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A B S T R A C T
The melt content is significant characteristic for the low velocity layer, so it is very necessary to set up the

quantitative relationship between the low velocity anomaly and the melt fraction. We describe the computational
methods for melt volume fractions and discussed the parameter selections for the theoretical computations.

� We discuss the seismic wave velocity characteristics and the equilibrium geometry model in the partial melting
system.

� Equations for computing the elastic properties atop the LVL are presented.

� Parameter selection of the equilibrium geometry model is shown.
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Seismic wave velocity characteristics in the partial melting systems

The LVL is one partial melting system there exists melt and solid simultaneously. The quantitative
effect of melt on seismic wave velocity is of fundamental importance to consider the seismic
detectability of melt. The melt has two effects on seismic wave velocity: the first one is a direct effect
due to the contrast in elastic properties between melt and solid, called the poroelastic effect (e.g.,
McCarthy and Takei, [1]), and the second one is indirect effect and attributed to enhanced attenuation
and dispersion by melt, called the anelastic effect (e.g., Karato and Spetzler, [2]).
(1) 
The poroelastic effect
The poroelastic effect is related to the fractions of melt and solid [3,4]. Based on the two-phase
continuum mechanics or poroelastic theory (e.g., Biot, [5]; Johnson and Plona, [6]), the effect of melt
on the ratio between S- and P- wave velocities mainly depends on the bulk modulus (Kb) and shear
modulus (N) of the solid skeleton. So in this approach, the heterogeneity of the liquid pressure in the
pore size scales is not taken into account [4].

The velocity variations of the shear and primary waves caused by a liquid phase is given by Takei, [4]
VS

V0
S

¼
ffiffiffiffiffiffiffiffiffiffi
N=m

p
ffiffiffiffiffiffiffiffiffi
r=r

p ; ð1Þ
VP

V0
P
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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k
þ 1 � Kb=kð Þ2
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; ð3Þ
g ¼ m=k ¼ 3 1 � 2yð Þf g= 2 1 þ yð Þf g; ð4Þ
r ¼ 1 � fð Þr þ frf ; ð5Þ
where V0
S ,V

0
P , k, m, y, r represent the shear and primary wave velocities, bulk and shear modulus,

Poisson’s ratio, and density, respectively, of the solid phase. kf and rf are the bulk modulus and density
of the liquid phase. Keff is the effective bulk modulus for the solid-liquid aggregate.



M. Ma et al. / MethodsX 7 (2020) 100751 3
(2) 
The anelastic effect
The anelastic effect is related to the attenuation and dispersion (e.g., Karato and Spetzler, [2]). The
liquid flow in rock pores effected by seismic waves is the most important reason leading to the anelastic
effect. In the seismic wave frequency domain, the melt-bearing system corresponds to the wider
attenuation peak than the solid system [7,8]. Background attenuation shows the broad absorption band
behavior which dues to the diffusionally-accommodated grain boundary sliding [9–13]. Jackson et al. [7]
showed that the causative mechanism was the elastically-accommodated grain boundary sliding.
However, this attenuation peak has not been found in other similar experiments.

In summary, there is no widely approved physical model about the anelastic effect on seismic
waves in upper mantle conditions (high temperature and low stress). So in this paper, only the
poroelastic effect is taken into account.

The equilibrium geometry model in the partial melting system

Selection of the pore geometry is vitally important to understand the characteristics of seismic
wave velocities It is necessary to make specific assumptions and simplify the pore geometry carefully
in practical calculations of Kb and N. Comparing with many other simplified models, including the
crack model [14], the oblate spheroid model [15], and the tube model [16] (Fig. 1a), the equilibrium
geometry model proposed by Takei [4] is the best approximation to the real morphology of melt-
bearing aggregate [17] (Fig. 1d).

The equilibrium geometry model is an equilibrium structure of the system with minimum surface
free energy, and the free energy is closely related to melt distribution. In the partial melting system
described by the model, the framework is formed by a certain coordination number 12 or 14 between
solid particles, while melt distributes in inter-granular pores and the skeleton is formed by the solid
framework with vacuum pores (e.g., Fig. 1b,c). If the effect of crystal anisotropy is negligible, the
equilibrium pore geometry can be almost uniquely determined by the porosity and the dihedral angle
Fig. 1. Common pore geometry models (a, b, c) and three-dimensional melt distribution (d) [16,17].
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[18], while the dihedral angle is determined by the ratio of solid-solid and solid-liquid interfacial
energies [e.g., von Bargen and Waff, [19]].

For the equilibrium geometry model, the contiguity f is the essential geometrical factor which can
determine the macroscopic elasticity of the skeletal framework, such as the bulk and shear moduli of
the skeleton, Kb and N. The contiguity is the ratio of the area of each grain in contact with the
neighboring grains to the total surface area [4]. In partially molten rocks, the melt fraction, termed the
“disaggregation melt fraction” or the “rheologically critical melt fraction” is marked by a sharp
reduction in viscosity [20]. When the melt fraction (f) is between 0 and the disaggregation melt
fraction, the contiguity depends on the melt fraction and the dihedral angle. When the melt fraction is
higher than the disaggregation melt fraction, the system structure changes from particle to liquid
support, and particles suspend isolated in a liquid [19,21]. The typical disaggregation melt fraction is
20�30 vol. %, which is usually much higher than the situation in the mantle [20,22].

Quantitative relationship of the contiguity and melt fraction and the dihedral angle depends on the
geometry of grains packing, such as the tetrakaidekahedral model [19] and the rhombic dodecahedral
model [4]. Takei [4] combined the two models, and the theoretical values were in good agreement
with the experimental results. So as the same, in this paper, we first derived the relationship between
f and a certain ’ and u from the tetrakaidekahedral model, then get the elastic modulus of the skeletal
framework from the rhombic dodecahedral model.
(1) 
f (’, u) [19]
’ f; uð Þ ¼ 2ASS= ASL þ 2ASSð Þ; ð6Þ

where ASS and ASL are solid-solid and solid-liquid interfacial area, respectively. Because solid-solid
interfaces is shared by two solids, it's twice as much here.
ASS ¼ ASS � AV
SS � d; ð7Þ
where ASS � p is the difference of grain boundary areas between dry system and melt-containing
system [23].
ASL ¼ AV
SL � d; ð8Þ
where AV � d is the dimensionless surface areas per unit volume, also be expressed as:
AV � d ¼ bfp
; ð9Þ
where b and p depend on u (in degrees) as follows (when u<60�):
b ¼ b2u
2 þ b1u þ b0; ð10Þ
p ¼ p2u
2 þ p1u þ p0: ð11Þ
The coefficients bi and pi are listed in Table 1.
Table 1
Coefficients for the interfacial area of the tetrakaidekahedral model (von Bargen and
Waff, 1986).

i bi pi

solid-solid interfaces
0 8.1600 0.42397
1 �7.7102*10-2 9.9541*10�4

2 1.0353*10�3 8.6645*10�6

solid-liquid interfaces
0 12.8628 0.42786
1 �7.8562*10-2 8.6319*10�5

2 1.0043*10�3 2.4052*10�5
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(2) 
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Kb and N [4]
The bulk and shear moduli of the skeleton can be expressed as:
e 2
ng 
Kb ¼ 1 � fð Þksk ð12Þ
N ¼ 1 � fð Þmsk ð13Þ

where ksk 、 msk are the bulk and shear moduli of liquid-free system with solid skeleton only, and they
are on the function of f, and can be determined from the rhombic dodecahedral model.
ksk
k

¼ g ’ð Þ ¼ 1 � 1 � ’ð Þnk ð14Þ
msk

m
¼ h ’ð Þ ¼ 1 � 1 � ’ð Þnm ð15Þ
where nk and nm are also parameters associated with f, and can be expressed as:
nk ¼ a1’ þ a2 1 � ’ð Þ þ a3’ 1 � ’ð Þ3=2 ð16Þ
nm ¼ b1’ þ b2 1 � ’ð Þ þ b3’ 1 � ’ð Þ2 ð17Þ

where the coefficients ai and bi (i = 1, 2, 3) are given by polynomial functions of the intrinsic Poisson’s
ratio of the solid phase, y, as
ai ¼
X3
j¼0

âijy
j ð18Þ
bi ¼
X2
j¼0

b̂ijy
j ð19Þ
where âij i ¼ 1 � 3; j ¼ 0 � 3ð Þ; b̂ij i ¼ 1 � 3; j ¼ 0 � 2ð Þ are given in Table 2 [4]. Eqs. (14)–(19) were
obtained by fitting the numerical results calculated for 0.1�f�1 and 0.05�y�0.45. When Kb and N of
the equilibrium geometry model are substituted into the equation of the poroelastic effect, the low
velocity anomalies caused by melts will be obtained.

Parameter selection of the equilibrium geometry model

The parameters of equilibrium geometry model include melt composition, basalt fraction,
reference potential temperature and dihedral angle of melt. The melt composition and basalt fraction
are the two most important factors affecting the solid elasticity.
parameters for ksk and msk of the rhombic dodecahedral model [4].

ksk msk

â1j â2j â1j b̂1j b̂2j b̂3j

1.8625 4.5001 �5.6512 1.6122 4.5869 �7.5395
0.52594 �6.1551 6.9159 0.13527 3.6086 �4.8676
�4.8397 �4.3634 29.595 0 0 �4.3182
0 0 �58.96 — — —
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The bulk moduli and high pressure densities of the different melt compositions
The partial melting in the deep upper mantle is carried out with the participation of H2O which is

easier into melt than the residual solid [24], so the melt is hydrous. The partial melting of the
peridotite in dry and wet conditions at the bottom of the upper mantle results in the formation of
ultrabasic melts [25–27], which differ with the basic melts in shallower mantle [28]. As the same, the
carbonated peridotite can produce the partial melt at the bottom of the upper mantle [29,30]. So the
hydrous peridotite or carbonated peridotite is more representative partial melting product at the
bottom of the upper mantle. The equation of state of melts are applied to calculate the densities under
high pressure conditions. The 3rd Birch-Murnaghan equation of state is adopted in this paper:
Table 3
The bul

(a)

Melt 

MORB
Perid
IT872
IT872
Carbo

(b)

Melt 

MORB
IT872
IT872
IT872
Carbo
P ¼ 3
2
KT0

r
r0

� �7
3

� r
r0

� �5
3

( )
1 � 3

4
4 � K

0
T0

� � r
r0

� �2
3

� 1

( )" #
ð20Þ
where KT0 and K0
T0 are the isothermal bulk modulus and its pressure derivative. r0 and r are the

densities at room and high pressures.
The bulk modulus can be expressed as:
K ¼ KT0 þ K
0
T0

� P ð21Þ
Table 3 lists the bulk moduli and density of melts under the pressures at the Earth’s surface and
atop the LVL.

Basalt fraction
The partial melting at mid-ocean ridges generates a basaltic crust and leaves behind the depleted

complement, harzburgite, thus the oceanic lithosphere is physically and chemically layered and
continuously injects into the mantle during slab subducting. The mantle should be considered as a
non-equilibrated mechanical mixture of basalt and harzburgite [31]. Following the self-consistent
thermodynamic model developed by Stixrude and Lithgow-Bertelloni [32,33], Xu et al. [31] computed
the seismic velocities of the Equilibrium Assemblage (hereafter as EA) with perfect equilibration and
the Mechanical Mixture (hereafter as MM) with perfect disequilibrium between the two fractions.
They calculated the density, compressional wave velocity (VP), and shear wave velocity (VS) of EA and
MM with basalt fraction varying from 0 % to 100 % and along adiabats with potential temperatures
ranging from 1000 K to 2000 K. The database (See Table 3 of Appendix from Xu et al. [31]) covers a
wide range of areas including the whole mantle.

Based on the EA data from Xu et al. [31], the same range 0�40 vol. % of basalt fraction with Hier-
Majumde et al. [34] were used in this paper.
k moduli and density of melts under the pressures at Earth’s surface (a) and atop the LVL (b).

composition K0(GPa) r0(103kg/m3) K0 References

 15.5 2.59 7.2 Guillot and Sator, 2007
otite (IT8720) 32.0 2.87 4.6 Sakamaki et al., 2006
0 + 2 wt.%H2O 19.5 2.69 5.8 Sakamaki et al., 2006
0 + 8 wt.%H2O 6.9 2.24 7.2 Sakamaki et al., 2006
nated peridotite 24.9 2.67 5.1 Ghosh et al., 2007

composition P(GPa) r(103kg/m3) K(GPa)

 11.7 3.4419 99.74
0 3.5754 85.82
0 + 2 wt.%H2O 3.5352 87.36
0 + 8 wt.%H2O 3.3960 91.14
nated peridotite 3.4234 84.57
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Reference potential temperatures
Convection is considered to be the main mode of heat conduction in the mantle under the

lithosphere, and the temperature gradient is very close to the adiabatic gradient caused by the mantle
convection. The thermodynamic relationship between entropy of unit mass, temperature and
pressure can be expressed as:
dS ¼ cP
T
dT � aV

r
dP ð22Þ
where cP is the heat capacity at constant pressure, and αV is the volume thermal expansion coefficient.
In the reversible adiabatic process, the change of entropy is zero: dS = 0. So the Eq. (22) can be
translated into:
dT
dP

� �
S
¼ aVT
rcP

ð23Þ
The increase in pressure with depth may be expressed as:
dP
dy

¼ rg ð24Þ
Where g is gravity acceleration.
And the adiabatic temperature gradient can be obtained by multiplying the two Eqs. (23) and (24):
dT
dy

� �
S
¼ aVgT

cP
ð25Þ
IfaVg
cP
, the equation is integrated as:
T ¼ T0eAy ð26Þ

where T0 is an adiabatic expansion to a surface where the pressure is zero, which also is called the
potential temperature.

Since cP and αV are related with composition parameters, A is also associated with composition.
Using the database of Xu et al. [31], one depth can be chosen for an adiabatic temperature of the same
composition, corresponding entropy value at the depth is the same as the entropy value at the surface
(e.g., 1300 K). Then taking the depth and temperature data into the Eq. (26), the value of A and the
mantle adiabatic temperature lines of this composition can be obtained (Figs. 2 and 3). Lastly, the
corresponding adiabatic temperatures can be obtained by substituting the LVL depths to equation of
the adiabatic temperature line of the mantle.

Dihedral angle of melt
The dihedral angle is an important parameter to describe the property of melt, which can

significantly affect melt volume fraction [35].
Under low pressure conditions (�3 GPa), the dihedral angles range between 20� and 50� for basaltic

melts [36] and between 25� and 30� for carbonated melts [37], 28 	 3� for hydrous basalt melt [38],
and 25��30� for carbonate melt and olivine [37]. From lower pressure experiments, the dihedral
angles monotonically decrease with pressure increasing, even become 0� above at least 7 GPa [39].
Since the pressure atop the MTZ is 13�14 GPa [40], the dihedral angles of melts may be lower, e.g., 0�–
10�. Therefore, 5� can be taken as the lower limit of dihedral angles and 30� corresponding to the
hydrous basalt melt and carbonate melt can be taken as the upper limit because the partial melting
atop the MTZ takes place with the participation of volatiles, such as H2O and CO2.

Reference solid elastic properties atop the LVL

The database of Xu et al. [31] tabulates the physical properties of solid directly, such as V0
S 、 V0

P and

r on increments of 100 K. For a certain composition and a certain temperature, V0
S 、 V0

P and r
corresponding to the top temperature of the LVL is interpolated according to the third order



Fig. 2. Adiabatic temperature line for basalt fraction 0 (1300�1800 K).
Lines in different colors represent different adiabatic temperatures, where blue ones are for 1800 K, dark blue for 1700 K, light
blue for 1600 K, yellow for 1500 K, purple for 1400 K, red for 1300 K.

Fig. 3. Adiabatic temperature lines for basalt fraction 0.20 (1300�1800 K). More descriptions are same as Fig. 2.
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polynomial used by Hier-Majumder et al. [34] and the remaining parameters such as m, k and y can be
expressed in the following three Eqs. (27–29):
m ¼ V0
S

� �2
� r ð27Þ
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K ¼ V0
P

� �2
� 4

V0
S

� �2
� �

� r ð28Þ

3

n ¼
V0
P

V0
S

� �2

� 2

2 V0
P

V0
S

� �2

� 1

" # ð29Þ
Based on the above analysis, it can be concluded that the melt fraction equation of poroelastic effect
belongs to the category of nonlinear algebraic equation. The problem can be solved with the least
square method.
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