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The purpose of this study was to evaluate the possibility of dose distribution opti-
mization for total marrow irradiation (TMI) employing volumetric-modulated arc 
therapy (VMAT) with RapidArc (RA) technology setting isocenter’s positions and 
jaw’s apertures according to patient’s anatomical features. Plans for five patients 
were generated with the RA engine (PROIII):  eight arcs were distributed along four 
isocenters and simultaneously optimized with collimator set to 90°. Two models 
were investigated for geometrical settings of arcs: (1) in the “symmetric” model, 
isocenters were equispaced and field apertures were set the same for all arcs to 
uniformly cover the entire target length; (2) in the “anatomy driven” model, both 
field sizes and isocenter positions were optimized in order to minimize the target 
volume near the field edges (i.e., to maximize the freedom of motion of MLC leaves 
inside the field aperture (for example, avoiding arcs with ribs and iliac wings in the 
same BEV)). All body bones from the cranium to mid of the femurs were defined 
as PTV; the maximum length achieved in this study was 130 cm. Twelve (12) Gy 
in 2 Gy/fractions were prescribed in order to obtain the covering of 85% of the 
PTV by 100% of the prescribed dose. For all organs at risk (including brain, optical 
structures, oral and neck structures, lungs, heart, liver, kidneys, spleen, bowels, 
bladder, rectum, genitals), planning strategy aimed to maximize sparing according 
to ALARA principles, looking  to reach a mean dose lower than 6 Gy (i.e., 50% of 
the prescribed dose). Mean MU/fraction resulted 3184 ± 354 and 2939 ± 264 for 
the two strategies, corresponding to a reduction of 7% (range -2% to 13%) for (1) 
and (2). Target homogeneity, defined as D2%–D98% was 18% better for (2). Mean 
dose to the healthy tissue, defined as body minus PTV, had 10%  better reduction 
with (2) . The isocenter’s position and the jaw’s apertures are significant parameters 
in the optimization of the TMI with RA technique,  giving the medical physicist a 
crucial role in driving the optimization and thus obtaining the best plan. A clinical 
protocol started in our department in October 2010.
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I.	 Introduction

Total marrow irradiation (TMI) is a new potential approach for conditioning regimen in patients 
scheduled for hematopoietic cell transplantation in multiple myeloma, leukemia, and lympho-
mas. The aim of this innovative technique is to improve the coverage of target hematopoietic or 
lymphoid tissues while reducing the involvement of the remaining healthy tissues in the body, 
and thus reducing toxicities with respect to the standard total body irradiation (TBI) where all 
the body is irradiated homogenously. 

Wilkie et al.(1) reported a feasibility study for TMI with conventional linacs and application 
of intensity-modulated fields in a multiple isocenter setting. The study showed, on an anthropo-
morphic phantom, that intensity-modulated techniques might reduce the dose to organs at risk 
(OAR) by 29%–65% compared to conventional total body irradiation. A similar approach was 
followed by Aydogan et al.(2) Other analogue investigations were performed by means of helical 
tomotherapy (HT)-based approaches.(3,4) The City of Hope group in Duarte (USA) reported on 
both simulation studies and treatment of 21 patients.(4) For a group of 13 patients treated for 
multiple myeloma on a dose escalation protocol (from 10 to 16 Gy at 2 Gy daily/twice daily), 
the authors demonstrated that median organ doses were 15%–65% of that received from the 
gross target volume. In terms of toxicity, primarily grade 1-2 acute effects were observed, and 
no patient showed grade 4 toxicity. 

In previous works at our institution,(5) at University of Chicago(6) and at City of Hope Na-
tional Medical Center,(7) the possibility to use volumetric-modulated arc therapy (VMAT) by 
RapidArc, for the generation of clinically acceptable TMI plans, was demonstrated. RapidArc 
(Varian, Palo Alto, California, USA) is a VMAT technique based on the simultaneous optimiza-
tion of multileaf collimator (MLC) shape, field modulation, and gantry rotation speed.(8) 

In particular, in our previous work, jaw apertures were set symmetrically; the isocenter 
positions were regularly set maintaining the same distance between one isocenter and those 
following, in order to cover the whole body.

In this work we have evaluated the possibility to further optimize the RapidArc dose dis-
tribution of TMI by setting the isocenter and jaw apertures according to the patient’s anatomy. 
Our assumption is that this helps the optimizer in avoiding conflicts and, hence, allows better 
dose distribution and a greater sparing of healthy tissues.

 
II.	 Materials and Methods

A.1  Data acquisition
A retrospective analysis was performed on five patients. Computed tomography (CT) data-
sets from the top of the skull to the knees were acquired with a 3 mm slice thickness from a 
16-slice CT system. Patients were simulated free-breather in a supine position with the arms 
immobilized at their sides.

The planning target volume (PTV) was defined, in agreement with our institute’s hematolo-
gists and with the literature, as being all the skeletal bones with exclusion of the mandible and 
maxillary structures, the hands, and the lower legs from mid-femurs.(4) The mean PTV volume 
was 7.4 l, ranging 5.8–10.8 l. OAR included in the study were: eyes, lenses, parotids, oral 
cavity, thyroid, trachea (including also the esophagus), lungs, heart, stomach, kidneys, liver, 
spleen, bowel cavity, bladder, rectum. and genitals. A healthy tissue, defined as Body-PTV with 
a further crop of 1.5 cm, was defined in order to better conform the dose.

Dose prescription to the PTV was set to 12 Gy in six fractions (i.e., 2Gy/fraction), twice 
daily. Dose was normalized so that 100% of the prescription dose covered 85% of the PTV 
(i.e., V100% = 85%). Planning objectives for PTV aimed to limit minimum and maximum doses. 
No specific dose-volume planning objectives were defined for the organ at risks (OARs). Plans 
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were optimized  so as to maximize the sparing of each OAR in order to reduce median doses 
(D50) below 6 Gy (i.e., less than 50% of the prescription dose).(4)

A.2  Plan optimization
The TMI treatment plans in the present study were prepared using the RapidArc provided within 
the Eclipse treatment planning system, version 10.0 (Varian Medical Systems, Palo Alto, CA) 
on a standalone Dell Precision T5400 workstation personal computer with 8-way 2.5 GHz intel 
Pentium III and 20478 MB of RAM. The progressive resolution optimizer algorithm PROIII 
(Varian Medical Systems, Palo Alto, CA), version 10.0, was used to optimize all RapidArc 
plans. This version allows the simultaneous optimization of a maximum of 10 full arcs and 
operates with a 64-bit client without memory restrictions that are typical of 32-bit applications. 
Final dose calculation was performed using a preclinical version of the Acuros photon dose 
algorithm (Transpire, Inc., Gig Harbor, WA) using a grid of 2.5 mm.(9,10) The average time for 
optimization was around 1 hour and 1.5 hours for dose calculation.

For each patient, two plans with different isocenter and jaw settings were generated. Eight 
6 MV coplanar arcs (360°) were optimized simultaneously. The collimator angle is discussed 
in the next paragraph. The eight arcs had a total number of four isocenters (two adjacent arcs 
had the same isocenter) using asymmetric jaw settings to cover the entire PTV length. Field 
width was set to 40 cm, while field length ranged from 15 to 16 cm. Each arc overlapped with 
the previous and following ones for at least 2 cm on each side to eliminate any need of match-
ing planes. With an overlapping region of some centimeters, the differences in delivered dose 
distributions with respect to planning, due to small patient misalignment between isocenters, are 
minimized.(11) For each arc, the collimator rotation was set to 90°; thus, the MLC was parallel 
to the beam eye view frame (i.e., parallel to the cranial–caudal direction). Two models were 
investigated for the geometrical setting of arcs: (1) in the “symmetric” model, isocenters were 
equispaced and field apertures were set identical for all arcs to uniformly cover the entire target 
length; (2) in the “anatomy driven” model, both field sizes and isocenter positions were decided 
by taking into consideration the specific anatomy of the patient. In particular, these parameters 
were optimized in order to minimize the target volume near the field edges (i.e., to maximize 
the freedom of motion of MLC leaves inside the field aperture in order to, for example,  avoid 
arcs with ribs and iliac wings in the same BEV) (Fig. 1). 

Fig. 1.  Overview of the different isocenter and jaw settings in the two different approaches.
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All the plans were optimized starting from a template of objectives based on our previous 
study(5) adjusting, when necessary, the dose-volume constraints during the optimization in 
order to properly cover the target and spare the organs at risk. The entire gantry rotation was 
described in the optimization process by a sequence of 177 control points (i.e., one every 2°). 
Plans for RapidArc were optimized by selecting a maximum dose rate of 600 MU/min. 

A.3  Data analysis
The distance between each couple of subsequent isocenters was measured and the standard 
deviation of these measurements was calculated (SDID) for both approaches. The same pro-
cedure was performed for the jaw apertures (SDJA). Plans were quantitatively evaluated from 
dose-volume histograms (DVH) analysis, assessing for PTV: mean dose, percentage of volume 
receiving 110% of the prescription dose V110%, and target homogeneity index (HI) defined as 
D2%–D98%; for OARs, the analysis included the median dose (D50%) and D10%, and a t-student 
test was performed to assess the statistical significance of the results. Delivery parameters were 
recorded in terms of MU per fraction and effective beam on time (BOT), which was defined 
as the pure beam on time plus the time needed to reset the system between beams without any 
additional dead time due to external reasons. 

 
III.	 Results 

By definition, SDID and SDJA for the model (1) were equal to zero, while for the model (2), 
mean SDID of 17 mm and SDJA of 32 mm were found. In Figs. 2 and 3, dose distributions 
for one patient for axial and coronal views are shown, providing a qualitative overview. A col-
orwash scheme ranging from 6.0 Gy to 10.2 Gy (i.e., 50%–85% of the prescribed dose) was 
used to demonstrate target coverage and dose sparing at all organs at risk. Similar results were 
obtained for the other patients.

Mean MU/fraction resulted 3184 ± 354 and 2939 ± 264 for the two strategies, equivalent to 
a reduction of 7% (range -2% to 13%) for the anatomy driven optimization, corresponding to 
an average of 398 ± 67 and 367 ± 62 MU per arc. The total treatment time from load of patient 
data into treatment console to the end of last delivery did not change for the two approaches 
and was around 13 minutes per patient. These values do not include any imaging or patient 
positioning procedure — processes that in any case are the same for the two approaches.

Figure 4 shows the DVH for PTV, healthy tissues, and bowels for one patient. Similar re-
sults were obtained for the other patients. In particular, the target homogeneity was on average 
18% better for the second approach; mean dose to the healthy tissue had a mean reduction 
of 10% when using the “anatomy driven” approach. Table 1 reports numerical findings from 
DVH analysis, specifically D50% and D10% for PTV and OARs. The data show an overall plan 
improvement for model (2), though the differences are statistically significant (p < 0.05) only 
for bowel (D50% and D10%), PTV (D10%) and healthy tissue (D50%). Data in tables are presented 
as averages over the five investigated patients (errors indicated interpatient variability at one 
standard deviation level).

The normalization method applied (V100% = 85%), which is not fully ICRU compliant but 
compatible with previous publications, implies that the entire dose distribution to the target is 
shifted to values higher than the prescription. Nevertheless, RapidArc plans  have an average 
mean dose to PTV lower than 110%, and  result in 48% and 39% of the PTV receiving a dose 
higher than 110% (V110) for the “symmetric” and the “anatomy driven” models, respectively. 
The PTV Homogeneity Index was 41 ± 6% and 34 ± 5% for the “symmetric” and the “anatomy 
driven” models, respectively, with an 18% reduction in the second case.
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Fig. 2.  Transversal view of three slices belonging to different anatomical districts: head, thorax, and abdomen. The different 
dose distribution obtained with the two different methods are shown. The differences occur especially where OARs with 
big volumes are considered. 
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Fig. 3.  Whole body frontal view of the two different plans. The different dose distribution can be observed, particularly 
evident in the abdominal region (i.e., bowel).  

Fig. 4.  Dose-volume histograms for the two approaches. The lower dose to healthy tissue and bowel, and the higher dose 
homogeneity to PTV for the anatomy driven approach, are shown.
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IV.	 DISCUSSION

The present study investigated the feasibility of  TMI with volumetric-modulated arc therapy accord-
ing to the RapidArc method in terms of in-silico determination of expected dose distributions.

From a geometrical perspective, rotational techniques seem to be adequate for TMI treatment, 
as the body has a cylindrical shape and the target has in many parts a cylindrical symmetry. 
These techniques should, therefore, simplify the demanding task of creating a dosimetric 
sparing of the organs at risk closed to the target volume. In our previous work, we showed 
VMAT by RapidArc to be feasible in achieving an adequate PTV coverage with good OARs 
sparing and only 13 minutes of field on time.(5) Four isocenters for eight arcs were optimized 
simultaneously with at least 2 cm of overlap between two adjacent arcs and collimator rotated 
to 90° (i.e., MLC motion along cranial–caudal direction). This overlap was applied in order to 
avoid hot or cold spots around the field junctions as assessed in the work by Fogliata et al.(11) 
The isocenters were equispaced, and field apertures were set the same for all arcs to uniformly 
cover the entire target length (here defined as “symmetric” model). In the same period, other 
research groups focused on the possibility to deliver TMI by VMAT. In particular, Aydogan et 
al.(6) of Chicago University used nine arcs on nine isocenters, optimizing three subplans since 
the treatment plan system used by the authors (PRO II) put a limit on the maximal control 
points allowed during optimization. A similar strategy was used by Han et al.(7) of City of Hope, 
who employed eight arcs with symmetric jaw apertures, arranging eight isocenters along the 
patient. They optimized using the PRO II optimizer and had to create subplans, too. The mean 
OARs received, in all these works, was a dose on average lower than 5 Gy (i.e., < 45% of the 
prescribed dose).

In our previous study, the largest organ exceeding the planning aim to keep D50 below 6 Gy 
was the gastrointestinal cavity. This result is reported also by Han et al.,(7) where the authors 
observed that the maximum increase in D50 compared to the HT plans is in the intestines. They 
speculated as a possible reason of this difference for very large OARs to be identified in the 
diverse behavior of the MLC systems. In the linac approach, the maximum distance travelled 
by a leaf between a control point and the following one is limited by the finite speed of the 
Millennium 120 MLC leaves (in the case of a Varian linac). In HT, instead, the MLC is a binary 
system (on-off) in which the leaf position varies instantly. These MLC characteristics affect 

Table 1.  Mean values for the two approaches.

		  D50% [Gy]	 D10% [Gy]	
	 Structure	 Model 1	 Model 2	 P-value	 Model 1	 Model 2	 P-value

	 PTV	 13.1±0.6	 12.9±0.6	 >0.05	 14.1±0.3	 13.3±0.5	 <0.05
	 Bladder	 6.4±0.9	 6.1±0.7	 >0.05	 8.2±2.4	 8.2±2.4	 >0.05
	 Brain	 5.2±0.9	 5.1±0.8	 >0.05	 10.3±1.2	 10.1±1.2	 >0.05
	 Bowels	 7.3±0.6	 6.1±0.4	 <0.05	 11.3±0.9	 9.9±0.7	 <0.05
	 Eyes	 3.9±0.6	 4.0±0.5	 >0.05	 5.1±0.3	 5.0±0.3	 >0.05
	Healthy Tissue 	 8.6±0.6	 7.7±0.6	 <0.05	 11.4±1.0	 10.8±1.0	 >0.05
	 Heart	 5.2±0.5	 5.3±0.7	 >0.05	 8.3±1.0	 8.3±0.9	 >0.05
	 Kidneys	 5.8±0.7	 5.4±0.6	 >0.05	 8.9±2.2	 8.1±1.6	 >0.05
	 Lenses	 3.0±0.8	 3.1±0.7	 >0.05	 3.4±0.5	 3.4±0.6	 >0.05
	 Liver	 6.3±0.3	 6.0±0.4	 >0.05	 10.3±1.6	 9.9±1.1	 >0.05
	 Lungs	 6.6±0.3	 6.4±0.3	 >0.05	 10.5±1.2	 10.3±1.1	 >0.05
	 Oral Cavity	 2.3±0.3	 2.3±0.3	 >0.05	 6.7±1.3	 6.6±1.5	 >0.05
	 Parotids	 4.2±0.7	 4.1±0.6	 >0.05	 5.5±1.2	 5.6±0.9	 >0.05
	 Rectum	 4.2±0.5	 4.0±0.4	 >0.05	 6.9±1.5	 6.8±1.4	 >0.05
	 Spleen	 6.2±0.7	 6.0±0.5	 >0.05	 9.9±1.2	 9.9±1.2	 >0.05
	 Stomach	 4.3±0.4	 4.1±0.5	 >0.05	 9.2±1.2	 9.0±1.2	 >0.05
	 Thyroid	 2.8±0.1	 2.9±0.2	 >0.05	 6.3±1.0	 6.5±1.1	 >0.05
	 Trachea	 5.2±0.8	 5.1±0.8	 >0.05	 6.2±0.9	 6.3±1.0	 >0.05
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optimization, especially for large volumes. Hence, taking this into account, we looked for 
different optimization procedures in order to further reduce dose at the gastrointestinal cavity. 
The aim was to drive the optimization in order not to excessively stress the MLC motion and 
avoid priority conflicts in the same field. In the first tests, we tried to use different collimator 
angles of 90°, but without finding comparable results due to the difficulties to minimize the 
cost function. The probable reason is the incredible amount of data to manage both in terms 
of target coverage (around 7000 cc according to our previous work)(5) and healthy tissue spar-
ing (i.e., body minus target, around 50000 cc). The best solution to minimize the optimization 
process could be to “see” each voxel of the CT dataset by only one arc to be unique. Thus, the 
solution of rotating the collimator to 90° and opening the Y1-Y2 jaws to the maximum value 
could be a reasonable choice. Once the collimator setting was defined, we focused on other 
parameters, looking for solutions that could facilitate the optimization. We visually analyzed 
each beam aperture and MLC projection. Situations similar to the one reported in Fig. 5(a) 
suggested to us to try to modify the jaw apertures in order to avoid the occurrence of target 
in the two edges of the field with healthy tissue in the middle part. In this case, conflicting 
objectives occur: high dose to the borders but low dose in the center of the jaw apertures 
along the MLC motion direction. However, the request to overlap consecutive arcs to allow 
for fields junction and the huge cranial–caudal direction (around 120-130 cm) meant that we 
had to modify also the isocenter’s position. Thus, we tried a second optimization, changing 
each arc aperture  based on the request to minimize or, if possible, delete arcs with target in 
the edges of the X1-X2 apertures and healthy tissue in the middle part. This approach plays 
an important role in particular for the arcs in abdominal region, where most of the caudal ribs 
and the upper iliac wings are less than 10 cm distant and thus, with very high probability, will 
be included in the same arc during optimization. The area included into this 10 cm is largely 
the gastrointestinal track. Thus, the anatomy driven optimization helps to reduce the dose. Fur-
thermore, the reduction of around 7% in MU amount leads to a minor scattered dose. Figure 5 
exemplifies, though for an instantaneous MLC and gantry position, the difference between 
the two approaches. The conflicting objectives pursued in different field zones (e.g., PTV in 
the field edges and healthy tissue in the middle) lead to an overexposure of healthy tissues for  
model (1), with its consequent overdosage. 

Fig. 5.  Example of MLC apertures for the two approaches in patient 3: model (1) (left) and model (2) (right). The arrow 
shows an overexposure of healthy tissues using model (1). 
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Concerning the choice of isocenter’s position and the jaw’s aperture, each patient had a 
specific solution based on anatomy shape. The parameters were decided by the planner accord-
ing to his personal experience. In this context, the authors want to mention the essential role 
of selecting the best optimization strategy in order to improve the final plan, as pointed out in 
recent literature on VMAT techniques.(12-17)

Among the limits of this feasibility study, it is relevant to notice that target definition is, in 
TMI, extremely complex and labor-intensive, and requires a dedicated team including radiation 
oncologists, hematologists, and radiation physicists. All should concur in defining the bones to 
include in the GTV-CTV-PTV, eventually with the aid of special imaging procedures capable 
to identify the areas of full hematopoietic activity.  

As a last remark, it is important to mention that the lower part of the legs is not included in 
this VMAT study. Similarly, this problem was not addressed in detail in any of the other stud-
ies published in literature. Standard approach is to reverse patient position (from head-first to 
feet-first alignment), and to irradiate the lower legs with conventional static fields (i.e., anterior–
posterior fields) since no highly sensitive organ at risk is present here. VMAT plans might also 
be easily generated for the lower legs with one or two arcs and, in this case, an overlapping 
region with the higher sector should be considered to eliminate risk of cold or hot spots.

Pretreatment QA was not objective of this study, and we referred to our previous study where 
we demonstrated the deliverability of RA for TMI for the first optimization choice. Similar but 
lower total MU (thus lower modulation) were required for the anatomy-driven optimization and 
thus we can be confident that the cases simulated in this study are deliverable. In any case, for 
the cases treated in our institute with the second approach we obtained good QA results.

 
V.	 Conclusions

In conclusion, this study demonstrated the role of isocenter’s positions and jaw’s apertures based 
on bone anatomy for the TBI irradiation. The optimal choice of these parameters increases the 
optimization freedom in shaping an adequate dose distribution. A clinical protocol is starting 
in our institute and we decided to use the second approach.
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