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Abstract: In this study, the occurrence, distribution, and ecological risk of 40 commonly used antibi-
otics, including 15 sulfonamides (SAs), 9 fluoroquinolones (FQs), 7 macrolides (MCs), 3 tetracyclines
(TCs), 2 chloramphenicols (CAPs), and 4 other categories, in the aquatic environment of the karst
plateau wetland Caohai of the Yangtze River basin in southwestern China are reported. In total,
27 antibiotics were detected, with the detection rate ranging from 5% to 100%. The total concentration
at each site ranged from 21.8 ng/L to 954 ng/L, with the average concentration being 189 ng/L. FQs
and MCs were the most predominant categories, contributing 29.3% and 25.0% of the total antibiotic
burden. The five most commonly detected antibiotics were ciprofloxacin (CIP), oxytetracycline (OTC),
acetyl sulfamethoxazole (ASMZ), norfloxacin (NOR), and florfenicol (FF). The spatial distribution
of the total concentration at each site demonstrated a decreasing trend from the southeastern area
upstream adjoining the main counties to the northwestern area downstream, indicating that human
activities have a great impact. Meanwhile, the natural attenuation rates of different types of antibi-
otics in the direction of flow ranged from 17.6% to 100%, which implied the natural purification
potential of the wetland for antibiotics. The cluster analysis results indicated that domestic sewage
and wastewater from agriculture and animal husbandry were the main sources of contamination in
the surrounding wetland. Risk quotients (RQs) assessment showed that most of the individuals were
at low to medium risk and that the adverse risks posed by mixtures of antibiotics were higher than
those posed by the individual antibiotics.

Keywords: antibiotics; aquatic environment; plateau wetland; occurrence; distribution; risk assessment

1. Introduction

Antibiotics have been extensively used to treat infectious diseases and promote growth
for both humans and animals since the advent of penicillin in 1929 [1]. At present, as a
class of emerging organic pollutants, the resistance genes formed by antibiotics are listed as
one of the three major threats to public health and the ecological environment by the World
Health Organization [2]. It has been proven that antibiotics can induce drug resistance
in pathogenic bacteria, which can accumulate in the environment and be transmitted to
humans through the food chain, constituting a significant threat to human and animal
health [3]. It has been reported that the consumption of antibiotics has increased from
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54.1 billion standard units to 73.6 billion in 71 countries in the past ten years [4]. Most
of these are incompletely absorbed in the target organisms and thereafter excreted as
metabolites via feces and urine. The incomplete removal of waste in municipal sewage
treatment plants as well as improper waste disposal can ultimately lead to antibiotics being
released into the aquatic environment [5,6].The occurrence, migration, and transformation
of antibiotics in the environment have attracted great attention in many environmental units,
such as the surface water of rivers [7], sediment [8], soil [9], and even in groundwater [10].
It has been reported that the concentrations of 17 detected antibiotics ranged from ND
to 544 ng/L in the Sine River of France [11]. Much higher concentrations in the range
of 0.8–8464 ng/L were found in the surface water of Pakistan [12]. In China, the annual
usage of antibiotics has been estimated to be 160,000 tons, with more than 50,000 tons
being discharged into the environment, as reported in 2015 [13], which constitutes a huge
environmental burden. The characteristics and levels of antibiotics in Chinese rivers and
lakes, such as the Yellow River [14], the Pearl River [15], the Haihe River [16], the Huangpu
River [17], Lake Chaohu [18], and Lake Taihu have been thoroughly studied [19]. The
average concentration of antibiotics in the rivers of China is 303 ng/L, which is nearly
three times higher than that of the United States and about 30 times higher than that of
Italy [13]. Wetlands are special ecological units inhabited by a large number of aquatic
animals and plants. They also possess many unique ecological functions, such as naturally
purifying water [20], regulating runoff, as well as supplying groundwater. The existing
research on this topic shows that wetlands are inevitably affected by human activities [21];
however, the understanding of the role played by antibiotics in the aquatic environment
of wetlands disturbed by human activities is still limited. Specifically, determining the
impact of antibiotics on wetlands is imperative. With the gradual development of pollution
investigation, prevention, and control [22], it is necessary to gain more insight into the
environmental prevalence and behavior of different types of antibiotics in wetlands to aid
local risk control in the future.

Wetland Caohai is the source lake of Luoze River, a tributary of the Yangtze basin,
which is one of the three largest plateau wetland systems situated on Yungui Plateau
of Guizhou Province in the southwest of China [23]. It is a typical representative of the
subtropical highland wetland ecosystem developed in this famous karst basin, with a
mean depth of 1.35 m and a surface area of 96 km2. There are high levels of sunshine
and abundant aquatic species in this wetland area, including 8 categories of algae and
38 species of aquatic vegetation. With the increase in population density and the prolifera-
tion of industry, agriculture, and animal husbandry in this area, adverse impacts on the
wetland ecosystem are becoming apparent. Previous studies have reported the pollution of
wetland Caohai by polycyclic aromatic hydrocarbons and heavy metals [24,25]. Limited
basic data on the occurrence and behaviors of antibiotics in wetland Caohai are available.
The objectives of the current paper are (i) to systematically investigate the occurrence
and spatial distribution of the 40 selected antibiotics, including 15 sulfonamides (SAs),
9 fluoroquinolones (FQs), 7 macrolides (MCs), 3 tetracyclines (TCs), 2 chloramphenicols
(CAPs), and 4 other antibiotics (monensin, salinomycin, lincomycin, cloxacillin), in the
aquatic environment of wetland Caohai; (ii) to elucidate the spatial distribution, possible
sources, and natural attenuation behaviors of different types of antibiotics in the studied
wetland; and (iii) to evaluate the potential ecological risk posed by antibiotics to organisms.
The results obtained provide an improved understanding and practical reference for the
precise risk management and protection of wetland areas in the future.

2. Materials and Methods
2.1. Reagents and Chemicals

Thirty-eight antibiotics standards, including sulfamethazine (SMZ), sulfadiozine (SD),
sulfacetamide (SCT), sulfapyridine (SPD), sulfamethoxazole (SMX), sulfadimethoxine (SSS),
sulfathiazole (ST), acetylsulfamethoxazole (ASMZ), sulfisoxazole (SIZ), sufaguanidine (SG),
sulfachloropyridazine (SCP), sulfameter (SM), sulfadoxine (SDO), sulfamerazine (SMR), sul-
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famonomethoxine (SMM), tertracycline (TC), oxytercycline (OTC), doxycycline (DC), mar-
bofloxacin (MAR), fleroxacin (FLE), pefloxacine (PEF), norfloxacin (NOR), ciprofloxacine
(CIP), danofloxacine (DAN), oflxacine (OFL), sarafloxacin (SAR), enroflxacine (ENR), rox-
ithromycin (ROX), clarithromycin(CTM), oleanolomycin (ODM), leucomycin-A3 (LEU-A3),
spiramycin (SPI), lincomycin (LIN), cloxacillin (CLOX), monensin (MON), salinomycin
(SAL), chloramphenicol (CAP), and florfeniol (FF), were purchased from Dr. Ehrenstorfer
GmbH (Augsburg, Germany). Tylosin (TYL) and erythromycin (ERY) were purchased
from Sigma-Aldrich (St. Louis, MI, USA). Surrogate standards trimethoprim-d3 (TRI-d3),
sulfamethazine-d4 (SMA-d4), sulfamethoxazole-d4 (SMX-d4), erythromycin-13C, d3 (ERY-
13C, d3), lincomycin-d3 (LIN-d3), and thiabendazole-d4 (THI-d4) were obtained from
Toronto Research Chemicals (Toronto, ON, Canada). Another two surrogate standards,
ofloxacine-d3 (OFL-d3) and chloramphenicol-d5 (CAP-d5), were purchased from Sigma-
Aldrich (St. Louis, MO, USA), Dr. Ehrenstorfer GmbH (Augsburg, Germany) individually.
The basic chemical information of 40 antibiotics is shown in Table S1. All standards were
dissolved in methanol and stored at 4 ◦C in the dark. HPLC-grade methanol, acetonitrile,
and ammonium hydroxide were obtained from Fisher Scientific (Fair Lawn, NJ, USA).
Formic acid (FA) was purchased from Tianjin Kermiou Chemical Reagent Co., Ltd. (Tianjin,
China). Ethylenediaminetetraacetic acid disodium salt (Na2EDTA) was purchased from
Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Sample Collection and Sample Preparation

According to the direction of flow and distribution of the sewage outlet, 20 surface
water samples were collected from wetland Caohai in December 2017. These were divided
into three groups: the upstream group (named Group 1), including S1 to S6; the center area
group (named Group 2), including S7–S12 and S20; and the downstream group(named
Group 3), including S13–S19. The sampling sites are shown in Figure 1. Samples approxi-
mately 0–50 cm below the water’s surface were collected in pre-cleaned amber glass bottles
(1.0 L) and stored below 4 ◦C to prevent degradation. All the samples were extracted within
one week.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. The sampling sites and spatial distribution of antibiotics in wetland Caohai. 

2.3. Instrumental Analysis 
The analysis of antibiotics was performed on an Agilent 1260 liquid chromatograph 

coupled with an Agilent 6460 triple quadrupole MS equipped with an electrospray ioni-
zation (ESI) source (Agilent, Palo Alto, Santa Clara, CA, USA). The optimum mass spec-
trum parameters for the antibiotics are shown in Table S2. Separation was achieved using 
an Agilent Zorbax Rrhd Eclipse Plus C18 column (2.1 mm × 50 mm i.d., 1.8 μm). The 
column temperature was maintained at 40 °C. The flow rate was kept at 0.2 mL/min and 
the injection volume was 5.0 μL. The analysis was performed in negative mode for two 
target compounds (FF, CAP) and in positive mode for the other compounds. For negative 
mode, the mobile phase consisted of eluent A (ultra-pure water) and B (methanol–
acetonitrile; 1:1, v/v). The separation of FF and CAP was achieved with the following 
gradient program: 0.0–2.0 min, 25.0–60.0% B; 2.0–4.0 min, 60.0–80.0% B; 4.0–5.0 min, 
100% B; 5.0–7.0 min, 100% B; 7–7.01 min, 100–25.0% B; and 7.01–9.0 min 25.0% B. For 
positive mode, the mobile phase consisted of eluent A (0.2% formic acid and 2 mM am-
monium acetate) and B (methanol–acetonitrile; 1:1, v/v). The separation of the other anti-
biotics was achieved with the following gradient program: 0–0.5 min, 5% B; 0.5–5.0 min, 
5–20.0% B; 5.0–10.0 min, 20.0–40.0% B; 10.0–14.0 min, 40.0–70.0% B; 14.0–17.0 min, 70.0–
100% B; 17.0–20.0 min, 100% B; 20.0–20.01 min, 100–5.0% B; and 20.01–23.0 min, 5% B. 

2.4. Quality Control 
The concentrations of the target compounds in all the samples were determined 

using the internal standard method. The performance of the method was satisfying for 
target antibiotics within the linearity range of 1.0 ng/L to 200 ng/L and with correlation 
coefficient r2 ranging from 0.991 to 0.999. The limits of detection (LODs) and the limits of 
quantification (LOQs) were determined as the concentrations corresponding to sig-
nal-to-noise (S/N) ratios of 3 and 10. The LODs and the LOQs of antibiotics in water 

Figure 1. The sampling sites and spatial distribution of antibiotics in wetland Caohai.



Int. J. Environ. Res. Public Health 2022, 19, 7211 4 of 14

An aliquot of 500 mL of water samples was filtered through a 0.45 µm microporous
membrane. The filtered water was adjusted to pH = 4 with formic acid and then 20 ng
surrogate standards and 0.25 g Na2EDTA were added. Water samples were loaded at
a flow rate of 5.0 mL/min to Waters Oasis HLB cartridges (500 mg, 6 mL), which were
preconditioned sequentially with 6.0 mL of methanol and 6.0 mL of ultra-pure water.
After sample loading, the cartridges were rinsed with 12.0 mL of ultra-pure water and
dried under a vacuum. The targets retained on the cartridges were eluted with 6.0 mL
of ammonia–methanol (5:95, v/v) solution, and then, the eluent was evaporated to near
dryness under a gentle stream of nitrogen and reconstituted in 0.5 mL of methanol–water
(1:9, v/v). Finally, the extract was centrifuged at 12,000 r/min for 10 min. The supernatants
were transferred to a 2.0 mL amber vial and stored at 4.0 ◦C until analysis.

2.3. Instrumental Analysis

The analysis of antibiotics was performed on an Agilent 1260 liquid chromatograph
coupled with an Agilent 6460 triple quadrupole MS equipped with an electrospray ioniza-
tion (ESI) source (Agilent, Palo Alto, Santa Clara, CA, USA). The optimum mass spectrum
parameters for the antibiotics are shown in Table S2. Separation was achieved using an
Agilent Zorbax Rrhd Eclipse Plus C18 column (2.1 mm × 50 mm i.d., 1.8 µm). The column
temperature was maintained at 40 ◦C. The flow rate was kept at 0.2 mL/min and the
injection volume was 5.0 µL. The analysis was performed in negative mode for two target
compounds (FF, CAP) and in positive mode for the other compounds. For negative mode,
the mobile phase consisted of eluent A (ultra-pure water) and B (methanol–acetonitrile; 1:1,
v/v). The separation of FF and CAP was achieved with the following gradient program:
0.0–2.0 min, 25.0–60.0% B; 2.0–4.0 min, 60.0–80.0% B; 4.0–5.0 min, 100% B; 5.0–7.0 min,
100% B; 7–7.01 min, 100–25.0% B; and 7.01–9.0 min 25.0% B. For positive mode, the mo-
bile phase consisted of eluent A (0.2% formic acid and 2 mM ammonium acetate) and B
(methanol–acetonitrile; 1:1, v/v). The separation of the other antibiotics was achieved with
the following gradient program: 0–0.5 min, 5% B; 0.5–5.0 min, 5–20.0% B; 5.0–10.0 min,
20.0–40.0% B; 10.0–14.0 min, 40.0–70.0% B; 14.0–17.0 min, 70.0–100% B; 17.0–20.0 min, 100%
B; 20.0–20.01 min, 100–5.0% B; and 20.01–23.0 min, 5% B.

2.4. Quality Control

The concentrations of the target compounds in all the samples were determined
using the internal standard method. The performance of the method was satisfying for
target antibiotics within the linearity range of 1.0 ng/L to 200 ng/L and with correlation
coefficient r2 ranging from 0.991 to 0.999. The limits of detection (LODs) and the limits of
quantification (LOQs) were determined as the concentrations corresponding to signal-to-
noise (S/N) ratios of 3 and 10. The LODs and the LOQs of antibiotics in water samples
ranged from 0.002 to 0.270 ng/L and ranged from 0.007 to 0.900 ng/L, respectively. The
recoveries of the antibiotics spiked to 500 mL surface water samples (n = 3) ranging from
61.0 to 149%. The relative standard deviations (RSDs, %) in duplicated samples (n = 3)
ranged from 0.19% to 32.0%, values which were comparable with those found in previous
studies. More information is shown in detail in Table S3. The procedural blank was run
in parallel every 10 samples to check for laboratory contamination; the concentrations of
all target compounds were below the detection limit. Check standards were run every
10 samples in sequence to check the system performance.

2.5. Statistical Analysis

Statistical analyses were performed with IBM PASW Statistics 17.0. The cluster anal-
ysis was used for the common sources of multiple antibiotics as suggested. The affinity
relationship between detected antibiotics is measured by similarity coefficient under the
similarity of 30%.
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Ecological risk was assessed by Risk Quotient (RQ) and Mixtured Risk Quotient
(MRQ). The formula was as follows:

RQ =
MEC

PNEC
(1)

PNEC =
LC50 or EC50

AF
(2)

MRQ =
n

∑
i=1

RQi (3)

where MEC is the measured environmental concentration; PNEC is the predicted no-effect
concentration; LC50 or EC50 are the short-time toxicity data; and AF is the assessment factor.

3. Results and Discussion
3.1. The Occurrence Characteristics of Antibiotics in the Wetland Caohai

A total of 27 of 40 antibiotics were detected, while SCT, ST, SMR, SM, SCP, SDO, SSS,
MAR, SPI, LEU-A3, ODM, SAL, and MON were not detected in any sample. As shown in
Table S4, 27 antibiotics were detected at more than half of the sampling sites. The top five
individual antibiotics found were CIP, OTC, ASMZ, NOR, and FF. CIP and OTC were the
most frequently detected individuals, with a detection rate of 100%. ASMZ, NOR, and FF
were the second most predominant compounds, with a detection rate of 95%, followed by
PEF and DAN with a detection rate of 90%, all of which indicated the widespread presence
of antibiotics in wetland Caohai. In terms of categories, the total concentrations of FQs
ranged from ND to 93.0 ng/L, with the highest average concentration of 55.1 ng/L found
among all categories, followed by MCs (ND-209 ng/L, 47.0 ng/L), SAs (ND-201 ng/L,
39.6 ng/L), others (ND-216 ng/L, 31.7 ng/L), TCs (ND-81.8 ng/L, 10.7 ng/L), and CAPs
(ND-34.2 ng/L, 4.2 ng/L). All samples showed very similar composition profiles (seen
Figure 2), which demonstrated that FQs made up 29.3% of the total antibiotic burden,
followed by MCs (25.0%), SAs (21.0%), others (16.8%), TCs (5.70%), and CAPs (2.20%).
Detection rate greater than 70% and average concentrations greater than 3.0 ng/L in the
aquatic environment of wetland Caohai were compared with the values found in related
studies, as shown in Table 1. Generally speaking, the concentration of antibiotic residues in
Caohai was found to be at medium level in this study. The concentration characteristics of
different types of individual antibiotics in wetland Caohai are shown in Figure 3, and the
details are provided as follows.
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Table 1. Comparison of the concentration of antibiotics in the aquatic environment in related studies
(ng/L).

Study Area SMX NOR PEF DAN SAR OTC ROX ERY LIN Reference

This study ND-201 ND-90.5 ND-93 ND-62.8 ND-80.8 0.80–81.8 ND-50.3 ND-209 ND-216 –

The Yellow River <LOQ-56 <LOQ-
300 – – – – <LOQ-

95.0
<LOQ-

77.0 – [14]

The Liao River ND-670 ND-256 – – – ND-742 ND-741 ND-2834 – [26]

The Pearl river <LOQ-
193

<LOQ-
251 – – – – <LOQ-

169 ND-30.6 – [15]

The Huangpu
River 2.2–765 ND – – – 11.5–84.5 0.2–4.1 – – [17]

The Hai River ND-201 ND-141 – – ND-35.9 – ND-40.2 ND-67.7 – [16]
Taihu Lake ND-234 ND-12.2 ND-323 ND-34.1 ND-15.6 ND-34.8 ND-35.6 ND-4.66 ND-53.8 [27]

Chaohu Lake ND-171.6 ND-70.2 – – – ND-2.90 – – – [18,28]
Baiyangdian Lake ND-940 ND-1140 – – ND-28.2 4.28–90.3 ND-302 ND-121 – [29]

Bosten Lake 1.12–13.3 – – – – ND-20.7 – – – [30]
Po River 1.83–2.39 – – – – ND-1.82 – 0.28–4.62 – [31]

Pakistan part
region

<LOQ-
2700 <LOQ-38 – – – 1.10–

1100
<LOQ-

180
<LOQ-

310
<LOQ-
1100 [12]

Seine river ND-53.0 ND-163 – – – – – – – [11]
The Yong jiang

River
<LOQ-

68.0 – – – – – ND-6.10 ND-174 – [32]

The Wei he River 7.60–115 ND-39.2 – – – ND-104 1.57–59.5 23.3–59.5 3.63–125 [33]

“–” Not detected.

FQs were found to be the most predominant antibiotics in Caohai, which is consistent
with the findings obtained for Yancheng coastal wetlands [34] but different from those
obtained for Baiyangdian Lake [35]. Among the investigated FQs, the detection rate of
individuals ranged from 40% to 100%, with most of them being greater than 50%. CIP
showed the highest detection rate of 100%, and only MAR was not detected in any samples.
Individuals with the highest detection rate were not necessarily detected in the highest
concentration. The concentration range of each individual was PEF (ND-93.0 ng/L) > NOR
(ND-90.5 ng/L) > SAR (ND-80.8 ng/L) > DAN (ND-62.9 ng/L) > ENR (ND-30.0 ng/L)
> CIP (0.50–21.5 ng/L) > OFL (ND-17.9 ng/L) > FLE (ND-6.00 ng/L). The highest value
obtained for SAR in this area was much higher than the value of 28.2 ng/L obtained for
Baiyangdian Lake [35], the value of 15.6 ng/L obtained for Taihu Lake [27], the value
of 35.9 ng/L obtained for Haihe river [16], and the value of 10.0 ng/L obtained for the
Seine River [11] although this substance was removed from clinical use by its manufacturer
Abbott Laboratories on 30 April 2001. This implies the wide usage of this antibiotic in the
studied area and means that it should be paid more attention to, due to its severe adverse
effects on organisms. The highest concentration of PEF detected in this study was far lower
than the value detected in Taihu Lake [27], which was 323 ng/L. A similar concentration
range of NOR was found to that of Chaohu Lake in China [18], but this range was far
higher than that of the Po River in Italy (1.83–2.39 ng/L) [31]. FQs have been reported to be
widely used in livestock husbandry, especially for pigs and chickens [13].

MCs were the second most common type of antibiotic found in Caohai. The detection
rate of the individual antibiotics ranged from 40% to 80%. ROX and ERY were the most
frequently detected, with detection rates of 80.0% and 70.0%, respectively. These are known
to be the most common macrolide antibiotics used for humans, and SPI, LEU-A3, and ODM
were not found. The concentration of ROX was in the range of ND-50.3 ng/L, which was
similar to the concentration found in the Weihe river (1.57–59.5) [33] in China and far lower
than that found for the Liaohe river (ND-741ng/L) [26], the Pearl river (ND-169 ng/L) [15],
and the Pakistan basin (ND-183 ng/L) [12]. For ERY, the highest concentration found was
209 ng/L, and it was regularly found in municipal wastewater treatment plants [36].
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The proportion of SAs was comparable to that of MCs, with the detection rate ranging
from 5% to 95.0%. Almost half of the targeted antibiotics, including SCT, ST, SMR, SM, SCP,
SDO, and SSS, were not detected. SMX, ASMZ, and SD were the most frequently detected
individual antibiotics. It has been reported that SMX and ASMZ often show a similar
detection rate, since ASMZ is known to be the metabolite of SMX [37]. The concentrations
of SMX and SD were in the ranges of ND-201 ng/L and ND-13.7 ng/L, respectively, which
were similar to those of the Weihe river in China [38]. The concentration of SMX was much
higher than that of Taihu Lake, Dongting Lake [39], and Bosten Lake [30]. In addition to the
wide usage of this antibiotic for both humans and animals [40], the high detection rate and
concentration of SMX might be due to its stronger migration ability and better biological
stability than other sulfonamide antibiotics [41].

For TCs, the detection rates of OTC, DC, and TC were 100%, 50%, and 40%, respectively.
They were obtained at relatively lower concentrations of 0.80–81.8 ng/L, ND-1.9 ng/L,
and ND-27.8 ng/L, respectively, which might be due to their strange adsorption ability in
sediment [42] as well as their strong hydrolysis characteristics [43].

FF is known as one of the top five most used veterinary antibiotics for pigs and chickens
in China [13] and was detected at a high rate of 95.0% in Caohai, with a concentration range
of ND-34.2 ng/L. Regarding CAP, although its use has been banned in the animal and
husbandry and aquaculture industries due to its strong toxicity [44], it was still detected
with a relatively high detection rate of 60.0%, which would justify its stronger regulation
even if it was detected at a low maximum concentration of 4.40 ng/L.

LIN has been reported as one of the most commonly used antibiotics for both humans
and animals in China [13]. It was detected in a high concentration of ND-216 ng/L and had
the highest detection rate of 85.0%; this was followed by CLOX, with a high concentration
of ND-9.0 ng/L and a detection rate of 80.0%. However, MON and SAL were not detected
in any samples, although they are known as feed additives and animal-specific antibiotics.

3.2. The Cluster Analysis and Potential Sources of Antibiotics in Wetland Caohai

In order to trace the common sources of multiple antibiotics in the aquatic environment
of Caohai, a cluster analysis was performed. The affinity relationship between detected
antibiotics is measured by similarity. As shown in the Figure S1, under the similarity of 40%,
it can be divided into four categories. As shown in Figure S1, the first category consisted of
SCT, SPI, SAL, CAP, SMR, ERY, SDO, LEU-A3, LIN, SM, CTM, SMX, ASMZ, SMM, SPD,
OTC, SMZ, MAR, MON, FF, SCP, ROX, SD and TC. The second one consisted of ST, TYL,
SSS, ODM, CLOX, FLE, SAR NOR, PEF, CIP, DAN and DC, the third one consisted of
OFL and ENR, the fourth one consisted of SIZ. It is known that individuals in the same
category are correlated with each other, which implies that they might come from the same
pollution source. For the first category, SCT, SPI, CAP, SDO, LEU-A3, SM, CTM, SMM, SPD,
SMZ, SMX, ASMZ, ERY, ROX and TC are commonly used to treat eye, urinary tract, lung
and intestinal tract infections caused by bacteria or viruses [45,46] and thus likely have
a human source [47,48]. SAL, SMR, MAR, OTC, SD, LIN, MON, FF and SCP are known
or have been reported as antibiotics typical used in veterinary applications in previous
studies [13,19,49,50]. Wetland Caohai is located on the southeast estuary of Caohai, with
villages and farmlands concentrated nearby and about 109,000 people in surrounding
Weining County. Composting human or animal manure is known to be one of the major
modes of agricultural production in this county; thus, the antibiotics in the category 1 may
be attributed to waste from residential or agricultural areas, such as domestic sewage and
agricultural wastewater [24]. For the second category, most of the individuals are known or
have been reported as antibiotics typical used in veterinary [51,52]. which have also been
frequently detected at high levels in animal wastewater [33,36] as well as in environment [5].
The second category indicated that, except for human emissions, the scattered livestock
or poultry breeding that takes place in this area might be another potential source of
antibiotics in wetland Caohai. OFL, ENR and SIZ in the third and fourth category revealed
similar sources of human and livestock mentioned above, for example, ENR and OFL
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have been regularly reported to be excreted and can enter the aquatic environment via the
direct discharge of wastewater [53,54]. In summary, the domestic sewage and wastewater
from agricultural and animal husbandry were the main sources of contamination in the
surrounding wetland.

3.3. The Spatial Distribution and Attenuation Behavior of Antibiotics in Wetland Caohai

The total concentrations of the antibiotics detected at 20 sampling sites in wetland
Caohai ranged from 21.8 ng/L to 954 ng/L, with the average concentration being 189 ng/L,
as seen in Figure 2. The variation coefficient of the total concentration of antibiotics detected
at each sampling point was 129%, which demonstrated the obvious difference in the spatial
distribution of the antibiotic concentration. The highest total concentration was found at
S3 of the upstream entrance adjacent to Weining County. At this point, MCs, TCs, CAPs,
and others were detected at relatively high levels of 270 ng/L, 111 ng/L, 37.8 ng/L, and
216 ng/L, respectively, which indicated the intensive interference of human activities, as
discussed in Section 3.2. The lowest total concentration was found at S20, located in the
southwest region of wetland Caohai, which is relatively far away from Weining County. Ac-
cording to the grouping mentioned in Section 2.2, the average concentration was 374 ng/L
in the southeast upstream area, followed by 155 ng/L in the central area and 50.7 ng/L
in the northwest downstream area, which showed an obvious decreasing trend from the
southeast upstream area to the northwest downstream area (see Figure 1). Thus, the average
attenuation rate in the direction of flow was 86.4%. From the perspective of the individual
antibiotics, different antibiotic individuals showed different attenuation behaviors in the
aquatic environment of wetland Caohai. In detail, the average concentration of 27 detected
individuals showed a downward trend from upstream to downstream, and their attenu-
ation rate differed from 17.6% to 100% (seen in Table S4). Among these, the attenuation
rate of most SAs, TCs, and MCs was more than 75%. These results reflect the natural
ability of wetlands such as wetland Caohai to remove antibiotics, which is consistent with
the previous studies on the ShiJiuyang wetland in Jiaxing City [55] and the Jiaozhou Bay
wetland of China [56]. On the other hand, the concentration of seven detected antibiotics in
the downstream area was higher than that in the upstream area; four individuals of these
belonged to FQs, which might because the FQs had a stable nitrogen double-ring structure
and a longer half-life period than that of the TCs, SAs, and MCs [57]. Furthermore, the
high adsorption coefficient values (Kd) of FQs also make them prone to be adsorbed in
organic matter and thus accumulate in wetland areas [58,59]. The increasing levels of these
seven individual antibiotics seen in the downstream area also indicate the existence of
point sources in the direction of flow. It is worth noting that the total concentrations at
the two sample sites S7 and S9 in the central area of wetland Caohai were higher than
those of the surrounding area; this might because the total organic carbon (TOC) in the
center of wetlands is generally higher than that of the surroundings. Additionally, the total
concentration of antibiotics was reported to be positively correlated with TOC in a previous
study [60].

3.4. Risk Assessment of Antibiotics in Wetland Caohai

The potential ecological risk posed by the detected antibiotics to aquatic organisms
was assessed due to the wide detection of these substances and their proven adverse effects.
Risk quotient (RQ) is the most commonly used measure for predicting the ecological
risk posed by environmental pollutants [61,62]; it is calculated as a ratio of the measured
environmental concentration (MEC) to the predicted no-effect concentration (PNEC) [34]
based on the values previously reported in the literature. If PNEC cannot be obtained, it
can be calculated by dividing the toxicity data, such as LC50 or EC50, by the assessment
factor (AF). Generally, the AF of short-term toxicity data is 1000, while that of long-term
toxicity data is 100; these values are listed in Table S5.

Algae has been proven to be the most sensitive species to antibiotics in the aquatic
environment [63–65]. Based on this, the PNECs of algae were selected for use in the
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calculation of RQ. When RQ < 0.1, this indicates that there is a low risk to aquatic organisms
in the study area; a value of 0.1 ≤ RQ < 1 suggests that there is a medium risk; and a
value of RQ ≥ 1.0 reveals that there is a high risk. The calculated PNECs are presented
in Table S5. The RQs calculated for algae are listed in Table S6 and shown in Figure 4.
NOR, CIP, SAR, ERY, CTM, ROX, and LIN showed a high level of threat to organisms in
the aquatic environment of wetland Caohai, with the maximum calculated RQs of 1.87,
1.26, 5.39, 5.71, 5.53, 10.9, and 3.09, respectively; these were distributed across S3, S7, and
S9. SMX, OFL, ENR, and OTC showed a medium level of threat to organisms, with RQs
ranging from 0.131 to 0.854. The RQs of SG, SD, SPD, SMZ, SIZ, TC, DC, TYL, FF, and CAP
were all less than 0.10, which indicated that these antibiotics posed a slight risk to aquatic
organisms in Caohai. One third of the detected antibiotics showed a high risk to aquatic
species, which were distributed in 40% of the sampling sites where there was at least one
antibiotic deemed to constitute a high risk. On the spatial scale, the sites at high risk were
concentrated in the southeastern and middle regions of Caohai, which are adjacent to the
residential and agricultural areas.
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The coexistence of multiple antibiotics in the ecosystem of wetland Caohai might
enhance the ecological risk via the cocktail effect [66–68]. The classical mixture toxicity
concentration addition (CA) model was used to calculate the risk quotients of the mixtures
(MRQ) [69], which are the sum of the RQs for detected individuals. The results are shown
in Table S7. The MRQ values were in the range of 0.13–26.5 at all the sampling sites, and
were obviously higher than those found by individual assessments. Except for S13, S14,
S15, S17, S18, and S20, the MRQ values of all sampling sites were higher than 1, suggesting
that these sampling sites were at relatively high ecological risk and accounting for 70% of
the samples. These were much higher compared to those assessed using the RQ value of
the individual antibiotics, which indicated that the adverse effects of the antibiotic mixtures
on aquatic species were higher than those of individual antibiotics. Given lack of toxicity
data for SMM, ASMZ, FLE, PEF, DAN, and CLOX, no RQs were included even when
they were detected at levels of up to 4.3 ng/L, 101 ng/L, 6.00 ng/L, 93.0 ng/L, 62.8 ng/L,
and 9.00 ng/L. More toxicology data and further risk assessments are required due to the
potential threat posed by antibiotic-resistant genes to the ecological system and human
health [70].
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4. Conclusions

This study represents a rare effort to systematically investigate the occurrence, distribu-
tion, and ecological risk posed by a wide range of commonly used antibiotics in the aquatic
environment of the karst plateau wetland Caohai in southwest China. The target antibiotics
were widely detected, even those whose use is now forbidden. The average concentration
of antibiotics in wetland Caohai was at a medium level compared with the values found in
other studies, such as those on the Seine river and the Hai river. The decreasing trend found
for the total average concentration of antibiotics from upstream to downstream indicates
the natural ability of wetlands to remove antibiotics. The attenuation rate of different
types of antibiotics varied greatly and more fundamental data, such as data on the main
factors controlling hydrochemistry for the purification potential evaluation of wetlands, are
necessary, since these were determined jointly by chemical and biological stability, regional
use, and environmental capacity. A preliminary judgement of the domestic sewage and
agricultural and animal husbandry sources of the surrounding wetland was made. The
adverse effect of the mixture of antibiotics on aquatic species in the area was shown to be
worse than that of the individual antibiotics. This study provides a practical reference for
the precise risk management of the aquatic environment in wetland Caohai. Long-term
monitoring, land source investigation, and more toxicology data on antibiotics are required
in the future to further improve risk control.
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