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Queen mating frequency is an important reproductive trait of the western honeybee Apis mellifera. Yet, it
demands more attention when investigated under extreme or confined ecosystems. Queen mating fre-
quency of the Yemeni Honeybee A. m. jemenetica was estimated under Saudi Arabia desert conditions,
Riyadh (24�7103600N, 46�6705300E). Mating of queens took place after 8–13 days from emergence.
Duration of mating flight ranged between 26 and 39 min. Subsequently, six microsatellite loci were used
to genotype queen’s progeny (n = 30 workers/queen). The average number of drone alleles using workers
genotypes ranged between 5.83 ± 0.31 and 6.33 ± 1.09. However, effective paternal allele number was
extremely low and ranged between 3.35 ± 0.34 and 3.60 ± 0.40. This relatively low mating frequency
of the Yemeni honeybee, A. m. jemenetica, might have striking effect on the overall colony survival.
Providentially, this relatively low mating frequency does not impact colonial heterozygosity, shown in
this study (0.66 ± 0.07–70 ± 0.04), adversely. These results may affect hive survivability and entails dis-
tinctive management practices under such conditions.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The unique ecosystem impact on honeybee fitness within the
Arabian Peninsula should be focused. Colony losses during long
summer spikes are routinely reported by Saudi beekeepers.
Although losses are much higher in introduced bee subspecies of
European and Mediterranean origin, colonies of the local bee sub-
species A. m. jemenetica bear considerable losses (Alattal and Al-
Ghamdi, 2015). In addition to pests and diseases (Chauzat et al.,
2006; Chen et al., 2008), the main causes of colony losses in Saudi
Arabia are related to drought (47 mm/decade), high ambient tem-
perature (>40 �C; PoMEP, 2014), and non-effective management
practices (Alattal, Alghamdi, & Alsharhi, 2014; Al-Ghamdi et al.,
2013; Ali, 2011; Alqarni et al., 2011). Although many researchers
investigated and documented the direct impact of such factors
on colony survival and fitness within this region (Alattal and Al-
Ghamdi, 2015), the impact of these factors on reproductive traits
of the colony such as drone fitness and queen mating number is
not very well studied. A recent study indicated inferior reproduc-
tive traits of Yemeni honeybee queens and drones compared to
other A. mellifera. subspecies (Al-Sarhan et al., 2019). This could
be related to smaller queen body size of the Yemeni honeybee
compared to other bee subspecies (Schluns et al., 2003). However,
this could be of minor importance if the queen achieved perfect
mating with sufficient number of drones (Gerula et al., 2014). Thus
its colony consists of adequate genetically distinct subfamilies, the
workers in each subfamily is being derived from its respective
mates, which can be detected using molecular markers (Nielsen,
Tarpy and Reeve, 2003; Tarpy and Nielsen, 2002). Queen mating
numbers as a reproductive trait may affect queen attractiveness
to workers and their pheromone profile (Richard et al., 2007),
which may increase the supersedure rates with poorly mated
queens (Niño et al., 2012). Molecular markers has enabled ecolo-
gists to better understand male mating success (Milligan &
McMurry, 1993; Nielsen et al., 2001), reproductive tactics (Neff,
2001; Rico et al, 1992), reproductive skew (Nonacs, 2000; Reeve
et al., 2000) and population gene flow (Devlin and Ellstrand,
1990; González-Martínez et al., 2002; konuma et al., 2000). The
aim of the study is to examine mating frequency of the native
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honeybee queens A.m. jemenitica and genetic relatedness among
workers under desert conditions of Saudi Arabia.
2. Material and methods

The study was conducted at the bee research unit apiary at King
Saud University, located in the northern part of Riyadh
(24�7103600N, 46�6705300E) in the period between February and June
2018. Around the university apiary no beekeeping activities are
performed, the nearest possible apiary is about 7 km faraway in
Al-duriyah region (16�3500300N 42�5003500E). In late march (mid-
season in Riyadh), experimental colonies were constructed by
splitting five honeybee colonies, A. m. jemenitica, containing eight
brood frames each to form five new splits in total. As the queen
cells started to grow in the splits, only one queen cell was left for
final development. Three days after virgin queen emergence, mat-
ing was monitored daily from 10:00 to 16:00 for 14 days. Final con-
firmation of successful mating was verified after two weeks of
mating by observing egg laying of newly mated queens. To ensure
adequate drone number, five standard colonies were selected at
the beginning of the season (1st of Feb) for drone rearing and were
kept in the same apiary. Two drone combs were placed within the
brood area of each colony. Then drone development and emer-
gence were observed during the study period. Maximum and min-
imum ambient temperatures were monitored throughout the
course of the study. Colonies with successfully mated queens
(n = 4) were then used to investigate mating frequency. Thirty
newly emerged workers and one drone pupae were collected from
each colony 40 days after queen started egg lying. Workers were
collected directly from brood frames while emerging directly from
colonies using forceps. The observed mating number for each
queen was calculated following Tarpy et al. (2010). Initially, whole
genomic DNA was extracted from individual workers (n = 30/-
colony) using Chelex 100 resin� (Walsh et al., 1991) and subject
it to polymerase chain reactions (PCRs: Applied Bio-system 9700)
using six microsatellite loci (Am046, Am052, Am061, Am098,
Am128, and Am491). PCR Products were then submitted to elec-
trophoresis on 5% polyacrylamide gels for 6 h using 100 bp DNA
sizer. Alleles were scored as fragment length in base pairs using
UV detector (Genius System). The maternity fragment length was
determined by analyzing one drone pupa from each colony and
the maternal allele was then removed from the scored alleles prior
to analysis. Number of mates of each colony was determined as the
number of paternal alleles.
3. Statistical analysis

Analysis was carried out on 120 workers from 4 colonies
(30/colony). We tabulated a paternal marker set for each worker
Table 1
Identity of microsatellites; gene bank accession no., locus name, microsatellite primer sequ
region (24�7103600N, 46�6705300E).

Gene acc. No. Locus Primer sequences

AJ509277 Am46 f-CGAAGGTTGCGGAGTCCTC
r-GTCGTCGGACCGATGCG

AJ509283 Am52 f-CGAATTAACCGATTTGTCG
r-GATCGCAATTATTGAAGGAG

AJ509292 Am61 f-GCAACAGGTCGGGTTAGAG
r-CAGGATAGGGTAGGTAAGCAG

AJ509329 Am98 f-GGCGTGCACAGCTTATTCC
r-CGAAGGTGGTTTCAGGCC

AJ509359 Am128 f-GATCAAACACACAAACGAAAGC
r-ACCGGAAGCCTAATCAAGG

AJ509722 Am491 f-TGTTCCGGCAAGCTGAAG
r-GTGCTCCGCAACAACGTG
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to estimate the genetic structure within each colony using COLONY
1.2 (Wang, 2004). The total number of different marker sets within
a colony signified the observed paternity frequency of the queen
(No), or the total number of drone fathers that are represented in
the offspring. We also determined the proportion of each subfamily
within a colony so that we could calculate the effective paternity
frequency (Ne) using the sample statistic proposed by Nielsen
et al. (2003). Results were expressed as mean and standard devia-
tion (M ± SE). Wright’s fixation index (Fis.) as a measure of
heterozygote deficiency or excess (Hartl and Clark, 1997), expected
homozygosity and heterozygosity were computed following
Levene (1949) based on colony program outcomes. SAS software
was used to prove significance among colonies.
4. Results

Mating of queens took place after 8–13 days from emergence
(Colony 1:11 days; colony 2: 13 days; colony 3: 9 days; colony 4:8-
days). Duration of mating flights ranged between 26 and 39 min
(Colony 1:29; colony 2: 33; colony 3: 26; colony 4:39 minuets).
During mating flights average maximum and minimum tempera-
tures ranged from 29 to 39 and from 19 to 26, respectively. All
queens were able to lay eggs and rear brood. A total of 120 individ-
ual workers (30/colony) were genotyped. Amplified fragment
lengths resembled the expected fragment range. Total number of
drone alleles were 48 (Table 1) The average number of drone alle-
les based on Colony� program analysis using workers genotypes
ranged between 5.83 ± 0.31 to 6.33 ± 1.09 (Table 2). However,
effective drone allele number was extremely low and ranged
between 3.35 ± 0.34 and 3.60 ± 0.40. Results revealed no significant
differences among tested colonies (F = 0.16; P. > F = 0.92). Intra-
colony heterozygosity ranged between 66 ± 0.07% and 70 ± 0.04%
(Table 3). Three loci (Am46, Am128 and Am52) were relatively
more polymorphic (Table 1).
5. Discussion

This is the first report of queen mating number for the Yemeni
honeybee A. m. jemenitica. Overall, the mating numbers of the
tested queens were extremely lower compared with previously
documented results for all other A. mellifera. subspecies. The mean
queen mating number in different Apis mellifera subspecies ranged
between 5 and 34, where the lowest was reported for A. m. lamar-
ckii, and the highest reported for A. m. capensis (Franck et al., 2000)
In this study, the low mating number in Yemeni honeybee queens
could be related basically to tow main reasons; firstly to queen
body and spermathecal sizes, an adaptive trait of A. m. jemenitica,
which is the smallest among all A. mellifera subspecies, and
secondly to drought and elevated ambient temperatures during
ence, annealing temperature (Ta.), used genotyping A. m. jemenitica workers in Riyadh

Ta. (�C) Size (Bp) Repeat Motif

56 114–130 (GA)14

53 148–178 (CT)10(GGA)7

60 244–256 (CT)8 (CT)14(GGCT)8

58 135–143 (TA)6GATA(GA)10

62 194–218 (GA)6(GA)11

56 100–112 (A)8G(A)6G(A)5



Table 2
Allele frequencies of drone fathers from each colony (Q1, Q2, Q3, Q4) for 6 variable microsatellite loci. Unique alleles for each colony were underlined.

Alleles Q.1 Q.2 Q.3 Q.4 Alleles Q.1 Q.2 Q.3 Q.4 Alleles Q.1 Q.2 Q.3 Q.4

Loci Am46 Am128 Am491

116 0.00 0.00 0.00 0.07 196 0.10 0.17 0.13 0.17 100 0.13 0.37 0.00 0.00
118 0.03 0.20 0.27 0.30 198 0.27 0.27 0.30 0.20 102 0.13 0.03 0.00 0.00
120 0.13 0.17 0.13 0.07 200 0.43 0.13 0.27 0.00 104 0.30 0.27 0.17 0.00
122 0.47 0.20 0.23 0.33 202 0.00 0.37 0.10 0.50 106 0.37 0.10 0.53 0.30
124 0.13 0.17 0.10 0.13 204 0.20 0.07 0.13 0.00 108 0.07 0.13 0.27 0.47
126 0.03 0.27 0.07 0.10 206 0.00 0.00 0.03 0.00 110 0.00 0.10 0.00 0.23
128 0.07 0.00 0.20 0.00 208 0.00 0.00 0.03 0.00 112 0.00 0.00 0.03 0.00
130 0.13 0.00 0.00 0.00 218 0.00 0.00 0.00 0.13 100 0.13 0.37 0.00 0.00

Loci Am52 Am61 Am98

148 0.10 0.00 0.00 0.00 246 0.00 0.07 0.00 0.00 135 0.13 0.13 0.10 0.10
150 0.00 0.00 0.03 0.00 248 0.03 0.03 0.00 0.13 137 0.00 0.23 0.27 0.17
152 0.30 0.03 0.23 0.13 250 0.13 0.07 0.10 0.10 139 0.13 0.07 0.40 0.10
154 0.30 0.20 0.27 0.20 252 0.67 0.77 0.83 0.47 141 0.13 0.30 0.10 0.50
156 0.00 0.53 0.07 0.20 254 0.10 0.07 0.03 0.20 143 0.60 0.27 0.13 0.13
158 0.07 0.13 0.07 0.13 256 0.07 0.00 0.03 0.07
162 0.00 0.10 0.30 0.13 264 0.00 0.00 0.00 0.03
172 0.13 0.00 0.03 0.20
176 0.07 0.00 0.00 0.00
178 0.03 0.00 0.00 0.00

Table 3
Colony genetics statistics for drone fathers based on alleles from six variable microsatellite loci. Drone alleles inferred from worker genotypes using colony 1.2.

Colony N Na Ne Ho He F

Q1 30 6.33 ± 1.09 3.35 ± 0.34 0.08 ± 0.05 0.68 ± 0.04 0.89 ± 0.07
Q2 30 5.83 ± 0.31 3.59 ± 0.44 0.13 ± 0.05 0.70 ± 0.04 0.82 ± 0.06
Q3 30 6.17 ± 0.87 3.52 ± 0.64 0.44 ± 0.06 0.66 ± 0.07 0.29 ± 0.10
Q4 30 6.17 ± 0.61 3.60 ± 0.40 0.41 ± 0.06 0.70 ± 0.03 0.40 ± 0.10
Total 30 6.13 ± 0.36 3.52 ± 0.22 0.27 ± 0.04 0.69 ± 0.02 0.60 ± 0.07

N = Sample size, Na = No. of Different Alleles, Ne = No. of Effective Alleles = 1 / (Sum pi^2), Ho = Observed Heterozygosity = No. of Hets/ N, He = Expected Heterozygosity = 1 -
Sum pi^2,F = Fixation Index = (He - Ho) / He = 1 - (Ho / He). Where pi is the frequency of the ith allele for the population & Sum pi^2 is the sum of the squared population allele
frequencies based on colony� analysis.
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sexuals development and mating flight. Duration of mating flights,
which is higher than usual for European subspecies (Koeniger and
Koeniger, 2007) is also affected by drones abilities to mate one
after another with no complications (Woyke, 2016), whether
drones of A. m. jemenitica need more time for mating or it is the
impact of sample size and climatic conditions? is a question for
research. Low queen mating number was also reported for island
populations compared with main land population of the same
honeybee subspecies, A. m. carnica (Neumann et al., 1999). Never-
theless, reported mating number in this study (~4) is still smaller
compared to some previously documented low numbers (~6),
which is stated as an inflection point of average intra-colony relat-
edness by Page (1980) and Palmer and Oldroyd (2000). Mating
numbers documented in this study was also lower than the cutoff
point of 7 mates per queen, which is reported to be relevant to col-
ony survival rates and suggested that intra-colony genetic diversity
as a consequence of queen mating number has significant impact
on overall colony phenotype and longevity (Tarpy et al., 2013).
However, increasing sample number will overcome any probable
allele un-detectability.
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