 2A–2F.

(XLSX)

S3 Table. 26 gene categories showing temporal dynamic gene expression pattern, related

to Fig 2G.

(XLSX)

S4 Table. DElncRNAs, DElncRNAs enriched in Ebf2-EGFP+ cell population, CR-specific

DElncRNAs.

(XLSX)

S5 Table. Key transcription factors interacting genes distributed across C157, C0346 and

C2, separately.

(XLSX)

S1 Text. Supplemental Methods.

(DOCX)
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