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ABSTRACT
The use of probiotics has been one of the effective strategies to restructure perturbed human gut 
microbiota following a disease or metabolic disorder. One of the biggest challenges associated with 
the use of probiotic-based gut modulation strategies is to keep the probiotic cells viable and stable 
during the gastrointestinal transit. Biofilm-based probiotics delivery approaches have emerged as 
fascinating modes of probiotic delivery in which probiotics show significantly greater tolerance and 
biotherapeutic potential, and interestingly probiotic biofilms can be developed on food-grade 
surfaces too, which is ideal for the growth and proliferation of bacterial cells for incorporation 
into food matrices. In addition, biofilms can be further encapsulated with food-grade materials or 
with bacterial self-produced biofilms. This review presents a newly emerging and unprecedently 
discussed techniques for the safe delivery of probiotics based on biofilms and further discusses 
newly emerging prebiotic materials which target specific gut microbiota groups for growth and 
proliferation.
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Introduction

Human body harbors trillions of diverse microor-
ganisms (bacteria, protozoa, archaea, eukaryotes, 
and viruses), which reside on and within different 
parts of the body including the gut, skin and vagina. 
The human gastrointestinal tract contains the lar-
gest number and diversity of the known species 
repertoire of the human gut microbiota (> 70% of 
the human microbiota: 1013 to 1014), termed “gut 
microbiome” 1. A stable gut microbial community 
of the host plays a key role in host’s innate and 
adaptive immune system,2 metabolism, and 
health.3 Disruptions in the gut microbiota may 
occur owing to antibiotic use, changes in lifestyle, 
dietary habits, infection, or ageing, which lead to 
variegated pathogenic, metabolic, and inflamma-
tory conditions. Today, there is almost no disease 
which has no relevance with the human gut micro-
biota. From intestinal bowel diseases (Crohn’s dis-
ease and ulcerative colitis),4 cancer,5 hypertension,6 

and diabetes 7 to mental health including anxiety 

and depression 8 and metabolic syndrome and 
atopy.9

In appreciation of microbial signatures of 
health and disease, microbiome-modulating 
interventions, especially the use of probiotics, 
prebiotics, postbiotics, synbiotics, live biothera-
peutic products, and faecal microbiota trans-
plants (FMT) (see definitions in Box 1), have 
gained escalating interest in microbiome 
research and clinical and healthcare settings.10 

Out of these approaches, FMT is considered as 
the most effective therapy which greatly supports 
microbiota colonization; however, its compli-
cated procedure, high cost, and risk of overt 
immune reaction and transmission of potential 
pathogens are critical hurdles.11 Probiotic ther-
apy (mainly orally) is also considered as a great 
intervention strategy for gut microbiota modula-
tion and indeed a promising strategy for clinical 
translation because of being less costly, safer, 
and controllable.
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Probiotics are not only used to aim restruc-
turing of microbial dysbiosis but also they 
impart many useful functions to the gut includ-
ing modulation of innate immune system 
(mainly by gut microbiota modulation), preven-
tion of pathogen colonization, enhancement of 
gut barrier function, mucin production, and 
increased expression of tight junction proteins. 
Benefits of probiotics on several human health 
outcomes are unanimously acknowledged and 
reported. Probiotic enrichment and delivery in 
the human gut is crucial to achieve health ben-
efits, but these techniques have met with sub-
stantial challenges for therapeutic applications 
and thus it is imperative to consider the princi-
ples that govern the successful establishment and 
persistence of probiotics in the gut environment. 
Many health benefits of probiotics are attenuated 
mainly due to a substantial loss in the viability 
during the gastrointestinal transit.12 The key to 
improving colonization of a bacterial species in 
the gut is to deliver it in a material resistant to 
many environmental stressors (for example, pH 
and bile salts) or to convert it into its biologi-
cally resilient form (e.g., biofilms). A biofilm is 
an assemblage of surface-adhered microbial cells 
embedded in self-produced extracellular poly-
meric substances (EPS) containing proteins, 

extracellular DNA (eDNA), polysaccharides, 
and lipids.13 Any exogenously introduced gut 
bacterium which does not form biofilm into 
a new environment is likely to be eliminated 
quickly, even when delivered in abundance; this 
is the reason behind the low efficiency of many 
probiotic strains.14

Several reviews have been published on the 
encapsulation of probiotics with a focus on several 
techniques (e.g., extrusion, emulsion, electrospin-
ning, freeze drying, spray chilling, fluidized bed, 
spray drying, spray-freeze drying, coacervation) 
and materials, such as alginate, microbial polysac-
charides, prebiotics, gums, mucilages,15 and bacter-
ial spore coat nanomaterial.16 The focus of this 
review is on novel biofilm-based encapsulation sys-
tems and biofilm-based strategies to enhance oral 
bioavailability and gastrointestinal delivery of pro-
biotics. We have also emphasized on the need of 
developing specific prebiotics which proliferate and 
enrich specific bacterial groups in the human gut.

Probiotics and the human gut microbiota

Human gut microbiota contains a large diversity of 
bacteria, viruses (mostly bacteriophages), and fungi 
which live together in an intricate balance and 
dynamic equilibrium. The symbiotic relationship 
between gut bacteria and host is very old as these 
symbiotic microorganisms and animals have evolved 
together as a result of the co-evolution that 
dates million years back.23,24 Bacterial colonization 
of humans starts from the intrauterine period when 
the fetus is exposed to the microbiota from mother 
through transplacental passage into amniotic fluid.25 

Birth method (full term vaginal delivery or caesar-
ean) also affects the acquisition and development of 
the gut microbiota of new born babies.26 Microbiota 
is further affected by introduction of oral liquid 
feedings (breast milk or formula milk) and food 
intake, and its structure keeps changing until 
approximately 3 years when gastrointestinal tract 
represents mature microbiome.25 Once established, 
the composition of the gastrointestinal microbiota 
remains relatively stable throughout adult life, but 
factors like disease conditions, use of antibiotics, 
surgical treatments, lifestyle, and long-term changes 
in diet cause a shift in microbiota.

Box 1. Definition of the terms probiotics, prebiotics, postbiotics, 
synbiotics, biotherapeutic products, and fecal microbiota transplant

Probiotics “Live microorganisms which when 
administered in adequate amounts 
confer a health benefit on the host”

17

Postbiotics “Preparation of inanimate microorganisms 
and/or their components that confers 
a health benefit on the host”

18

Prebiotics “A substrate that is selectively utilized by 
host microorganisms conferring a health 
benefit”

19

Synbiotic “A mixture comprising live microorganisms 
and substrate(s) selectively utilized by 
host microorganisms that confers 
a health benefit on the host”

20

Biotherapeutic 
products

“Live organisms designed and developed 
to treat, cure, or prevent a disease or 
condition in humans”

21

Fecal microbiota 
transplant

“A treatment that involves administration 
of minimally manipulated microbial 
community from stool of a healthy 
donor into the patient’s intestinal tract”

22
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The microbiota-host synergy guards the balance 
of the gut microbiota against invasion of pathogens. 
Thus, the balanced microbial community of the 
human gut has implications for health, immunity, 
and diet and nutrition. Perturbations of the gut 
microbiota, termed gut dysbiosis, are clearly asso-
ciated with many diseases including colitis, liver 
diseases, diabetes mellitus (including type 2 dia-
betes), obesity, cardiovascular diseases, irritable 
bowel syndrome, allergy, asthma, protein confor-
mational diseases, many neurodegenerative disor-
ders, food allergies 3,27–31 as well as viral 
infections.32 Disruption of the gut microbiota may 
foster dominance of harmful pathogens over bene-
ficial bacterial groups, for example, short chain fatty 
acid (SCFA)-producing or butyrogenic bacteria. 
Enterobacterial blooms have been widely reported 
in gut dysbiosis in various conditions related to 
inflammation in the gut.33 A recent study showed 
that colonization of the Caenorhabditis elegans gut 
with Gram-negative enteric bacterial pathogens led 
to aggregation and proteotoxicity of polyglutamine 
across several tissues of the body; whereas replace-
ment of the microbiota with butyrogenic bacteria 
reversed the adverse effects by increasing host pro-
teostasis and suppressing proteotoxicity pathogen- 
mediated aggregation of polyglutamine.28

Administration of bacteriocin-producing 
Pediococcus acidilactici strains to mice led to an 
increase in Ruminococcus and Lactobacillus and 
a decrease in Blautia sp, which shows probiotics 
may also affect gut microbiota dynamics, possibly 
due to their metabolites, among many other 
factors.34

Probiotics are used to restore the original gut 
microbiota structure which has been shown to 
have ameliorative effects on several metabolic dis-
orders and diseases. Intake of probiotics does not 
necessarily mean enrichment of a specific bacterial 
group in the human gut, but microbial synergistic 
interactions foster growth of other bacterial groups 
too or in many cases trigger targeted bacterial 
growth, which would not have been possible other-
wise. Sadiq et al. demonstrated that co-occurrence 
of four bacterial species of the human gut was 
complimentary for enhanced colonization on 
mucin and better growth.35 Another recent study 
showed that treatment with multiple probiotics 
(three strains of Lactiplantibacillus plantarum) 

diversified the gut microbiome of the subjects and 
resulted in an average increase of the beta diversity 
by 37.2% between-individual as a result of syner-
gistic and modulatory effects of the specific strains 
in combination with the gut microbiota.36 

Similarly, a recent study showed that feeding with 
a mixture of four Bifidobacterium species to mice 
resulted in a more favourable gut ecosystem with 
a significant increase in the abundance of 
Lactobacillus, leading to mitochondrial fitness and 
the IL-10–mediated suppression of Treg cells.37

Malnutrition in children has been related to per-
turbations in the normal development of the gut 
microbiota. Specific probiotic strains of the gut 
origin could potentially be exploited to resolve 
undernutrition syndromes through modulating 
the gut microbiota.38 Table 1 shows evidence from 
different studies where probiotic strains amelio-
rated different diseases and metabolic conditions 
through modulation of the human gut microbiota. 
In addition to their role in gut microbiota modula-
tion, many probiotics produce complimentary 
enzymes required for normal metabolism as with-
out certain bacterial taxa in the human gut, many 
food components may remain indigestible owing to 
the paucity of alimentary enzymes.61 For instance, 
enzymes to digest xyloglucans are only encoded by 
a single, complex gene locus present in Bacteroides 
ovatus.62

Most of the probiotics that are used in either 
commercial probiotic development or probiotic 
research mostly belong to limited genera, such as 
Bifidobacterium and Lactobacillus and less com-
monly to Saccharomyces, Bacillus, Escherichia, and 
Weissella. With advancements in gut microbiome 
science, we are on the cusp of a new era of research 
on probiotics and synthetic microbial communities 
to abolish intestinal imbalance as a result of dis-
eases and to meet consumer’s demands. An 
astounding range of candidates for probiotics have 
emerged many of which have yet to adapt the gut 
environment. Disease-specific next-generation pro-
biotics have rapidly attracted much more attention 
than traditional probiotics with non-specific 
effects.63 In 2008, a clinal study on humans demon-
strated the role of Faecalibacterium prausnitzii in 
inflammatory bowel disease (IBD) pathogenesis, 
where the pathological conditions of colitis were 
significantly related to low count of F. prausnitzii 
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64 and this was further supported by subsequent 
studies.65,66 The therapeutic potential of this com-
mensal bacterium (as probiotic) and its supernatant 
(as postbiotic) has been demonstrated in chronic 
colitis and colitis reactivation in a TNBS 
(2,4,6-Trinitrobenzene sulfonic acid)-induced 
acute colitis mouse model.67,68 Ameliorative effects 
of F. prausnitzii through gut microbiota modula-
tion have now been reported in many metabolic 
diseases such as, obesity 69 and liver diseases.70 In 
addition, many other next-generation probiotics 
have shown beneficial roles in the prevention of 
carcinogenesis by maintaining intestinal barrier 
integrity, improving immunotherapy efficacy, pro-
ducing beneficial metabolites, and acting against 
pathogens.71

Controlled delivery of probiotics

Transplanting probiotics to the gut microbiome 
can positively modulate bacterial population 
dynamics and structure, and thus probiotic inter-
vention strategies remain of great interest for dis-
ease prevention and treatment. The biggest 
challenge in the development of probiotic-based 
dietary and therapeutic supplements and in achiev-
ing their clinical efficacy is related to their targeted 
delivery to specific sites in the human body. Orally 
administered probiotics encounter several chal-
lenges during the gastrointestinal transit, and 
these include host and microbial enzymes (e.g., 
saliva in the mouth), digestive enzymes (e.g., acidic 
gastric fluids in the stomach, pancreatic juice and 
bile in the small intestine), and colonization resis-
tance (e.g, in the colon where bacterial density is 
1011 to 1012 CFU/ml) from commensal bacteria.12

Therefore, effective probiotics delivery systems 
and bioinspired strategies are needed to effectively 
use the potential of probiotics through improved 
tolerance during the gastrointestinal transit and 
rapid colonization.

Immunological and anti-inflammatory aspects 
probiotic biofilms

Bacterial biofilms are communities of bacteria 
derived from either a single or multiple bacterial 
species, which grow on biotic or abiotic surfaces, or 
remain free floating as an aggregate in liquid or at 

interfaces. Biofilm is a bacterial life phase which is 
remarkably different from the same bacteria in 
planktonic form in terms of physiology, genetics, 
and sometimes morphology and whereby specific 
metabolic activities are juxtaposed. Biofilm- 
dwelling cells remain protected from various envir-
onmental stressors (for example, antimicrobials) 
and bacteriophages because of complex self- 
produced or host-derived polysaccharide sheets, 
which comprise extracellular DNA (e-DNA), pro-
teins, and lipids.72 Due to multifaceted material 
properties of probiotic bacterial biofilms (for exam-
ple, chemically active, resilient, hydrophobic, 
sticky, slimy, conductive, self-healing, and safe), 
they can be used in a broad range of applications. 
In addition, properties of biofilms can be modified 
and improved further. For instance, porosity of 
biofilms can be changed which improves the bio-
film permeability toward nutrients and electrons 
and it ultimately improves the viability of bacterial 
cells enclosed within the matrix. Various biologi-
cally important compounds can be integrated into 
the biofilm matrix such as minerals, nanoparticles, 
enzymes, and metal ions which make the biofilm 
functionally diverse and induce crosslinking effects. 
Biofilms can be further encapsulated with polymers 
and minerals to make them further tolerant 
towards environmental stresses.73

Probiotics delivered in the form of biofilm confer 
several advantages on the host (Figure 1), com-
pared to their conventional delivery in the plank-
tonic form. Probiotic bacteria can be effectively 
delivered in their biofilms where they remain viable 
during the gastrointestinal transit and show more 
adherence characteristics. Probiotics in the form of 
biofilms remain unaffected or at least less affected 
by saliva, gastric fluid, pancreatic juice, bile acids, 
antimicrobial agents, laminar/turbulent fluid 
forces, effectors of the host immune defence sys-
tem, as well commensals, pathogenic bacteria and 
bacteriophages. In an in vivo swine study, clinical 
Bacillus subtilis probiotics which were coated with 
self-produced biofilms exhibited a 17-times higher 
intestinal colonization and 125-fold greater oral 
bioavailability compared to uncoated bacteria.74 

Similarly, Lactobacillus reuteri when delivered in 
a biofilm formulation showed increased survival 
during the gastrointestinal transit and proved to 
be more effective in reducing NEC in a rodent 
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model.75 Biofilm-dispersed cells may show more 
adherence potential compared to their counterpart 
planktonic cells. This has been evidenced from 
in vitro and in vivo study of Klebsiella pneumoniae 
cells spontaneously dispersed from biofilm. 
Biofilm-dispersed cells showed greater adhesion 
ability on biotic and abiotic surfaces.76

Bacterial delivery in the form of biofilms is not 
only ideal because of enhanced physical adhesion 
and chemical barrier functions, but several reports 
indicate many beneficial effects of probiotic bio-
films in terms of bacterial metabolic activities. 
Biofilms may exacerbate the beneficial effects of 
probiotics to host cells and in many cases probiotic 
bacteria in the form of biofilms may confer func-
tions potentially more advantageous to the host. 
Bacterial cells in biofilms can also produce new 
molecules or larger quantities of certain molecules 
(e.g., polysaccharides, surface appendages, pep-
tides, surface proteins, and secreted proteins) than 
counterpart planktonic cells.77 EPS provide addi-
tional functional advantages to the host which 
could not be achieved in the planktonic probiotic 
deliveries. Using untargeted metabolomics, it was 
recently reported that amino acids and carbohy-
drate metabolisms were greatly enhanced when 
the probiotic strain Lactobacillus paraplantarum 
L-ZS9 was delivered in the form of biofilms com-
pared to its planktonic dose. Further, biofilm-based 

probiotic doses showed better immunomodulation 
activity and enhanced intestinal diversity of 
Lactobacillus microbiome in the dogs.78 Biofilm 
exopolysaccharides are produced abundantly in 
probiotic biofilms, like other bacterial biofilms, 
and thus protect bacterial species and confer 
many other metabolic advantages to the host. 
A fourfold increase in exopolysaccharide produc-
tion by B. bifidum was reported in its biofilm com-
pared to planktonic cells in a study involving 
untargeted metabolomics.79

There are several ways in which probiotic bac-
teria in the form of biofilms have better immuno-
modulatory and ameliorative effects compared to 
planktonic cells, and these are mainly related to 
better survival in biofilms and more EPS produc-
tion (Figure 2). EPS from probiotic biofilms may 
interact with several carbohydrate recognition 
receptors present on the intestinal epithelial cells 
and such interactions are involved in modulating 
immune response. A plethora of immune- 
modulating effects of EPS produced by 
Lactobacillus and Bifidobacterium strains has been 
described.83

Polysaccharides of bacterial biofilms interact 
with toll-like receptors (TLRs: TLR2 and TLR4 
and C-type lectins) and induce the immune 
response in macrophages.81,84 It has been shown 
that EPS of bacterial biofilms can induce T cell- 

Figure 1. Major advantages of administrating probiotics in the form of biofilms.
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dependent immune responses in case of several 
inflammatory diseases. For instance, EPS produced 
by probiotic Lactobacillus rhamnosus KL37 82 and 
B. subtilis 81 inhibited T-cell proliferation and sti-
mulated the production of IFN-γ. 
Lipopolysaccharides, on the outer surface of Gram- 
negative bacteria, are the main ligand for TLR4. 
Binding of LPS to TLR-4 leads to the activation of 
adaptor proteins like MyD88 and molecules like 
TIR-domain-containing adaptor-inducing β- 
interferon (TRIF) which are involved in intracellu-
lar signalling TLRs – especially TLR4. Adapter pro-
teins phosphorylate and translocate NF-κB to the 
nucleus.85 NF-κB induces the expression of various 
genes involved in pro-inflammatory processes (e.g., 
cytokines and COX2), for examples those encoding 
cytokines and chemokines, and they also regulate 

inflammasome.86 EPS compete with LPS to bind to 
the surface of TLR-4 in the cell membrane 
(Figure 3. Biofilm-derived EPS from various pro-
biotics has shown to downregulate TLR and inhibit 
the LPS-induced inflammatory responses, for 
examples EPS from L. plantarum,87 B. subtilis,81 

L. rhamnosus,82 and Lactobacillus casei 80 can inhi-
bit the LPS-induced inflammatory responses. EPS 
from bacterial biofilms also repress the expression 
of iNOS (inducible nitric oxide synthase) which 
causes oxidative stress by upregulating NRF2/HO- 
1 87 (Figure 3).

Osteointegration ability of probiotic biofilms on 
medical implants is associated with their immunore-
gulatory and anti-infection properties. In case of 
osteogenesis, exopolysaccharides from inactivated 
food-grade L. casei biofilms interact with LPS 

Figure 2. Probiotics in the form of biofilms are more effective than planktonic probiotic doses in several ways, especially in 
ameliorating diseases, as shown above in five different sections. (a) Polysaccharides on the surface of probiotic biofilms attach on 
CD14 of macrophages which leads to the activation of toll-like receptor cells (TLRs) signalling pathway. CD14 (cluster of differentiation 
14) activates TLR2 to boost M1 macrophages phenotype which results in enhanced production of osteoinductive cytokines such as 
oncostatin M (OSM) to improve osteogenesis and it is evidenced by upregulation of osteogenic-related genes: runt-related transcrip-
tion factor 2 (RUNX2), osteocalcin (OCN), and type I collagen (COL-I) 80 (b) Smectite laden with lactic acid bacteria biofilms inhibit tumor 
growth by activating dendritic cells (DCs) via Toll-like receptor 2 (TLR2) signalling (c) Exopolysaccharides from probiotic biofilms can 
induce M2 macrophages that inhibit CD4+ and CD8 + T cells by producing TGF-β and PD-L1 and possibly by induction of Tregs to 
prevent T-cell mediated diseases 81 (d) EPS from some LAB strain may inhibit T-cell proliferation and production of IFN-γ which leads to 
the polarization of M2 macrophage (an anti-inflammatory effect) and facilitates suppression of arthritogenic CII-specific IgG (T cell- 
dependent humoral response) – adapted from Nowak and colleagues.82 In addition, it has also been shown EPS from biofilms serve as 
a source of nutrients for commensals and probiotic biofilms also produce biofilm-specific metabolites which are not produced by 
planktonic doses.

GUT MICROBES e2126274-7



receptors of macrophages, resulting in the activation 
of the TLRs pathways which stimulate the production 
of osteogenic cytokines (e.g., oncostatin M) by macro-
phages. EPS produced by L. casei biofilms on heat- 
treated titanium has shown to stimulate macrophages 
to produce larger quantities of osteogenic cytokines 
(e.g., oncostatin M), which helps to improve osteoin-
tegration of the titanium implant.80 High histamine 
production by probiotics in the biofilm state 79 may be 
a possible reason behind these observed phenotypes as 
histamine has been shown to be involved in upregu-
lating oncostatin M in human macrophages in M1 
macrophages.88 Apart from the role of EPS, another 
role of inactivated L. casei biofilm on the surface of 
titanium implants is their effective antibacterial poten-
tial against methylene resistant Staphylococcus 
aureus.80

Similarly, EPS produced by L. rhamnosus KL37 
showed immunomodulatory properties in case of 
collagen-induced arthritis because of its potential to 
inhibit either one or both possible inflammatory 
signalling pathways: Th1 → IFN-γ → M1 inflam-
matory macrophages → arthritis and/or Th1 →  
IFN-γ → B cells → arthritogenic antibodies →  
arthritis.82

Biofilms on the surface of smectite have been 
reported to reduce tumor growth. Biofilm-laden 
smectite particles activate dendritic cells by the 
classical TLR2 signalling pathway and suppress 
tumor growth and increase the efficacy of che-
motherapy, compared to planktonic doses of the 
same probiotic. In an in vitro trial, smectite with 
LAB showed to exhibit anti-tumor characteristics 
and enhanced the efficacy of chemotherapy and 

Figure 3. Probiotic biofilms (usuallu carbohydrate moites) compete with lipopolysaccharides on the surface of Gram-negative bacteria 
to bind to toll-Like receptor 4 (TLR4) cells, activation of which through MyD88 and TRIF pathways leads to the production of 
inflammatory factors. EPS from bacterial biofilms also repress the expression of iNOS (inducible nitric oxide synthase) which causes 
oxidative stress by upregulating NRF2/HO-1.81
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immunotherapy, when used in combination with 
these therapies.89

Necrotizing enterocolitis (NEC) is an inflamma-
tory necrosis of the gut of premature infants which 
leads to the appearance of bloated and sensitive 
abdomen and results in feeding intolerance, and 
bloody diarrhoea and thus it results in 
a significant surgical emergency in neonates. 
A large number of meta-analyses have evaluated 
the effect of probiotics (e.g., Bifidobacterium and 
Lactobacillus) in NEC, concluding that probiotic 
intervention decreases the risk of NEC and reduces 
mortality in premature infants.90,91 A recent study 
using planktonic and biofilm forms of L. reuteri, on 
maltose loaded dextranomer microspheres (DM), 
to treat NEC in a rat model reported no significant 
effect of the planktonic doses of L. reuteri on NEC, 
compared to its biofilm formulation which reduced 
NEC in rats and this effect was attributed to more 
pronounced anti-bacterial and anti-inflammatory 
effects of L. reuteri in its biofilm form, mainly due 
to more production of reuterin and histamine.92 It 
is known that L. reuteri produces more abundant 
quantities of anti-bacterial and anti-inflammatory 
factors, especially reuterin, in its biofilm state, com-
pared to its planktonic state.77

Another earlier study also reported the ameli-
orative effects of L. reuteri ATCC 23272 biofilm 
formulation developed on DM supplemented with 
biofilm-promoting substances (maltose and 
sucrose) against NEC. The biofilm-loaded micro-
spheres improved mucosal barrier and inactivated 
the production of proinflammatory cytokines in 
a single prophylactic dose because the better sur-
vival of the bacterium during the gastrointestinal 
transit and enhanced adherence to gastrointestinal 
epithelial cells, compared to the delivery of the 
same bacterium in its planktonic form.93 In 
many other studies, L. reuteri biofilms developed 
on DM loaded with maltose have proved to be 
more effective, compared to planktonic cells, in 
ameliorating harmful effects of NEC in a rat 
model, which shows that the biofilm form of pro-
biotics has more clinical potential for the deleter-
ious effects of NEC.94,95

Human rotavirus (HRV) is one of the major 
causes of diarrhoea in children, causing a large- 
scale morbidity and mortality. Escherichia coli 
Nissle 1917 has been widely used in the treatment 

of many enteric diseases in humans; however, its 
clinical efficiency faces constraints due to limited 
stability and persistence of the strain. E. coli Nissle 
1917 biofilm developed on DM reportedly 
enhanced innate and B cell immune responses 
after HRV infection and reduced diarrhoea as 
a result of HRV infection in malnourished pigs.96

In addition to the above-mentioned advantages 
of biofilm-based delivery of probiotics in different 
diseases/pathological conditions, EPS of biofilms 
also serve as a source of nutrients for some gut 
commensals as well as antagonists of pathogens in 
the gut.97

Another advantage of biofilm-based delivery sys-
tem of probiotics is the encapsulation of many 
probiotic species/strains in the form of mixed bio-
films that remain in close proximity because of 
bacterial interspecific interactions. Some gut spe-
cies have been known to co-exist as a result of co- 
evolutionary processes. For example, L. reuteri has 
been reported to coexists in the form of mixed 
species biofilms with species which are part of the 
Lactobacillus johnsonii cluster (L. johnsonii, 
Lactobacillus gasseri, and Lactobacillus 
taiwanensis).98 This implies the idea of developing 
mixed species biofilm-based probiotic doses to tar-
get the human gut microbiota.

Effective biofilm-based probiotic delivery 
models

One of the most effective approaches for the safe 
delivery and complete dissemination of probiotics in 
the human gut is the exploitation of safe, food-grade, 
non-allergic, biocompatible materials as carriers for 
the delivery of biofilms. Polysaccharide-based mate-
rials (e.g., DM and calcium alginate beads), minerals 
(e.g., smectite), and food fibres (e.g., grape seeds and 
starch fiber of chickpea milk) have been successfully 
used for the development of probiotic biofilms and 
the use of many of these materials have been 
reported in successful biofilm-based probiotic deliv-
ery systems in several trials as shown in Figure 4. 
Probiotics delivered in the form of biofilms have 
been reported to exhibit immmunomodulatory and 
ameliorative effects evidenced from different 
research trials (Table 2).

The use of hollow semi-permeable, biodegrad-
able and biocompatible DM has shown to be very 
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effective in biofilm-based probiotic delivery sys-
tems. The interactions between probiotic biofilms 
and cross-linked dextran are mediated by glucosyl-
transferase-dependent adherence. Probiotic bio-
films on the surface of DM have proven to be 
highly tolerant towards several harsh gastrointest-
inal conditions and resulted in successful delivery 

of probiotics to targeted sites with greater abilities 
to adhere to epithelial cells and mucosal surfaces.

DM is a porous material and thus many nutri-
tious prebiotic substances can be loaded within the 
microsphere lumen, which may remain metaboli-
cally available only to probiotics and can success-
fully pass through the gastrointestinal tract. For 

Figure 4. (a) Scanning electron microscopy image of Lactobacillus reuteri (Lr) biofilms on the surface of dextranomer microspheres (DM), 
(b) shows extracellualr polymeric substances joining the two microspheres (Olson, Navarro et al. 2018), (c) shows sucrose-filled DM 
(stained red with Congo Red) with biofilms of L. reuteri (stained green with SYTO9) (Navarro, Mashburn-Warren et al. 2017). (d) shows 
Bifidobacterium bifidum biofilms on the surface of grape seed flour, whereas (e and f) show biofilms of Bacillus subtilis on starch fiber of 
chickpea milk. B. subtilis is stained intense green with SYTO9, whereas starch fiber of chickpea milk is shown as faint green.99

Table 2. Immunomodulatory and ameliorative effects of probiotics in the form of biofilms developed on different surfaces and trailed 
in different models.

Name of the probiotic Biofilm type Any known effect Model Reference

Lactiplantibacillus 
plantarum

Biofilm in microtiter plates Enhanced antibacterial activity of probiotic biofilms against 
Pseudomonas aeruginosa and Listeria monocytogenes

In vitro trials 100

Lactobacillus and 
Bifidobacterium

Biofilms on smectite (clay minerals) Anti-cancer chemo/immunotherapy Mouse model 89

Lactobacillus 
rhamnosus and 
L. plantarum

Biofilms developed on polystyrene 
surfaces

Biological activity against pathogens In vitro trials 100

Lacticaseibacillus 
paracasei ATCC334

Biofilms on calcium pectinate beads Attenuated the effects of the dextran sulfate sodium (DSS)- 
induces colitis

Mouse model 101

Lactobacillus casei Biofilm on the surface of titanium Antibacterial activity against multidrug resistant 
Staphylococcus aureus and osteointegration ability

In vitro trials 102

(A) reuteri Biofilms on sucrose- or maltose- 
loaded dextranomer 
microspheres

Attenuated the effects of necrotizing enterocolitis Mouse model 93

L. plantarum and 
Lactobacillus 
fermentum

Biofilm supernatant Enhanced immunomodulatory effects Zebrafish embryos 103

Lactobacillus casei 
ATCC334

Biofilm supernatant Enhanced immunomodulatory effects Zebrafish larvae 104

L. reuteri Biofilm in microtiter plates Modulation of cytokine output and production of the 
antimicrobial reuterin

- 77
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instance, disaccharide (sucrose and maltose) may 
be metabolized and absorbed during the gastroin-
testinal transit if they are not protected by a suitable 
material. Lumen of DM cab be load with growth 
promoting disaccharides that are discriminatively 

available for the probiotics adhered to the surface of 
DM and the presence of these growth-promoting 
factors reportedly enhances adherence of probiotics 
on the surface of DM (Figure 5A).106 Probiotic 
strains on the surface of DM produce EPS which 

Figure 5. Biofilm-based probiotic delivery systems. Part A shows delivery of probiotic biofilm formed on the surface of a dextranomer 
(DM) where the addition of disaccharides, as growth-promoting factors, to the lumen of DM results in more probiotic growth and 
enhanced biofilm formation. The bright red colour outside the strains adhering to DM shows the produced extracellular polysacchar-
ides (EPS) which help them to adhere to the surface of DM. The lumen of DM is shown to be loaded with nutritious prebiotic substances 
which remain available to the adhered probiotics and can survive the gastrointestinal transit. Part B shows encapsulation of probiotic 
cells into calcium pectinate capsules which promoted its growth into biofilm-like microcolonies and provided extra protection against 
environmental stressors. Part C shows coating of probiotic cells with their own biofilms containing EPS as a bioinspired strategy for oral 
doses of gut microbiota. Probiotic biofilm can be further encased in specific material as shown (chitosan-coated alginate capsules). 
Biofilms are further shown to be entrapped in electrospun cellulose acetate nanofiber membranes which has been reported to have 
great gastrointestinal resistance and it is ideal for the growth and biofilm formation of probiotics such as Lactoplantibacillus plantarum 
105 as shown in part C.
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can help to stick two different DM particles 
together (Figure 5A and 5B). Interestingly, DM 
containing biofilms of L. reuteri can be loaded 
with L. histidine which serves as a unique method 
for the delivery of L-histidine to L. reuteri in the 
form of biofilms.106 Probiotic-biofilm containing 
DM particles assure a high density of probiotics 
on the surface of epithelial cells in a single dose – 
the density which could only be achieved by fre-
quent repetition of planktonic doses.93 DM-based 
probiotic biofilm delivery system has also been 
reported to increase the probiotic potential of bac-
terial strains and maximize associated health 
benefits.

Smectite (a type of silicate clay) has a large reac-
tive surface area and it been reported to induce 
biofilm formation in many bacterial species.107 It 
remained ignored as a great bioactive material for 
the development of probiotic biofilms for a long 
time. The ion-exchangeable microstructure of 
smectite clay promotes biofilm formation, both 
in vitro and in vivo, by Lactobacillus and 
Bifidobacterium species on its surface. Organic 
acids produced by LAB supposedly give positive 
charge to the surface of smectite, which facilitates 
bacterial absorption because of their negatively 
charged cell wall as a result of teichoic acids.89 It 
is known that smectite can adhere to tissue surfaces 
such as mucus and helps to maximize bacterial 
contact with gastrointestinal organs. Smectite- 
laden biofilms have been shown to have ameliora-
tive effects on tumors as discussed in the above 
section. Given the limited survival of probiotics in 
the gastrointestinal tract, the smectite clay, being 
a safe material, has potential as an ideal carrier for 
the delivery of dense probiotic biofilms to the gut, 
where it may also enhance the growth of other LAB. 
Role of smectite laden probiotic biofilms have clin-
ical implications in case of chemotherapy as dis-
cussed in the above section.

Several food matrices serve as natural scaffolds 
for the adherence and biofilm formation of many 
probiotics which could be added in food or deliv-
ered directly. Different probiotic bacteria have been 
tested for their ability to develop biofilm on dietary 
fibres. Liu and others reported the biofilm-forming 
potential of six Bifidobacterium species on grape 
seed flour (insoluble dietary fibre with porous 
structure), where Bifidobacterium pseudo, 

Bifidobacterium longum, and Bifibacterium breve 
formed strong biofilms (more biofilm mass) with 
high tolerance under low pH limited nutrients.108 

Wheat bran is considered as a beneficial dietary 
fibre with a well-known prebiotic potential. Wheat 
bran fraction reportedly induce microbiota changes 
in the human gut, specifically targeting colon buty-
rate producers.109 Development of probiotic bio-
films by L. plantarum 8-RA-3 on wheat bran has 
been reported which opens further avenues of uti-
lising wheat bran as a probiotic carrier. Survival 
and tolerance of B. subtilis can be enhanced by 
developing its biofilms on starch fibres of chickpea 
milk with significantly more production of pulcher-
rimin (an antimicrobial pigment for some 
pathogens).99,110 The development of B. subtilis 
biofilms on starch fibres confers effective adapta-
tion strategy to the bacterium on food matrices for 
enduring harsh gastrointestinal conditions as well 
as during food processing and storage, as a part of 
functional food ingredients. The fibre can ulti-
mately be used by the colonized probiotic strains 
for their proliferation.

Another approach for the delivery of probiotics 
in the form of biofilms is to encapsulate them in 
a material that may stimulate their biofilm forma-
tion and keep bacteria entrapped in the form of 
biofilms. When Lactobacillus acidophilus 
LMG9433T, L. rhamnosus LMG25859, and 
L. casei LMG6904T were encapsulated in micro-
capsules produced using low-methoxyl pectins 
(CMP-6 and CMP-8) and calcium as the wall mate-
rial and allowed to grow further in a suitable 
growth medium, they changed into biofilms and 
better survived the gastrointestinal transit and 
heat and cold shock, compared to their planktonic 
cells,111 as shown in Figure 5B.

Self-coating probiotics with biofilms has also 
been reported as an important bioinspired strategy 
for oral doses of gut microbiota (Figure 5C). 
B. subtilis cells coated with self-produced biofilms 
endowed the transplanted gut microbiota with 
superior tolerance (a 125-fold higher oral bioavail-
ability) and enhanced mucoadhesion capacity (17 
times higher) in mice and swine models.74 Apart 
from developing biofilms on different surfaces as 
discussed above, bacterial biofilms can be encapsu-
lated in suitable materials, usually polysaccharide- 
based capsules, which can successfully release the 
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entrapped probiotics in the colonic environment. 
In one of the earlier investigations on probiotic 
biofilm delivery systems, chitosan-coated alginate 
capsules were proved to confer L. rhamnosus bio-
films more protection against several environmen-
tal stressors (e.g., low pH and temperature).112 

Heumann and others showed the successful release 
of biofilm-like microcolonies of Lacticaseibacillus 
paracasei (10 log (CFU/g) encased in calcium- 
pectinate beads in the gastrointestinal tract. The 
resulting interaction between three-dimensional 
network of calcium pectinate and bacterial exopo-
lysaccharides kept bacteria adhered to the 
surface.101 Electrospun nanofiber membranes have 
three-dimensional porous structure with high bio- 
reactive surface area which make them ideal for the 
growth and proliferation of bacterial cells. Biofilms 
formed by a probiotic strain of L. plantarum was 
entrapped in electrospun cellulose acetate nanofi-
ber membranes, which showed excellent 

gastrointestinal tolerance compared to bacterial 
cells in the planktonic form 105 (Figure 5C).

A recent study reported a new method for the 
development of probiotics capsules based on cellu-
lose produced by self-aggregated biofilms of 
Gluconacetobacter xylinus 113 as demonstrated in 
Figure 6. This principle of self-produced EPS can 
be used for many biofilm-producing probiotic 
strains. Probiotic cellulose does not only protect 
enclosed probiotic cells, but it also serves as an 
antibacterial agent against many pathogens.114

Mixed biofilms for probiotic delivery

Most of the probiotic bacterial species or the gut 
commensals have been reported to co-exist in 
mixed biofilms where their growth, biofilm mass 
and metabolic characteristics are enhanced because 
of inter-species interactions. Bacterial interaction 
in co-cultures may also lead to enhanced 

Figure 6. Probiotic self-grown capsules based on cellulose derived from self-assembled biofilms in an oil-water emulsion. Part A shows 
water-in-oil emulsion loaded with nutrients and the bacterium Gluconacetobacter xylinus, enclosed in the water phase. Over time the 
bacteria use the sugars and secrete cellulose which forms a uniform layer over the cells enclosed in the water phase (a) and his 
ultimately leads to the formation of bacterial self-produced cellulose capsules (b). Part B (a, b, and c) shows scanning electron 
microscopy images of the biofilm-based cellulose capsule with visible cellulose fiber network under three different magnifications (100, 
10, and 2 µm). This figure is reproduced with permission.113
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production of several beneficial metabolites. 
Increased production of bacteriocin was reported 
in a co-culture of Lactobacillus and Pediococcus 
species.115 There are many probiotic strains which 
do not form biofilms and thus it presents 
a challenge to increase their viability and probiotic 
potential based on the model discussed hereby. One 
way to deal with this challenge is to mix non- 
biofilm forming probiotics with some biofilm- 
forming probiotic strains so that they can get pro-
tection from the EPS of other strains. For instance, 
a few strains of B. subtilis have emerged as potential 
probiotics and they produce abundant EPS which 
can protect other probiotic bacteria and keep them 
entrapped within the matrix.116 Some species trig-
ger biofilm formation in other non-biofilm forming 
species in combinations and thus mixed-species 
biofilms can be used as probiotics and can further 
can encapsulated based on the reported techniques 
discussed above. Sadiq, Wenwei, Heyndrickx, Flint, 
Wei, Jianxin and Zhang 35 demonstrated the exis-
tence of four different gut species together in the 
form of mixed-species biofilms where individual 
species were not able to form biofilms but existed 
together because of probably synergistic interac-
tions. Species from different kingdoms (bacteria 
and yeasts) may also co-exist in the form of biofilms 
and thus this delivery system may help to deliver 
doses of mixed probiotics from different kingdoms. 
Interactions between Lactobacillus kefiri and 
Saccharomyces cerevisiae is probably the best exam-
ples of the existence of trans-kingdom probiotics in 
the form of biofilms because of interactions 
between bacterial surface layer proteins (SLPs) 
and yeast mannans.117

Novel prebiotics to enrich specific bacterial 
groups in the gut

Responses of the human gut microbiota to dietary 
components are mechanistically not well under-
stood because of complexities involved in the inter-
actions of the gut microbiota affecting metabolic 
capabilities of species. The last one decade has 
witnessed a surge in the development of novel pre-
biotics and effective delivery and enrichment stra-
tegies of probiotics. According to the consensus 
statement of the International Scientific 
Association for Probiotics and Prebiotics, 

a prebiotic substance must be selectively utilized 
and have adequate evidence of health benefit for 
the target host. Apart from an astounding range of 
established carbohydrate-based prebiotics (such as, 
inulin, fructooligosaccharides, galactooligosacchar-
ides, and lactulose), several novel prebiotics have 
emerged which target specific microbial groups in 
the human gut, for instance, xylooligosaccharides, 
chitooligosaccharides, isomaltooligosaccharides, 
lactosucrose,118 protein-based prebiotics,119,120 

some dietary fibres,121 and prebiotics derived from 
fungal 122 and algal sources, such as seaweed 
polysaccharides.123 Table 3 mentions many studies 
which reported the effectivity of selected prebiotic 
in promoting the growth of targeted bacterial 
groups in the gut.

Researchers focusing on prebiotic development 
are more interested in developing prebiotics target-
ing specific bacterial groups in the human gut at the 
species or strain level to increase the abundance of 
beneficial bacteria while reducing detrimental 
members in the gut microbiota, and to shift the 
host colonic microbiota toward a healthier 
composition.145

Bifidobacteria are important bacterial groups in 
the human gut which mainly rely on dietary carbo-
hydrates for their growth and physiological activ-
ities. It is well established that some dietary fibers 
such as fructans and galacto-oligosaccharides 
enhance the fecal abundance of Bifidobacterium 
and Lactobacillus species.134,146

Prebiotics containing levan can be specifically uti-
lized by Bacteroides thetaiotaomicron.147 Similarly, 
yeast mannan (indigestible water-soluble polysac-
charide) has been reported to specifically promote 
the growth of B. thetaiotaomicron and B. ovatus in 
trials based on human colonic microbiota model.148 

Soluble dietary fiber (10% inulin) reportedly 
enhances growth and abundance of Bacteroides fra-
gilis with a concomitant increase in IgA.149

Some probiotics in the human gut particularly 
require some proteins for their growth and pro-
liferation. Probiotics often contain sugar-binding 
proteins on their cell surface, and these mediate 
the uptake of many complex oligosaccharides. 
A protein delivery system in combination with 
sugars (galactooligosaccharide-lactoferrin hydro-
lysate micelles.) was successfully used targeting 
the specific growth of L. casei.120
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Some dietary components have potential to be used 
as prebiotics because of their associated growth 
impacts on targeted microbiota groups. 
Sulfoquinovose (SQ), a sulfonated monosaccharide 
highly dominant in green vegetables and can be effec-
tively used by Eubacterium rectale and F. prausnitzii 
leading to the production of H2S through acetate 
production in the human gut.126 Similarly, quinones 
is another food component which specifically targets 
Faecalibacterium species in the human gut.150 Omega- 
3 supplementation has been reported to result in 
a significant increases in Coprococcus and Bacteroides 
species.124 Dietary polyphenols can be utilized by cer-
tain (poly)phenol-transforming bacteria of the human 
gut such as Akkermansia muciniphila (a bacterial spe-
cies well known for its anti-obesity properties) leading 
to its abundance with substantial ameliorating effects 
on obesity.151,152

Concluding remarks

Human gut harbors trillions of diverse microorgan-
isms which live in an intricate balance, and 
dynamics of which are affected by host and envir-
onmental factors, including the diet and lifestyle. 
A perturbed gut leads to several pathological con-
ditions and aberrant metabolism. The use of pro-
biotics, among many other microbiome- 
modulating interventions, has been well acknowl-
edged as a strategy to overcome the conditions 
associated with gut dysbiosis, because of their role 
in replenishing missing microbial groups. 
Development of specific prebiotics for targeted 
growth of bacteria at the species or strain level, in 
the human gut is also very important to modify the 
host colonic microbiota toward a healthier compo-
sition. Unique gut bacterial profiles with 

Table 3. Selective prebiotics targeting the growth of targeted bacteria in the gut.
Name of the prebiotic Source Targeted bacteria Reference

Inulin - Bifidobacterium and 
Lachnospiraceae

124

Omega-3 fatty acids - Coprococcus and Bacteroides 
species

124

Berberine and Curcumin - Bifidobacterium and Akkermansia 
species

125

Sulfoquinovose Green vegetables Faecalibacterium prausnitzii 126

Galactosyl- 
β1,4-l-rhamnose

- Bifidobacterium longum subsp. 
Longum

127

Polyphenols Fu brick tea Akkermansia muciniphila, 
Alloprevotella, Bacteroides, and 
Faecalibaculum

128

Levan-type fructan Erwinia species Bifidobacterium and Eubacterium 
rectale

129

Polyphenols Chilean currants F. prausnitzii 130

Polyphenols Cranberry and blueberry fruit powders A. muciniphila 131

Protein-oligosaccharide 
conjugates

The conjugates were formed by mild Maillard-reaction-based covalent 
conjugation of galacto-oligosaccharides to lactoferrin hydrolysate

Lactobacillus casei 119

Chitin-glucan - Bifidobacterial communities, 
especially Bifidobacterium breve

132

Epigallocatechin gallate, 
caffeine, and theanine

Green tea Bifidobacteria and Lactobacillus 
species

133

Lycium barbarum 
polysaccharides

Goji berries Bifidobacterium and Lactobacillus 
species

134

Proanthocyanidin Grapes Akkermansia species 135

Anthocyanins Black rice Bifidobacterium and Lactobacillus 
species

136

Triterpenoid saponins Gynostemma pentaphyllum (a medicinal plant) Bacteroides, Lactobacillus and 
Bifidobacterium

137

Yeast α-mannan Saccharomyces cerevisiae Bacteroides thetaiotaomicron 138

Partially hydrolyzed guar 
gum

- Bifidobacterium and butyrate 
producing bacteria

139

Polyfructan levan Produced from sucrose using Lsc3 from Pseudomonas syringae Bacteroides, Faecalibacterium, 
Escherichia and Streptococcus

140

Galactooligosaccharide 
mixture

Produced by enzymatic activity of Bifidobacterium bifidum NCIMB 41171 Bifidobacterium bifidum 141

Lactulose - Bifidobacterium species 142

Xylooligosaccharide (XOS - Bifidobacterium longum subsp. 
longum CR15

143

Pectic oligosaccharides Sugarbeet pulp and lemon peel waste Faecalibacterium and Roseburia 144
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dominance of specific genera and species are linked 
with health and disease status.

One of the challenges in probiotic research is their 
effective delivery and maintenance of viability across 
divergent product formats. Biofilms of probiotics 
have been argued as the most resistant form that 
can better survive the gastrointestinal transit, com-
pared to planktonic probiotic forms. Probiotic bio-
films can entail a mixture of probiotic species/strains 
with network interactions and synergistic effects that 
can serve as highly resistant therapeutic microbial 
consortia. Probiotic biofilms can be easily subjected 
to many processing regimes, for instance, encapsula-
tion, coatings, structural changes, and compound 
enrichment which widen their use in several applica-
tions and diverse systems as functional ingredients.

Probiotic biofilms have been proven to be more 
effective than their counterpart planktonic probio-
tics in many immunological and pathological con-
ditions mainly due to their better survival, improved 
gut barrier function, more adherence, EPS produc-
tion, and production of biofilm-specific metabolites 
such as vitamins and certain enzymes.

Probiotics in a biofilm formulation increase the 
efficiency of chemo- or immunotherapy by activating 
anti-cancer immune responses carried out by dendri-
tic cells, which is not a property of planktonic cells. 
Their advantages over the conventional delivery of 
probiotics can be evidenced by their immunomodu-
latory roles in osseointegration of medical implants, 
necrotizing enterocolitis, and collagen-induced 
arthritis. Probiotics in their biofilm state produce 
many new metabolites and many metabolites in 
higher concentration which promote the growth of 
gut microbiota and inhibit the growth of many patho-
gens, apart from their metabolic and anti- 
inflammatory effects.

Whilst considering biofilms as the appropriate 
form of probiotic intake, one should consider the 
stage of biofilm development with the view of the 
production of metabolites, structural stability, and 
viability of cells. Many studies have provided evidence 
of more therapeutic potential of probiotics in the form 
of biofilms, mainly because of enhanced resistance of 
the biofilm-enclosed cells, and thus probiotic-based 
delivery approaches should be further investigated for 
drug delivery systems and for the incorporation of 
probiotics in foods and supplements.
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