
Review Article
Targeting Oxidative Stress and Endothelial Dysfunction
Using Tanshinone IIA for the Treatment of Tissue
Inflammation and Fibrosis

Tsuo-Cheng Lu ,1 Yi-Hsiu Wu ,2 Wei-Yu Chen ,2,3 and Yu-Chiang Hung 1

1Department of Chinese Medicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University,
Kaohsiung, Taiwan
2Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
3Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan

Correspondence should be addressed to Wei-Yu Chen; wychen624@cgmh.org.tw
and Yu-Chiang Hung; hungyuchiang@gmail.com

Received 12 October 2021; Revised 29 January 2022; Accepted 23 February 2022; Published 7 April 2022

Academic Editor: Qi Yu

Copyright © 2022 Tsuo-Cheng Lu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Salvia miltiorrhiza Burge (Danshen), a member of the Lamiaceae family, has been used in traditional Chinese medicine for many
centuries as a valuable medicinal herb with antioxidative, anti-inflammatory, and antifibrotic potential. Several evidence-based
reports have suggested that Salvia miltiorrhiza and its components prevent vascular diseases, including myocardial infarction,
myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy, and cardiac fibrosis. Tanshinone IIA (TanIIA), a
lipophilic component of Salvia miltiorrhiza, has gained attention because of its possible preventive and curative activity against
cardiovascular disorders. TanIIA, which possesses antioxidative, anti-inflammatory, and antifibrotic properties, could be a key
component in the therapeutic potential of Salvia miltiorrhiza. Vascular diseases are often initiated by endothelial dysfunction,
which is accompanied by vascular inflammation and fibrosis. In this review, we summarize how TanIIA suppresses tissue
inflammation and fibrosis through signaling pathways such as PI3K/Akt/mTOR/eNOS, TGF-β1/Smad2/3, NF-κB, JNK/SAPK
(stress-activated protein kinase)/MAPK, and ERK/Nrf2 pathways. In brief, this review illustrates the therapeutic value of
TanIIA in the alleviation of oxidative stress, inflammation, and fibrosis, which are critical components of cardiovascular disorders.

1. Introduction

Salvia miltiorrhiza Bunge, known as Danshen in Chinese, is a
member of the Labiatae family. The dried root of the rhizome
of Salvia miltiorrhiza Burge has been widely used in
traditional medicine in China and other oriental regions,
especially for treating cardiovascular diseases like coronary
heart disease, myocardial infarction (MI), angina pectoris,
and atherosclerosis [1–3]. The adverse effects of the thera-
peutic components are often mild [4, 5]. Although dried
roots have been used as herbal medicine for more than a
thousand years, the study of therapeutic content in the plant
did not start until the early 20th century [1].

Endothelial dysfunction describes a series of patho-
genics promoting the development of hypertension and

atherosclerosis, including oxidative stress, vascular endo-
thelium injury, inflammation, and loss of smooth muscle
elasticity [6, 7]. In hyperglycemic or diabetic conditions,
mitochondria lose their functions and the electron trans-
port chain is uncoupled, generating reactive oxygen species
(ROS) [8]. ROS promote ER stress and mitochondrial
alterations, causing apoptosis of endothelial cells. Addi-
tionally, ROS-injured endothelial cells generate less nitric
oxide (NO) but more endothelin-1 (ET-1), promoting
vasoconstriction [9, 10]. Notably, imbalanced proinflamma-
tory mediators also induce leakage of endothelial walls and
increase leukocyte adhesion [11].

Tanshinones are a group of nonpolar lipid-soluble com-
ponents in Salvia miltiorrhiza extract, recognized for their
therapeutic activity in the treatment and control of various
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diseases, including cardiovascular diseases, hepatitis, chronic
kidney injury, and even dysmenorrhea [12]. TanIIA is the
most well-studied and pharmacologically active compound
among lipid-soluble tanshinones [2, 13]. TanIIA has been
shown to control the symptoms of cardiovascular disease
models such as neointima hyperplasia, atherosclerotic calci-
fication, diet-induced atherosclerosis, and aortic aneurysm
[2]. Furthermore, TanIIA controls the development of
cardiovascular disorders through multiple mechanisms,
including reduction of lipid oxidation and ROS generation,
antiapoptosis, anti-inflammation, and antifibrosis. These
pathophysiological mechanisms are closely related to endo-
thelial dysfunction. Here, we aimed to summarize the current
understanding of the pharmacological activities of TanIIA in
cardiovascular diseases with a focus on the antioxidation,
anti-inflammatory, and antifibrotic effects of TanIIA.

2. Salvia miltiorrhiza and Its Derivatives

2.1. Compounds Derived from Salvia miltiorrhiza. Although
Salvia miltiorrhiza has a long history of application in tradi-
tional medicine, the search for possible pharmacological
components began in the 1930s [1]. More than 200 com-
pounds have been identified [2]. These derivatives can be
mainly classified into two categories: water-soluble phenolic
compounds (such as salvianolic acid A, salvianolic acid B,
protocatechuic aldehyde, lithospermic acid, danshensu, caf-
feic acid, and rosmarinic acid) [14–16] and lipid-soluble
compounds (such as tanshinone I, tanshinone IIA, tanshi-
none IIB, cryptotanshinone, and dihydrotanshinone I)
(Figure 1) [1, 17, 18]. Water-soluble compounds, such as
salvianolates, are widely used in the treatment of coronary
heart disease [19, 20]. In contrast, lipid-soluble compounds
such as tanshinones are more effective against cardiovascu-
lar diseases (CVDs) and cerebrovascular diseases, including
atherosclerosis, myocardial infarction, and cardiac hyper-
trophy [13, 21]. These ingredients from Salvia miltiorrhiza
were reported to have benefits in microcirculation and
could increase blood flow, dilate coronary arteries, and
prevent myocardial ischemia, atherosclerosis, calcification,
and aortic aneurysm formation. Owing to their different
chemical structures, their pharmacological activities, phar-
macokinetics, and clinical applications are different. Among
these active ingredients, tanshinones are one of the most
well studied compounds [17]. In this review, we specifi-
cally focused on the lipid-soluble tanshinone, tanshinone
IIA.

2.2. The Tanshinones. Tanshinones are quinone diterpenes
that were first isolated from Salvia miltiorrhiza roots by
Nakao in 1930 [22], and more diterpene compounds have
been separated and identified since then. Most of them are
diterpene quinone compounds such as tanshinone I, tanshi-
none IIA, tanshinone IIB, and cryptotanshinone [23]. Tan-
shinones are synthesized from the five-carbon precursors,
isopentenyl pyrophosphate (IPP) and dimethylallyl pyro-
phosphate (DMAPP), which are produced by the mevalo-
nate (MVA) and the 2-C-methyl-D-erythritol 4-phosphate
(MEP) pathways (Figure 2(a)) [24, 25]. TanIIA was discov-

ered considered the main active lipophilic constituent of Sal-
via miltiorrhiza [14]. The core structure of tanshinones
contains four rings, including naphthalene or tetrahydro-
naphthalene rings A and B, ortho- or para-naphthoquinone
or lactone ring C, and a furan or dihydrofuran ring D [14].
TanIIA and cryptotanshinone, which contain an ortho-
quinone C-ring, are the most intensively studied compounds.
However, their yield from cultured roots is low, and biotech-
nological approaches are needed to increase their productiv-
ity [24, 26]. Another issue with TanIIA is its low water
solubility. Sodium TanIIA sulfonate (STS) is a derivative of
TanIIA with a sodium sulfonate addition to the dihydrofuran
ring at the C-16 position and hence exhibits increased
polarity and water solubility (Figure 2(b)) [27–29]. STS often
serves as a substitute for TanIIA, and it has been utilized
interchangeably in many previous studies [28–30]. Both
TanIIA and STS have been widely used in preclinical studies
because of their anti-inflammatory, antioxidative, and antifi-
brotic properties [31]. However, some studies have claimed
that the modification of the molecular structure changes the
chemical properties and bioactivity [32–35].

In detail, the metabolic reaction of TanIIA and STS is
similar in rat bile except for the oxidation in side chain,
which occurred in TanIIA but not STS [35]. STS sup-
presses atorvastatin-driven cerebral hemorrhage in zebra-
fish embryos but not TanIIA [32]. Human Purinergic
Receptor P2X7 is blocked by STS but not TanIIA [36]. On
the other hand, TanIIA inhibits the phosphorylation of Akt
when used with anticancer drug epirubicin and increase the
apoptosis of breast cancer cell line BT-20. Yet, STS failed to
be uptaken by the BT-20 [34]. TanIIA boosts the excretion
of anticoagulant warfarin by structural modification. How-
ever, STS elevates warfarin concentration by dissociation of
albumin-warfarin complex [33].

Notably, TanIIA and STS exhibit different pharmacoki-
netic patterns. For intravenous injection, TanIIA showed
elimination half-life of 1:0 ± 0:7 hour at 20mg/kg and
1:8 ± 0:6 hour at 60mg/kg dosage in the serum of male
Sprague–Dawley rats [37]. STS showed terminal half-life for
about 21:6 ± 2:4 minutes at 50mg/kg dosage in the serum
of Kunming male mice [38]. It seems that STS may exhibit
a shorter half-life in animals based on the results above.
Yet, the animal models, dosage, and the sensitivity of
detection affect the calculated half-life in each model. In
one study, STS exhibits a “distribution half-life (t1/2β)” of
0:91 ± 0:21 hour but “elimination half-life” (t1/2γ) for 13.45
hours when 2mg/kg of STS were injected into male
Sprague–Dawley rats [39], while the other study claimed only
26.57 minutes of elimination half-life at the dosage of
6mg/kg [40]. The extended elimination half-life is partly
due to the sensitivity of liquid chromatography-electrospray
ionization-tandem mass spectrometry. Above all, a parallel
comparison between the pharmacokinetics of TanIIA and
STS is required to ascertain the faster turnover of STS.

For the tissue distribution, both TanIIA and STS can
both found in organs like the heart, liver, spleen, and lung.
For intravenous injection, TanIIA tends to reside in the lung
and liver and STS tend to distribute in the kidney and liver
[37, 38]. Interestingly, oral gavage of TanIIA resulted in
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accumulation of the compound in the gastrointestinal tract,
reflecting the poor bioavailability of TanIIA [37].

Despite there being differences in pharmacokinetics and
some molecular activities, both TanIIA and STS suppress
endothelial dysfunction, the focus in this review. In this
review, we summarized the studies using STS and TanIIA
in vitro and in vivo in order to further explore the functional
properties of these compounds (Tables 1 and 2).

3. Oxidative Stress and Endothelial
Dysfunction in Tissue Inflammation
and Fibrosis

3.1. Oxidative Stress in Tissue Inflammation and Fibrosis.
Reactive oxygen species (ROS) are essential components of
metabolism, immune responses, and cell signaling. However,

excessive ROS threatens the normal function of cells. For
example, oxidative stress damages DNA and alters protein
structure into misfolded forms, causing stress to the cells
and leading to cell senescence, apoptosis, or even necrosis
[41, 42]. In endothelial cells, the nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase system (NOX) is the
major source of ROS production, determined by NOX4
RNA within the cells [43]. In addition to endothelial cells,
other cell types such as fibroblasts and leukocytes also
express NOXs [44]. Notably, other enzymes such as cycloox-
ygenases, cytochrome P450 enzymes, and lipoxygenases, as
well as organelles such as the endoplasmic reticulum (ER)
and peroxisomes, generate ROS [41, 43].

NOX expression can be triggered by physical stimuli,
such as shear stress, growth factors, cytokines, and metabolic
factors such as hyperglycemia. Downstream metabolites
include (1) ONOO− free radicals from NO oxidation, (2)

Compounds from
Salvia miltiorrhiza 
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increased ICAM/VCAM expression, (3) increased intracel-
lular Ca2+ levels activating the MAPK and Akt pathways,
and (4) increased collagen disposition [44].

ROS promote vascular fibrosis through several mecha-
nisms. In fibroblasts, NOX4 promotes survival but sup-
presses cell death in models such as hypoxia [44, 45].
Furthermore, ROS and its generators, such as H2O2 and
xanthine oxidase, reduced the RNA level of procollagens
but boosted MMP-2, MMP-9, MMP-13, and fibronectin in
cardiac fibroblasts [46]. In endothelial cells, NOX2 promotes
endothelial-mesenchymal transition in the heart intersti-
tium, worsening cardiac fibrosis if NOX2 transgenic mice
were treated with angiotensin II (AngII) [47]. Finally, the
ROS-generating enzyme gp91phox boosts ET-1 expression
in vascular fibroblasts under AngII stimuli [48], indicating
the involvement of oxidative stress in endothelial dysfunc-
tion and fibroblast activation. Oxidative stress-mediated
endothelial dysfunction has recently been linked to the path-
ogenesis of COVID-19 [49]. This may explain the cardiovas-
cular complications of COVID-19, considering the role of
ROS in immune responses and tissue inflammation [50].

3.2. Endothelial Dysfunction Promotes Chronic Inflammation
and Tissue Fibrosis. Endothelial cells are critical regulators
of vascular tension. Mechanistically, the endothelium
releases vasoconstrictors such as endothelin-1 (ET-1) and
vasodilators such as nitric oxide (NO) [7]. Endothelial
dysfunction describes a series of imbalanced endothelial
regulations concerning redox status, vascular contraction,
inflammation, and coagulation, leading to reduced elastic-
ity of blood vessels and enhanced development of vascular
plaque [51].

The endothelium of blood vessels plays a critical role
in inflammatory responses. For example, NO suppresses
ET-1 expression and TNF-driven NF-κB activation in
endothelial cells [52]. Endothelial cells regulate inflamma-
tion through several mechanisms. First, the transmigration
of leukocytes requires cell–cell interactions between leuko-
cytes and endothelial cells. ICAM-1 is induced on the
endothelial surface and binds to integrins (such as
CD11b, CD18, and LFA-1) on the surface of leukocytes
upon challenge with inflammatory stimuli [53]. Further-
more, activated NF-κB in endothelial cells upregulates
VCAM-1, which binds to very late antigen-4 (VLA-4,
composed of CD49d and CD29) to recruit leukocytes
[54]. Mechanical shear stress also synergizes with inflamma-
tory cytokines to boost E-selectin expression, increasing the
affinity of neutrophils to cultured human umbilical vein
endothelial cells (HUVECs) [55]. Second, endothelial cells
express chemokines required for leukocyte recruitment
[56]. A classic example is interleukin-8, which is expressed
in endothelial cells cultured under plaque-forming physical
conditions [57]. Targeting the dysregulation of endothelial
inflammation may be a potential treatment strategy for tis-
sue fibrosis [58].

Below, we summarize the mechanism of action of
TanIIA in the regulation of endothelial dysfunction and its
potential implications for treating tissue inflammation and
fibrosis (Figure 3 and Tables 1 and 2).

4. Mechanism of Action of TanIIA in Tissue
Inflammation and Fibrosis

4.1. Antioxidation. The antioxidative activity of Salvia
miltiorrhiza is well documented in cardiovascular diseases
and anticancer therapy [59, 60]. Previous studies have
pointed out that TanIIA quenches ROS through several
mechanisms. First, TanIIA suppresses lipid peroxidation
and DNA damage in mitochondria in the liver and heart
[61, 62]. Notably, TanIIA directly scavenges adriamycin
semiquinone free radicals when treated in heart homoge-
nates in vitro [62]. In mitochondria, TanIIA can accept
one electron from NADH dehydrogenase in complex I,
which can be transferred to oxygen molecules or cytochrome
c [63]. TanIIA also triggers redox-sensitive ERK/Nrf2/HO1
and AMPK/ACC (acetyl-coenzyme A carboxylase)/CPT1
(carnitine palmitoyltransferase-1) pathways, governing cell
signaling through modulation of redox equilibrium [64].

The antioxidative effect of TanIIA has therapeutic poten-
tial in diseases other than CVD. For example, TanIIA
reduced oxidative stress in the serum of tumor-bearing mice
by combining intermittent hypoxia. TanIIA promotes apo-
ptosis of tumor cells, which may be related to the activation
of Nrf2 [65]. Similar protective effects were also observed in
mice with experimental pancreatitis [66]. TanIIA shared
protective signaling with the ROS scavenger NAC [66].
TanIIA may also contribute to antioxidative activity through
other routes. For example, TanIIA induces the cAMP path-
way to boost the expression of cystathionine-lyase C (CSE),
which synthesizes hydrogen sulfide (H2S) and promotes
antioxidative activity in HUVECs [67]. Additionally, TanIIA
induced the lncRNA AK003290 in primary myocardial tis-
sue from I/R-injured mice. AK003290 sponges the miRNA
miR-124-5p and suppresses proapoptotic proteins such as
BAX and ROS in cardiomyocytes. However, how TanIIA
boosts lncRNA and how lncRNA regulates ROS levels are
still elusive [68]. Our recent study revealed that Salvia
miltiorrhiza aqueous extract could alleviate ROS-dependent
cell apoptosis in adriamycin-induced cardiomyopathy [69],
which further supports the antioxidative activity.

4.2. Anti-Inflammation. Tanshinones possess anti-
inflammatory effects and ameliorate many diseases. For
example, tanshinone I possesses potency similar to that of
celecoxib to suppress IL-1β-driven chondrocyte apoptosis,
inflammation, and extracellular matrix degradation in cellu-
lar models and protects against bone erosion in an osteoar-
thritis model [70]. TanIIA also ameliorates the invasiveness
of RA fibroblast-like synoviocytes by suppressing the PI3K-
Akt, MAPK, and HIF-1α signaling pathways, which are
downstream of TNF-α [71].

TanIIA also suppresses inflammatory responses in blood
vessels, which are known to exacerbate endothelial dysfunc-
tion, atherosclerotic plaque formation, and vascular injury.
The NF-κB pathway, a potent proinflammatory circuit, can
be inhibited by TanIIA, leading to the reduction of inflam-
matory mediators such as MCP-1, TGF-β, and TNF-α. The
suppression of these cytokines also reduced macrophage
infiltration into the infarcted myocardium [72, 73]. NF-κB
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blockade also prevents the adhesion of TNF-α-driven endo-
thelial progenitor cells (EPCs) by lowering the expression of
ICAM-1 and VCAM-1 on the cell surface [74]. In addition,
the NLRP3 inflammasome releases mature IL-1β and IL-18
in response to oxidative stress and danger signals upon myo-
cardial infarction [75]. TanIIA was shown to block the
NLRP3 inflammasome in a canine myocardial infarction
model by restoring JAK-STAT and insulin signaling in the
heart [76]. Moreover, a recent study found that TanIIA
skews macrophages toward the M2 phenotype in vitro,
boosting markers such as Fizz-1, Arginase-1, and CD206.
The M2 polarization effect may be exerted by inhibition of
the TLR4-HMGB1/CEBP-β pathway and reduction of
miR-155 [77]. TanIIA exerts anti-inflammatory activity by
blocking NF-κB and NLRP3 inflammasomes but restores
other signaling pathways.

4.3. Inhibition of Canonical TGF-β-Mediated Fibrotic
Pathway. TGF-β binds to a heterodimeric receptor com-

posed of TGF-βRI and TGF-βRII. Upon TGF-β activation,
TGF-βRI is phosphorylated by the kinase activity of TGF-
βRII, providing a docking site for Smad2/3. Smad2/3 is
phosphorylated by TGF-βRI and then binds to the co-
Smad-like Smad4, which forms a complex and then translo-
cates into the nucleus [78]. Profibrotic genes are actively
transcribed once the Smad complex interacts with the
Smad-binding element [79]. The Smad2/3 complex induces
Foxm1, which boosts the expression of Snail [80]. Snail,
Twist, and Slug are key transcription factors that suppress
endothelial markers but boost mesenchymal markers [81].
For example, Snail suppresses E-cadherin and occludin
expression but elevates mesenchymal markers FSP-1 and
α-SMA (alpha-smooth muscle actin) [82]. In contrast, there
is also a regulatory pathway mediated by Smad7, which
blocks signal transduction from TGF-βRI [78].

TanIIA controls fibrosis by interfering with the Smad-
dependent TGF-β pathway. In rat cardiac fibroblasts,
TanIIA inhibits the phosphorylation of Smad2/3, leading
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Figure 3: Summarized mechanism of action of tanshinone IIA in the prevention of endothelial dysfunction. Arrows (→) indicate the route
of signaling involved in endothelial dysfunction. Factors suppressed by TanIIA are linked with (─┤). Endothelial dysfunction is a
combination of oxidative stress, inflammation, and fibrosis of vascular endothelium. Aside from the antioxidative activity, TanIIA
inhibits inflammatory signaling like the TLR4-NF-κB axis and the MAPK pathway. TanIIA also blocks profibrotic components like
TGF-βR1 and AT1R and the Wnt, Notch, and ET-1 signaling pathways.
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to the reduction of nuclear translocation of Smads and
downregulated expression of fibronectin genes [83, 84]. Sim-
ilar regulatory mechanisms have also been found in STS-
treated human atrial fibroblasts. In detail, TanIIA reduced
the protein expression level of fibroblastic markers such as
α-SMA, collagen type I and III, periostin, and TGF-β but
elevated matrix metalloproteinase-1 (MMP-1) in AngII-
treated cardiac fibroblasts [85–87], suggesting that TanIIA
suppresses cardiac fibrosis [27].

The suppressive effect of TanIIA on Smad phosphoryla-
tion may be Nrf2-dependent [88]. TanIIA also demonstrated
protective effects in animal models through Smad regula-
tion. For example, TanIIA also protects against cardiac
hypertrophy in hypertensive rats by downregulating Smad3
but upregulating Smad7 [89]. TanIIA-containing “Shensong
Yangxin Capsule” suppresses Smad3 phosphorylation but
boosts Smad7 expression, reduces cardiac fibrosis, and partly
rescues cardiac function in the diabetic rodent model [90].
Notably, the antifibrotic effect of TanIIA can be expanded
to other models. Recently, TanIIA was found to ameliorate
silica-induced pulmonary fibrosis through the removal of
triggering of the Nrf2 pathway, dephosphorylation of
Smad3, and elevation of Smad7 [91–93].

4.4. Inhibition of Noncanonical TGF-β-Mediated Pathways.
In addition to Smad phosphorylation, TGF-β also transmits
noncanonical signals through the phosphorylation of MAPK
family members, PI3K, Rho A, Rac, c-Abl, and PKC. Down-
stream genes include Snail1, Snail 2, and Twist1 [79]. For
example, TGF-β2 drives EndMT in human cutaneous
microvascular endothelial cells via collaborating with the
Smad, MEK, PI3K, and p38 MAPK signaling pathways
[81]. JAK2 also promotes pulmonary vascular remodeling
through Smad3 sensitization in idiopathic pulmonary fibro-
sis models [94].

STS has been shown to inhibit AngII-induced cardio-
myocyte hypertrophy and lower systolic blood pressure in
cultured neonatal rat myocardial cells in vitro and in rats
in vivo, mainly through the suppression of c-Fos, c-Jun,
ERK, and MEK [95–98]. The antifibrotic activity of STS
has been demonstrated to inhibit TGF-β1-activated human
atrial fibroblast-to-myofibroblast differentiation by sup-
pressing both phosphorylation of Smad3 and ERK1/2 [99],
suggesting that the antifibrotic functions of STS are tightly
linked to its antioxidant activity. Notably, the antifibrotic
effect of TanIIA is not limited to the cardiovascular system.
A review article has summarized the antifibrotic effects of
TanIIA on organs such as the lungs, kidneys, uterus, perito-
neum, and retina [31].

4.5. Notch Pathway. The Notch pathway is essential for the
development of vascular smooth muscle [100] and cardiac
valves [101] in the embryonic stage. There are five trans-
membrane ligands (Jagged (Jag) 1 and Jag2, and Dll (delta-
like) 1, Dll3, and Dll4) and four Notch receptors (Notch-1,
Notch-2, Notch-3, and Notch-4) expressed on the cell sur-
face. Binding of the ligand and Notch receptor triggers
cleavage of the extracellular domain by ADAM and release
of the Notch intracellular domain (NICD) by gamma-secre-

tase, respectively. When released from the plasma mem-
brane, NICD translocates into the nucleus and binds to the
CSL (CBF1/Su(H)/LAG1) complex and MAML (master-
mind-like protein), promoting the transcription of down-
stream genes such as NF-κB, Akt, and p21 [78, 102]. In a
fully grown cardiovascular system, Notch may promote
EndMT in cardiovascular ECs [103]. For example, Notch-1
activation by Jag-1 induces Ca2+-sensing receptor (CASR)
expression in pulmonary arterial smooth muscle cells
(PASMCs), sensitizing right ventricular myocardial fibrosis
in hypoxia-driven pulmonary hypertension rodent models
[104]. By using hESC-derived endothelial cells, high-
density culture activates Notch by Dll4 and Jag-1 expressed
in other cells, promoting EndMT markers such as SMA,
while suppressing CD31 expression [105].

TanIIA is known to suppress tumor progression through
activation of the Notch signal pathway [106]. At an in vitro
dosage of 1–50μM, TanIIA limits the growth, migration,
and invasion of astrocytoma cells. At the molecular level,
TanIIA boosts the expression of Notch-1 and caspase-3/9
but reduces the phosphorylation of c-Myc, MMP-9, and
Bcl2 [107]. In the gastric cancer cell line SGC7901, TanIIA
limits tumor proliferation and migration through suppres-
sion of FOXM1, a transcription factor that governs cell fate
and promotes tumor progression and metastasis in multiple
cancers [108]. Moreover, TanIIA protects spinal cord endo-
thelium stability in injury models. In detail, STS at 3–10μM
was found to promote the survival of spinal cord endothelial
cells (SCMEC) in an oxygen-glucose deprivation model by
boosting Notch signaling. In this case, Notch upregulation
decreases inflammatory cytokines such as IL-6, TNF, and
IL-1β in SCMECs. In the murine spinal cord injury model,
STS can (1) boost the expression of Notch, (2) rescue the
microvessel, (3) maintain the blood-spinal cord barrier,
and (4) protect the structural and functional integrity of
the nervous system [109]. However, whether the TanIIA-
driven activation of Notch is beneficial or harmful for car-
diovascular disorders is still uncertain. Further investigation
of the TanIIA-Notch-EndMT crosstalk is required.

4.6. Wnt Pathway. There are more than 10 Wnt genes in
mammals, which share a conserved feature: palmitoylation
on their polypeptide chain [110]. The lipid moiety is critical
for the binding of Wnt proteins to frizzled receptors, a group
of seven transmembrane proteins that provide a cysteine-
rich ligand-binding site [111]. Without the Wnt ligand, the
key signaling protein β-catenin is constantly quenched by
a destruction complex, comprising proteins such as dishev-
eled and GSK-3β, and then subjected to proteasomal degra-
dation. Upon Wnt signal activation, β-catenin accumulates
and translocates into the nucleus [112]. In the nucleus, β-
catenin binds to T cell factors (TCFs) to induce the tran-
scription of genes such as Twist [103]. Wnt signaling is
crucial in the heart development, such as Wnt-β-catenin
signaling is crucial for heart cushion formation through
EndMT activity [113]. Nevertheless, Wnt signaling may
result in pathogenic fibrosis in the adult heart. Wnt activa-
tion favors EndMT in the heart, which may be the cause of
cardiac fibrosis. For example, increased Wnt ligands were

11Oxidative Medicine and Cellular Longevity



found in the injured murine heart after acute myocardial
infarction. In addition, GSK-3 inhibition and LAD ligation
boost the endothelial expression of β-catenin, TCFs, and
SMA in vitro and in vivo, respectively [114]. In clinical set-
tings, cardiac samples from patients with idiopathic dilated
cardiomyopathy (DCM) exhibit higher levels of Wnt, β-
catenin, and snail expressions than those from normal sub-
jects. The results fit the elevation of fibrosis markers such
as SMA and FSP-1 in DCM patients [115].

The therapeutic potential of the TanIIA-Wnt axis can be
found in skin transplantation and cancer studies. At a dos-
age of approximately 5μM, TanIIA ameliorates ischemic
skin flap mice by inducing the expression of β-catenin and
stem cell markers such as SOX2, Nanog, and OCT4 in epi-
dermal cells [116]. Nevertheless, at a dosage of 20μM, STS
inhibited the expression levels of COX-2, β-catenin, and
VEGF, resulting in growth inhibition of HC8693 colon can-
cer cells [117]. The regulatory role of TanIIA in the Wnt
pathway seems contradictory, and the dosage and cell type
should be taken into account.

TanIIA exerts protective effects by boosting the Wnt
pathway in endothelial cells. For example, STS (~10μM) res-
cues the expression of β-catenin and the phosphorylation of
GSK-3β in high-glucose-treated HUVECs. In contrast, STS
treatment reduced apoptosis and the expression of CXCL1
in HUVEC [118]. Further improvement of HUVEC survival,
inflammatory suppression, and production of NO can be
found when STS is combined with ghrelin [119]. However,
the antifibrotic effect of TanIIA can be demonstrated in
spontaneously hypertensive rats (SHRs) by inhibiting the
Wnt signaling pathway [120]. Intraperitoneal injection of 1
or 10mg/kg TanIIA reduced cardiac Wnt2, β-catenin, and
WISP-1. In addition, TanIIA readily reduces hypertrophy
and fibrosis of the heart, especially the left ventricle. At the
molecular level, TanIIA reduced the mRNA levels of Col1a1
and Col3a1. Moreover, TanIIA reduced cardiac injury
markers such as troponin, NOX4, and ADMA, but elevated
cardioprotective NO and eNOS. Functionally, TanIIA con-
trols systolic blood pressure in SHR animals, regardless of
dosage [120]. Although TanIIA is effective in many cardio-
vascular disorder models, it may not exert a simple molecu-
lar action to raise or lower the activity of the Wnt pathway.
The therapeutic effect of Wnt regulation may depend on the
cell type and disease conditions.

4.7. ET-1 Pathway. Endothelin-1 (ET-1) is encoded by
EDN1. Full-length preproendothelin-1 is processed by furin,
chymase, and neprilysin cleavage, leaving a 21-amino-acid
peptide. ET-1 is the most potent member of the three
endothelins found in mammals, largely derived from vascu-
lar endothelial cells in all types of blood vessels, although
other cells such as macrophages, enteric glial cells, and some
neurons express ET-1 as well. In addition to a constant
expression, ET-1 in endothelial cells can be further boosted
by pathophysiological stimuli. After release from the endo-
thelium, ET-1 largely binds to a GPCR named ETA, but less
so to the other GPCRs, ETB [121, 122]. ETA activation
results in vasoconstriction of smooth muscle cells, making
ET-1 a major culprit in cardiovascular disorders. However,

the autocrine action of ET1 binds to ETB on endothelial
cells, leading to the induction of the vasodilator NO. This
may serve as a feedback mechanism to reduce vasoconstric-
tion [121, 122]. The downstream pathway of ET includes
phosphatidylinositol-specific phospholipase C (PI-PLC),
digesting PIP2 into IP3 and diacylglycerol (DAG). IP3
induces cytosolic Ca2+ and then cell contraction, and DAG
activates protein kinase C (PKC) signaling. In addition, ET
activates RTK like Ras, transmitting the signal through
RAF/MEK/MAPK [123].

TanIIA suppresses ET-1-driven endothelial dysfunction
at both the cellular and organ levels. In endothelial cells,
TanIIA inhibits the expression of ET-1 in HUVEC under
cyclic strain [124]. In smooth muscle cells, TanIIA reduced
smooth muscle proliferation by blocking the ET-1/PDK1/
AKT pathway [125]. In addition, TanIIA reduced cardiac
fibroblast expansion by inhibiting AngII-driven ERK phos-
phorylation [126]. In chronic intermittent hypoxia models,
TanIIA reduces ET-1 and ETA expressions but elevates
ETB expression in the heart and aorta, thereby controlling
blood pressure and ameliorating apoptosis and fibrosis of
myocardium and blood vessels [127, 128].

4.8. CAV-1 Pathway. Caveolin-1 (CAV-1) is essential for the
formation of caveolae and secretion of substances in the api-
cal direction of vesicles. CAV-1 oligomerizes and is coated
onto the surface of invaginated membrane structures [129].
In the vascular endothelium, CAV-1 is required for the
transportation of LDL from the lumen to the vessel walls,
forming atherosclerotic plaques [130, 131]. Genetic ablation
of CAV-1 results in several physiological alterations. First,
the lack of CAV-1 increased NO release and desensitized
AngII, ET-1, and PMA-driven vasoconstriction, providing
insight into the role of CAV-1 in maintenance of vascular
stress [132]. Moreover, CAV-1 siRNA suppressed lipid trans-
cytosis through the epithelium and diminished VCAM-1
expression and phosphorylation of NF-κB p65 [131]. CAV-
1 and TGF-β crosstalk can be found in vascular smooth mus-
cle cells (VSMCs). CAV-1 is phosphorylated by c-Src upon
TGF-β stimulation. Y14-phosphorylated CAV-1 activates
Rho-GTP/ROCK signaling, which inhibits PTEN and phos-
phatase PPM1A. As a result, Smad2/3 phosphorylation is
maintained and PAI-1 expression is increased in atheroscle-
rotic plaques [133].

TanIIA is known to control the downstream TGF-β
pathway. Whether TanIIA directly controls the activity of
CAV-1 in endothelial cells or VSMCs remains unknown. A
previous study suggested the role of TanIIA in CAV-1-
related endocytosis. In neuron progenitor cell lines, CAV-1
is essential for the endocytosis of TanIIA, promoting its bio-
logical activity in boosting MAPK42/44 and CREB activities.
Furthermore, the entry of TanIIA elevates the expression
levels of brain-derived neurotrophic factor (BDNF) and
nerve growth factor (NGF) in these cell lines and promotes
neuronal differentiation [134].

4.9. Other Mechanisms. As a broad-spectrum therapeutic
compound, TanIIA also protects cardiovascular function
through other mechanisms. In the hearts of the canine MI
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model, TanIIA restored PPAR-alpha expression but limited
lipid accumulation [76]. TanIIA was found to protect
against myocardial injury through boosting the expression
of Bim, CHOP, and PDCD4 proteins and maintaining the
phosphorylation of Akt, thus preventing apoptosis of cardiac
tissues [135, 136]. Moreover, TanIIA-loaded nanoparticle
was found to penetrate the blood–brain barrier and demon-
strated a preventive effect against cerebral ischemia/reperfu-
sion injury in rat models [137]. TanIIA was also found to
reduce the expression and membrane translocation of
intracellular chloride channel 1 (CLIC1), which is known
responding to cellular oxidative stress and induces the
expression of inflammatory cytokines. Furthermore, TanIIA
treatment attenuates inflammatory cytokine expression,
cellular ROS levels, ICAM-1/VCAM-1 expression, and ath-
erosclerotic plaque formation [138]. TanIIA has also been
shown to regulate vascular fibrosis through KLF4, which
suppresses vascular remodeling, and consequently attenu-
ates vascular neointimal hyperplasia in left common carotid
artery-ligated mice [139]. Finally, a meta-analysis focusing
on Salvia miltiorrhiza for the treatment of coronary heart
disease was conducted after integrating the protein–protein
interaction data. Tanshinones are proposed to regulate
blood circulation through guanylate cyclase soluble subunit
alpha-1 and guanylate cyclase soluble subunit beta-1 [140],
thus providing insights for future studies on the regulatory
effects of TanIIA.

5. Our Perspective

Recently, the medicinal value of Tan IIA, especially water-
soluble STS, has been intensively explored. Cardiovascular
application of TanIIA in combination with classical treat-
ments dominates recent clinical trials. TanIIA has been
found to improve the prognosis of coronary artery diseases
by reducing injury markers, such as cardiac troponin-I,
and the incidence of major adverse cardiovascular events
[141–143]. As TanIIA inhibits high-sensitivity C-reactive
protein (hs-CRP) and cytokines, such as MCP-1, in the
blood, the anti-inflammatory role of TanIIA should be a
key factor in ameliorating disease progression [141]. TanIIA
also promotes vascular elasticity. Sanghuang–Danshen, a
mixture of drugs containing TanIIA, reduced blood pressure
and arterial stiffness in healthy smokers [144]. A recent
meta-analysis revealed that TanIIA reduces blood pressure
in patients with hypertensive nephropathy and improves
renal function due to cardiac-renal crosstalk [145]. As
detailed in the previous sections, cell and animal studies
suggest that the antioxidative, anti-inflammatory, and antifi-
brotic effects of TanIIA may be the major contributing
factors to its protective effect. The better understanding on
the mechanism of action of these pathways may lead to iden-
tification of novel applications of TanIIA.

6. Conclusion

Taken together, TanIIA, which possesses multifaceted roles
involving antioxidation, anti-inflammation, and antifibrosis,
could be a key component of Salvia miltiorrhiza with sub-

stantial therapeutic potential for cardiovascular disorders
(Tables 1 and 2). In this review, we have summarized how
TanIIA mediates its therapeutic activities against cardiovas-
cular disorders via the suppression of endothelial dysfunc-
tion, tissue inflammation, and fibrosis through multiple
signaling pathways. An improved understanding of the
action of TanIIA in the amelioration of endothelial cell
dysfunction may help to shed light on the molecular
mechanisms and clinical implications of TanIIA for treating
cardiovascular diseases associated with endothelial dysfunc-
tion and fibrosis.
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