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Previously, we have shown that the window of opportunity 
for nicotinamide (NAM) therapy (50 mg/kg) following cortical 
contusion injuries (CCI) extended to 4–8 hrs post-CCI when 
administered over a six day post-CCI interval. The purpose of the 
present study was to determine if a more chronic NAM treatment 
protocol administered following CCI would extend the current 
window of opportunity for effective treatment onset. Groups of 
rats received either unilateral CCI’s or sham procedures. Initiation 
of NAM therapy (50 mg/kg, ip) began at either 15-min, 4-hrs, 8-hrs 
or 24-hrs post-injury. All groups received daily systemic treatments 
for 12 days post-CCI at 24 hr intervals. Behavioral assessments 
were conducted for 28 days post injury and included: vibrissae 
forelimb placing, bilateral tactile adhesive removal, forelimb asym-
metry task and locomotor placing testing. Behavioral analysis on 
both the tactile removal and locomotor placing tests showed that 
all NAM-treated groups facilitated recovery of function compared 
to saline treatment. However, on the vibrissae-forelimb placing 
and forelimb asymmetry tests only the 4-hr and 8-hr NAM-treated 
groups were significantly different from the saline-treated group. 
The lesion analysis showed that treatment with NAM out to 8 hrs 
post-CCI significantly reduced the size of the injury cavity. The 
window of opportunity for NAM treatment is task-dependent and 
in some situations can extend to 24 hrs post-CCI. These results 
suggest that a long term treatment regimen of 50 mg/kg of NAM 
starting at the clinically relevant time points may prove efficacious 
in human TBI.

Introduction

Each year approximately 50,000 people die from traumatic brain 
injuries (TBI) and another 80,000 to 90,000 become permanently 
disabled in the US.1-3 Currently, no therapeutics is available to atten-
uate damage following TBI. A number of novel therapeutics have 
shown robust behavioral and histological protection in preclinical 
animal models, but have failed to show beneficial effect in clinical 
trials. The reason for the lack of translation from animal to human 
models of TBI is multifaceted, including methodological errors in 
the clinical setting and errors in preclinical modeling.

Clinically, methodological errors have included patient inclusion 
criteria and number of patients enrolled to achieve statistical signifi-
cance.1 Some patients may be too severely injured to show any real 
improvement (GCS ≤ 8); enrolling these patients may artificially 
deflate any treatment effect.4 It has been shown that only 8 of the 
203 clinical TBI trials evaluating novel therapeutics were sufficiently 
powered to detect a 10% reduction in mortality rate. Thus, some 
novel therapeutics, given adequate clinical testing, may have been 
demonstrated to be effective.5 Preclinically, neglected aspects of 
testing novel therapeutics have included: determining the window of 
opportunity for treatment onset and generalizing treatment to two 
or more models of cerebral insult.1 Treatment duration and dosing 
parameters should be well defined during the preclinical evaluation 
of a new therapy. It is unlikely that one or two administrations of a 
compound will completely arrest its target pathological mechanism 
and it is possible that acute therapeutic intervention may only delay 
an inevitable injury cascade; it may take days or weeks of therapeutic 
intervention to attain efficacy.

Nicotinamide (NAM) is the amide form of niacin (NA or 
Vitamin B3). NA and NAM are ingested orally in normal dietary 
intake via yeast, meats, grains and legumes. Although NAM is 
synthesized endogenously from tryptophan, this reaction does not 
take place within the central nervous system (CNS) due to the lack of 
the enzyme quinolinate phosphoribosyl transferase. Thus, any NAM 
within the CNS has been actively transported across the blood—
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brain barrier (BBB) from the periphery. NAM is a vital component 
of nicotinamide adenine dinucleotide (NAD), which serves a critical 
role in aerobic and anaerobic respiration.

NAM elicits a variety of neuroprotective mechanisms post-injury. 
Following TBI, glutamate chronically excites NMDA and AMPA 
receptors on neurons. This chronic over-excitation causes a massive 
influx of calcium (Ca2+) into the cells, and begins excitatory amino 
acid (EAA) induced neurotoxicity.6,7 The mitochondria act as a sink 
for Ca2+, taking up massive amounts. This opens up mitochondrial 
transition pores, which severely alters ionic homeostasis. High levels 
of intracellular and mitochondrial Ca2+ trigger a massive release of 
cytochrome C which triggers caspase 9 activation leading to terminal 
apoptosis. NAM activates protein kinase B and inhibits transcription 
of proapoptotic genes. A downstream effect of protein kinase B is 
closing of the mitochondrial transition pores opened by excessive 
Ca2+ influx. The mitochondrion is able to regain ionic homeostasis 
and bring cytochrome C back to physiological conditions thereby 
inhibiting caspase 9 mediated cell death.8

NAM also exerts protective effects by inhibiting poly-ADP-
ribose polymerase (PARP). Due to oxidative damage caused by the 
failure of the electron transport chain and propagation of reactive 
oxygen species (ROS), DNA becomes damaged.9 Following breaks 
in DNA strands caused by oxidative damage, PARP binds to single 
or double strand breaks and cleaves NAD to catalyze the transfer of 
ADP-ribose, which binds to acceptor proteins and to PARP itself 
reducing amount of free NAD for normal energy metabolism.10 
Chronic PARP activation quickly depletes cellular NAD stores; 
administration of NAM has been shown to inhibit PARP, increase 
levels of NAD in cortical areas affected by ischemic events, and 
restore ATP levels.11-13

Recent research has shown that while NAM administration 
increases brain concentrations of NAD, the effect of this increase 
may only serve to inhibit PARP and decrease oxidative stress and 
not restore metabolic functioning.11 Peak plasma concentrations of 
NAM have been demonstrated within 45 min after systemic injec-
tion in the rat.14 The increase of cortical NAD and how long this 
elevation might last after a 50 mg/kg dose of NAM is not known. 
However, if this effect is short lived after a single bolus injection, then 
treatment beginning at 8 hrs may not have spiked NAD levels at a 
therapeutically relevant time or delayed pathological mechanisms. 
It has been reported that PARP demonstrates two peaks following 
injury, one at 30 min and at 24 hrs.15 It is possible that single admin-
istrations of NAM at later time points (i.e., 6–8 hrs) may temporarily 
attenuate pathological mechanisms upstream of PARP activation, 
thus pushing the second peak of PARP somewhere outside of the 
treatment range. In contrast, if the effects of PARP activation were 
apparent at 24 hrs, spiking the concentration of NAD at this time 
would have produced the therapeutic effect observed following treat-
ment onset at 24 hrs. Thus, the initial protection observed would 
be a result of acute prevention of apoptosis and not mainly due to 
restoration of metabolic function. Therefore, it is of interest to deter-
mine the effect of repeated dosing of NAM for the treatment of TBI 
because by increasing the duration of therapy it is likely to increase 
the beneficial effects on recovery of function.

NAM was first investigated in experimental models of ischemia. 
Administration of NAM following permanent middle cerebral artery 
occlusion was effective at reducing infarction volumes in male rats.16 

This study began treatment 1 hr prior to ischemia onset and tested 
the effectiveness of three doses: 50 mg/kg, 500 mg/kg and 1000 mg/
kg. Histological data revealed an inverted U-shaped distribution 
with the 50 and 1000 mg/kg groups failing to show neuroprotection 
as assessed by infarction volume. The 500 mg/kg group showed a 
significant reduction in infarction volume relative to saline 24 hrs 
post-stroke. A single dose of 500 mg/kg of NAM was found to have 
a window of opportunity that extended to 2 hrs, but not 3 or 4 
hrs post-stroke using a measure of infarction volume.16 In another 
study, a 500 mg/kg dose was the most effective at reducing infarc-
tion volume; the window of opportunity remained at 2 hrs.17 It was 
later demonstrated that the window of opportunity extended to 4 hrs 
post-stroke with the 500 mg/kg dose as measured by infarction and 
neuroscore at 7 days post-stroke.18

Recently, NAM has been demonstrated to be effective in models 
of TBI. It has been shown that NAM was effective at improving 
behavioral and histological outcome following experimental TBI.19 
Animals received a bilateral CCI to the medial prefrontal cortex and 
were administered NAM (500 mg/kg) at 15 min with a booster at 
24 hrs post injury. Behavioral evaluation revealed that NAM-treated 
animals were significantly less impaired than saline-treated animals 
on sensorimotor (e.g., and cognitive measures) but not on a skilled 
forelimb use task. NAM was also shown to decrease the size of the 
lesion cavity and downregulate the glial response.19 It has also been 
recently shown that NAM administration acutely reduced apoptosis, 
BBB breach and neuronal death following CCI.20,21

NAM was also effective in attenuating behavioral and histological 
measures at two different doses in a diffuse model of TBI: fluid 
percussion injury (FPI).22 Animals received FPI injuries and were 
treated with either 500 mg/kg or 50 mg/kg NAM at 15 mins post 
injury with a single 24 hr booster. Behavioral evaluation over 35 
testing days showed significant performance improvement relative 
to saline-treated animals on measures of sensorimotor functioning, 
sensorimotor integration, and motor functioning. The 500 mg/
kg treatment condition was also effective in attenuating cogni-
tive dysfunction, but the 50 mg/kg was not. Histologically, both 
treatment conditions significantly reduced cavity size and glial cell 
proliferation relative to saline-treated animals.22 Acute neuroprotec-
tion and a time-dependent modulation of reactive gliosis at 24 hrs 
and 7 days post-FPI has also been recently shown.23

A recent study has evaluated the window of opportunity for treat-
ment onset using a 50 mg/kg dose following CCI. Animals received 
injection regimens starting at 15-min, 4-hr or 8-hr post injury with 
50 mg/kg boosters at 24 hr intervals for five days following bilateral 
frontal CCI. Testing revealed that the 15-min, 4-hr and 8-hr treat-
ment groups were significantly less impaired in the sensorimotor 
and sensory tasks. However, only the 15-min and 4-hr treatment 
groups demonstrated a significant reduction in cognitive deficits. 
Histologically, the 15-min and 4-hr treatment groups had signifi-
cantly smaller cavities than saline-treated animals.24

The objective of the present study was to extend the window of 
opportunity of NAM administration from 4 hrs to 24 hrs post injury. 
Animals were administered NAM for 12 days using the clinically 
relevant dose of 50 mg/kg. Administration regimens overlapped the 
duration of time that metabolic dysfunction has been proposed to 
occur.25,26
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0.05], 6 [t(14) = 3.63, p < 0.003] and 8 [t(14) = 2.17, p < 0.05]. The 
comparisons between the 24 hr-NAM and saline-treated group were 
significantly different on days 2 [t(14) = 2.59, p < 0.02], 4 [t(14) = 
4.09, p < 0.002] and 6 [t(14) = 3.20, p < 0.008], and 8 [t(14) = 2.87, 
p < 0.02]. Comparisons between the NAM-treated groups were not 
significantly different (p > 0.05).

Vibrissae-forelimb placing. The percentage of unsuccessful 
placing attempts with the contralateral forelimb was examined using 
a 5 x 9 ANOVA with repeated measures. Group (4 hr-NAM, 8 
hr-NAM, 24 hr-NAM, Saline and Sham) and day (2, 4, 6, 8, 10, 
12, 14, 21 and 28 post-CCI) were included as the between and 
within group factors, respectively. There was a general improvement 
in recovery of function across testing days, the main effect for day 
was significant [F(8,256) = 16.89, p < 0.001]. A significant group 
main effect was observed in placing performance in the affected 
contralateral forelimb [F(4,32) = 12.34, p < 0.001]. The group x day 
interaction was also significant, suggesting differential improvement 
between groups [F(32,256) = 2.59, p < 0.003] (See Fig. 4). Post hoc 
comparisons with planned t-tests revealed that the 4 hr-NAM group 
was significantly different from the saline-treated group on days 12 
[t(13) = 2.85, p < 0.01], 14 [t(13) = 3.79, p < 0.002], 21 [t(13) = 
3.69, p < 0.003] and 28 [t(13) = 3.45, p < 0.004]. Comparisons of 
the 8 hr-NAM group to saline were also significantly different on 
days 8 [t(14) = 2.55, p < 0.02], 10 [t(14) = 2.65, p < 0.02], 12 [t(14) 
= 2.60, p < 0.02], 14 [t(14) = 2.67, p < 0.02], 21 [t(14) = 2.88, p < 
0.01] and 28 [t(14) = 2.68, p < 0.02]. The comparisons between the 
24 hr-NAM and saline-treated group were not significantly different 
(p > 0.05). Comparisons between the NAM-treated groups were not 
significantly different (p > 0.05).

Results

Lesion analysis. Examination of the extent of injury measured by 
the percent reduction of lesion volume in the ipsilateral hemisphere 
compared to the intact contralateral hemisphere was analyzed in a 
one way ANOVA (4 hr-NAM 8 hr-NAM, 24 hr-NAM, Saline and 
Sham). A significant group effect was observed, [F(4,32) = 6.70, 
p < 0.001]. Post hoc analysis with Tukey’s HSD demonstrated the 
4 hr-NAM [HSD(13) = 8.10, p < 0.05] and 8 hr-NAM groups 
[HSD(14) = 9.06, p < 0.02] were significantly different from the 
saline-treated groups but the 24 hr-NAM group was not (p > 0.10) 
(see Fig. 1). However, shams were not significantly different from any 
of the NAM-treated groups in respect to cortical volume reduction 
(p > 0.05). Representative histological images through the site of 
injury are presented in Figure 2.

Bilateral tactile adhesive removal task. The latency to remove the 
adhesive patch from the right forelimb was examined using a 5 x 8 
ANOVA with repeated measures. Group (4 hr-NAM, 8 hr-NAM, 24 
hr-NAM, Saline and Sham) and day (2, 4, 6, 8, 10, 12, 21 and 28 
post-CCI) were included as the between and within group factors, 
respectively. All animals showed improved latencies to remove the 
adhesive patch across testing days, the main effect for day was 
significant [F(7,224) = 33.16, p < 0.001]. A significant group main 
effect was observed in the latency to remove the adhesive patches 
from affected forelimb [F(4,32) = 11.04, p < 0.001]. The group x 
day interaction was also significant, suggesting differential recovery 
between groups across time [F(28,224) = 3.00, p < 0.001] (See Fig. 
3). Post hoc comparisons with planned t-tests revealed that the 4 
hr-NAM group was significantly different from the saline-treated 
group on days 2 [t(13) = 3.50, p < 0.008], 4 [t(13) = 3.82, p < 0.004] 
and 6 [t(13) = 2.47, p < 0.04]. Comparisons of the 8 hr-NAM group 
to saline were also significantly different on days 4 [t(14) = 2.21, p < 

Figure 1. Lesion analysis. Plotted is the mean (±SEM) remaining cortical 
volume for each group. NAM at the 4-hr (*p < 0.05) and 8-hr (!p < 0.05) 
time points significantly reduced the amount of injury-induced tissue loss 
compared to the vehicle group.

Figure 2. Histology plate. Shown are representative cresyl violet images 
(40 μm) of sections from the saline-treated injured brain (A) and an 8-hr 
NAM brain (B) at coordinates 1.68 mm, 0.72 mm and -0.36 mm relative to 
bregma (0.44x, scale bar = 2 mm).
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differential recovery between groups across time [F(8,64) = 0.92, p > 
0.50]. With the non-significant interaction effect, post hoc compari-
sons with planned Tukey HSD tests were performed between groups. 
This comparison revealed that the 4 hr-NAM group was significantly 
different from the saline-treated group [HSD(13) = 19.67, p < 
0.001] (See Fig. 6). Comparisons of the 8 hr-NAM group to saline 
were also significantly different [HSD(14) = 3.75, p < 0.002]. The 
24 hr-NAM group was not significantly different compared to the 
saline group [HSD(14) = 3.75, p < 0.002]. Comparisons between 
the 4 hr-NAM group were only significantly different from the 24 
hr-NAM on the first test day (p < 0.05).

Discussion

This study sought to extend the window of opportunity for NAM 
therapy by prolonging administration to include time points covering 
metabolic dysfunction post-TBI. Animals within the present study 
received NAM at the clinically relevant dose of 50 mg/kg and at 
clinically relevant administration times; 4, 8 and 24 hrs post-injury 
with 12 days of daily boosters. The injury model utilized produced 
enduring deficits in forelimb functioning as assessed in locomotor 
placing, forelimb asymmetry, bilateral tactile adhesive removal, and 
vibrissae forelimb placing over the course of 28 days. Histological 
evaluation was performed to evaluate the treatment regimen’s ability 
to reduce injury extent.

The results of this study have shown that administration of 
NAM following CCI had a task dependent effect on the window of 
opportunity of recovery of function. In general, the 13-dose regimen 
of NAM significantly lessened the behavioral impairments observed 
following injury and led to a more rapid and sustained improvement 
in functional recovery. On 2 of the 4 behavioral tests examined the 
window of opportunity for this dosing regimen of NAM extended 

Locomotor placing. The impairment of the forelimbs during 
horizontal locomotion on a grid floor was examined using a 5 x 3 
ANOVA with repeated measures. Group (4 hr-NAM, 8 hr-NAM, 
24 hr-NAM, Saline and Sham) and day (2, 8 and 14 post-CCI) 
were included as the between and within group factors, respectively. 
Improved forelimb performance was generally observed across days, 
the main effect for day was significant [F(2,64) = 24.82, p < 0.001]. 
A significant group main effect was observed in horizontal forelimb 
performance [F(4,32) = 30.84, p < 0.001]. The group x day interac-
tion was also significant, suggesting differential recovery between 
groups across time [F(8,64) = 3.00, p < 0.001] (See Fig. 5). Post hoc 
comparisons with planned t-tests revealed that the 4 hr-NAM group 
was significantly different from the saline-treated group on days 2 
[t(13) = 19.67, p < 0.001], 8 [t(13) = 7.57, p < 0.001] and 14 [t(13) 
= 8.99, p < 0.001]. Comparisons of the 8 hr-NAM group to saline 
were also significantly different on days 2 [t(14) = 3.75, p < 0.002], 
8 [t(14) = 3.55, p < 0.003] and 14 [t(14) = 2.87, p < 0.01]. The 
comparisons between the 24 hr-NAM and saline-treated group were 
significantly different on days 2 [t(14) = 2.97, p < 0.01] and 8 [t(14) 
= 2.75, p < 0.02]. Comparisons between the NAM-treated groups 
showed that the 4 hr-NAM group was significantly different than the 
8 hr-NAM and 24 hr-NAM groups at all 3 test days (p < 0.05).

Forelimb asymmetry. Forelimb asymmetry use during rearing 
behavior was examined using a 5 x 3 ANOVA with repeated 
measures. Group (4 hr-NAM, 8 hr-NAM, 24 hr-NAM, Saline and 
Sham) and day (2, 6 and 12 post-CCI) were included as the between 
and within group factors, respectively. Improved forelimb asymmetry 
was generally observed across days, the main effect for day was signif-
icant [F(2,64) = 15.52, p < 0.001]. A significant group main effect 
was observed in forelimb asymmetry [F(4,32) = 14.50, p < 0.001]. 
The group x day interaction was not significant, suggesting a lack of 

Figure 3. The effects of a 13 day regimen of NAM (50 mg/kg, ip) or saline 
administered following CCI or sham surgery on the bilateral tactile adhesive 
removal test. The graph shows the plotted mean (±SEM) latencies to remove 
the stimuli from both forelimbs. Treatment with the 4-hr, 8-hr and 24-hr NAM 
groups significantly improved performance compared to the saline-treated 
group. Symbols indicate significant differences (p < 0.05) between compari-
sons of NAM-treated groups and the saline-treated group.

Figure 4. The effects of a 13 day regimen of NAM or vehicle administered 
following frontal CCI or sham surgery on the vibrissae-forelimb placing test. 
The graph shows the plotted mean (±SEM) percentage of unsuccessful plac-
ing attempts. Treatment with the 4-hr and 8-hr NAM groups significantly 
improved performance compared to the saline-treated group. Symbols indi-
cate significant differences (p < 0.05) between comparisons of NAM-treated 
groups and the saline-treated group.
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occurring after 10 days of testing which is typical for this particular 
behavioral test. However, on this test only the 4-hr and 8-hr NAM 
groups were significantly improved compared to saline treatment. 
Treatment with NAM at the 4-hr or 8-hr time points resulted in 
approximately an 80–90% improvement in placing performance 
compared to the saline-treated group which showed only a 20% 
improvement in performance by the end of testing. The 24-hr NAM 
group failed to produce significant improvement in performance on 
this test; however, a limited degree of improvement was observed 
compared to the saline-treated group. The recovery curves on the 
vibrissae-forelimb placing tests correlate very nicely with the tissue 
sparing data and may suggest that this behavioral test may be the 
most sensitive for detecting anatomical sparing. In a similar manner, 
the analysis of the forelimb asymmetry test demonstrated the same 
general finding. Treatment with NAM starting at either 4-hr or 8-hr 
significantly reduced the forelimb asymmetry bias observed after 
injury compared to saline treatment. There was little  improvement 
in the 24-hr NAM group compared to the saline-treated group until 
the last day of testing. It is unknown if this improvement was due to 
an effect of NAM treatment, or the result of spontaneous recovery 
of function (as occurred in the saline-treated group); however, the 
improvement in the saline-treated group between days 6 and 12 were 
non-significant. Thus, on these 2 sensorimotor tests NAM admin-
istered as late as 8 hrs post-CCI significantly improved recovery 
of function; whereas, there were only slight improvements when 
NAM was administered at 24 hrs post-CCI. In general, the behav-
ioral window of opportunity following CCI can be extended out to 
24 hrs post-injury with sustained daily dosing of low dose NAM 
therapy; however, this behavioral improvement appears to be task 
dependent. A very consistent effect was observed when NAM 

out to 24 hrs post-CCI. On the bilateral tactile removal test it was 
found that administration of NAM at the 4-hr, 8-hr and 24-hr post-
CCI time points significantly improved recovery of function on this 
test. On post-CCI day 2 it was found that both the 4-hr and 8-hr 
groups showed a significantly reduced initial impairment on this test; 
and the 24-hr group showed a greatly reduced impairment, compared 
to the saline-treated group. Over the first week of testing all of the 
NAM groups showed a significantly improved level of performance 
compared to the saline-treated group. In general, the data from the 
bilateral tactile removal test demonstrates that there were no signifi-
cant differences between any of the NAM treatment groups. Thus, 
on this test a very wide window of opportunity was present. A similar 
level of performance was also shown on the locomotor placing test. 
The 4-hr NAM group demonstrated no behavioral impairments 
on this test for the extent of the testing period post-CCI. The 8-hr 
NAM group was significantly reduced on all test days compared to 
the saline-treated group and the 24-hr group showed a strong reduc-
tion on the first test day and significant reductions on all subsequent 
test days. Comparisons between the NAM-treated groups showed 
that the 4-hr group was significantly improved compared to the 8 
and 24-hr groups. Inspection of the graph in figure 5 reveals a classic 
window of opportunity effect for NAM therapy post-CCI, with 
the earlier dosing points providing superior behavioral performance 
compared to later time points; however, in this case all of the NAM 
treatment groups significantly outperformed the vehicle control 
group. Thus, the earlier the treatment can be initiated post-injury 
the better the expected recovery outcome. In general, on these 2 
behavioral tests (bilateral tactile removal and locomotor placing) the 
window of opportunity extends out to 24 hrs post-CCI.

The results of the vibrissae-forelimb placing test showed that all of 
the NAM-treated animals showed some degree of recovery compared 
to the saline-treated animals, with most of the significant recovery 

Figure 5. The effects of a 13 day regimen of NAM (50 mg/kg, ip) or saline 
administered following CCI or sham surgery on the locomotor placing test. 
The graph shows the plotted mean (±SEM) forelimb foot-faults impairment 
scores. Treatment with the 4-hr, 8-hr and 24-hr NAM groups significantly 
improved performance compared to the saline-treated group. Symbols indi-
cate significant differences (p < 0.05) between comparisons of NAM-treated 
groups and the saline-treated group.

Figure 6. The effects of a 13 day regimen of NAM or vehicle administered 
following frontal CCI or sham surgery on the forelimb asymmetry test. The 
graph shows the plotted mean (±SEM) percentage of forelimb asymmetry 
scores. The no bias line at 50% demonstrates a level of performance where 
both forelimbs are being used equally on this test. Treatment with the 4-hr 
and 8-hr NAM groups significantly improved performance compared to the 
saline-treated group. Symbols indicate significant differences (p < 0.05) 
between comparisons of NAM-treated groups and the saline-treated group.
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therapy was initiated at 8 hrs post-CCI which clearly represents a 
clinically relevant treatment window.

The results of the anatomical analysis also showed a time-depen-
dent effect for NAM treatment. Both the 4-hr and 8-hr treatment 
groups showed a preservation of cortical tissue loss following CCI 
compared to the saline-treated group. The 24-hr group was not 
significantly different compared to the saline-treated group; however, 
the cortical loss was reduced. In a previous window of opportunity 
study for NAM therapy it was found that 6 daily doses of low dose 
NAM did not provide significant cortical protection following 
CCI.24 Thus, it appears that by increasing the length of NAM 
therapy post-CCI that greater beneficial effects can be observed. This 
finding suggests that by providing NAM therapy during the time of 
metabolic crisis following CCI that a significant gain in tissue sparing 
and behavioral recovery can be achieved.

The results of this study indicate that a 13-dose regimen of NAM 
significantly improved performance on all behavioral measures of 
sensorimotor function when administered as late as 8 hrs post-CCI. 
Furthermore, significant improvements in sensorimotor performance 
were observed when administered as late as 24 hrs post-CCI on 
certain tests. NAM administration also significantly reduced tissue 
loss in the injured cortex when administered 8 hrs following injury. 
In conclusion, by increasing the length of time of treatment duration 
the window of opportunity can be extended for NAM therapy in the 
traumatically injured rodent brain.

Methods

Subjects. Forty male Sprague-Dawley rats, 3–5 months of age 
were included in this experiment. All experimental procedures were 
reviewed and approved by the Institutional Animal Care and Use 
Committee. The study was conducted in a facility certified by the 
American Association for the Accreditation of Laboratory Animal 
Care. Rats were maintained on a standard 12-hr light/dark cycle with 
food and water available ad lib.

Surgery. The surgical procedure was performed using aseptic 
techniques and conditions. The CCI model utilized in the proposed 
study is based on previous studies.19,27 Animals were anesthetized 
using a mixture of isoflurane (2–4%) and oxygen (0.8 L/min). When 
the animal became unresponsive (no ocular or pedal reflexes) the head 
was shaved and scrubbed with 70% alcohol and placed into a stereo-
taxic device. A midline incision was made in the skin and underlying 
fascia was reflected. A circular craniotomy (4.0 mm) was performed 
using a surgical drill. Care was taken to avoid damaging the meninges 
and cortex while drilling. The craniotomy was performed 0.5 mm 
anterior to bregma and -4.0 mm lateral to bregma exposing the 
cortical region containing sensorimotor forelimb representation. The 
contusion injury was created with a sterile, stainless steel impactor tip 
(3.0 mm in diameter) that was attached to a magnetically activated 
piston (www.myneurolab.com) set at an angle of 10° to insure that 
the surface of the impact tip and cortex were parallel at the time of 
impact. The impact tip traveled at a velocity of 2.5 m/s compressing 
the cortex to a depth of 2.0 mm during 0.5 sec of contact. Following 
contusion any bleeding was controlled with sterile sponges soaked in 
cold saline and the incision was closed with nylon suture material. 
To maintain normal body temperature during surgery and recovery, 
the rats were maintained on normothermic (37°C) heating units (EZ 
Anesthesia, Inc.,). Rats receiving sham surgeries underwent identical 

Table 1 Experimental Design

surgical prep as injured animals, received craniotomies, and then 
were sutured.

Drug administration. Following injury NAM-treated animals 
received NAM injections (50 mg/kg, i.p.) (Sigma # N3376, St. 
Louis, MO, USA) at 4-hr (n = 8), 8-hr (n = 8) or 24-hr (n = 8) 
post-injury, followed by daily booster (50 mg/kg, i.p.) injections 
at 24 hr intervals for 12 days.22 Sham (n = 8) and injured-control 
(n = 8) animals received saline injections (0.9%, 1.0 mL/kg, i.p.) 4 
hr post-injury followed by 12 daily (0.9%, 1.0 mL/kg, i.p.) boosters 
at 24 hr intervals (see Table 1 for assignments). All behavioral testing 
and histological analysis were carried out by experimenters blinded 
to treatment conditions.

Bilateral tactile adhesive removal test. This procedure has been 
previously shown to be a sensitive assessment of somatosensory and 
attentional deficits following injury to the sensorimotor cortex and 
has been described in detail.19,28-30 A slightly modified version of 
this task was used in this experiment. A small rectangular patch (105 
mm2) (Avery, product #05412) was applied to the radial aspect of 
each forelimb. The rat was returned to the home cage and the latency 
and order of contact and removal (right vs. left) of the stimuli was 
recorded. A trial ended when the rat either removed both patches or 
2 minutes had elapsed. Baseline latencies were recorded prior to CCI 
after which animals were tested on two trials per testing day (ITI 5 
min), on post-operative days 2, 4, 6, 8, 10, 12, 21 and 28. Refer to 
Table 1 for complete testing schedules.

Vibrissae-forelimb placing. Sensorimotor function was evaluated 
by scoring forelimb placing reaction.22,24,30 Each rat was held by 
the trunk ensuring the forelimbs were free to move. One side of the 
rat was oriented parallel to a Plexiglas surface and was slowly moved 
until the vibrissae on one side touched the surface. A reliable lateral-
ized placing response was elicited in intact rats each time the vibrissae 
made contact with the surface. A successful forelimb placing response 
was recorded if the animal raised its forelimb and placed it on the 
surface in response to stimulation of the vibrissae ipsilateral to the 
forelimb. Each rat was given 10 trials for each forelimb. If a placing 
response was not elicited within 5 sec of vibrissae stimulation, the 
trial was recorded as unsuccessful. Baseline performance was recorded 
prior to injury. The animals were tested on post-operative days 2, 4, 
6, 8, 10, 12, 14, 21 and 28.

Locomotor placing. This test assessed the recovery of coordi-
nated limb placing during locomotion.30,31 Each rat was placed 
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Data analysis. Analysis of variance (ANOVA) tests were performed 
where appropriate for all behavioral and cognitive measures using 
procedures for general linear models (SPSS 15.0) with options for 
repeated measures. Between group factors were group (4 hr-NAM, 8 
hr-NAM, 24 hr-NAM, Saline and Sham). The within group factor 
was day of testing. Huynh-Feldt probabilities (HFP) and Tukey’s 
HSD test (HSD) were used to correct for Type-1 error associated 
with repeated measures and post hoc means comparisons. Post-hoc 
analysis following a significant interaction effect was performed with 
planned comparison t-tests. A significance level of p < 0.05 was used 
for all statistical analyses. Three rats were removed from the study 
because of morbidity or mortality and were not replaced. The final 
group assignments were 4 hr-NAM (n = 7), 8 hr-NAM (n = 8), 24 
hr-NAM (n = 8), Saline (n = 8) and Sham (n = 6).
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