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Abstract

The molecular underpinnings of the uncontrolled release of proinflammatory cytokines 

and chemokines (‘cytokine storm’), which can cause organ damage and even mortality, 

are not completely understood. Furthermore, targeted therapeutic options to dampen such 

hyperinflammation are scarce. Here, we highlight the ways in which technological advances have 

set the stage for a new age of synergy between experimental and computational researchers to 

guide the discovery of novel therapeutic targets for modulating hyperinflammation.

Hyperinflammation, or aberrant activation of inflammatory signaling pathways above the 

level needed to control disease, can be initiated by the innate immune response and 

inflammatory cell death in the context of infection or sterile inflammation. While innate 

immune activation and inflammatory signaling provide the first line of defense against 

infection and damage, overactivation of these mechanisms can be pathological. As a result, 

the uncontrolled production of proinflammatory cytokines and chemokines [collectively 

known as ‘cytokine storm’ (CS) or ‘cytokine release syndrome’] can cause tissue and organ 

damage, as well as a life-threatening pathological condition [1–3].

The term CS has been used for many years in a broad sense, without a specific definition 

based on cytokine thresholds or mechanistic characteristics, to describe situations where 

the presence of high concentrations of cytokines was associated with pathology. Due 

to this ambiguity, studies comparing cytokine amounts across diseases have introduced 

controversy over whether this term can be applied in certain contexts; for example, IL-6 

concentrations were found to be lower in the serum of patients with coronavirus disease 

2019 (COVID-19) than in those with sepsis in a meta-analysis [4], leading to debates on 
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whether CSs occur in COVID-19. However, the CS was recently mechanistically defined as 

a life-threatening condition caused by excessive production of cytokines mediated by a form 

of inflammatory cell death (with key features of pyroptosis, apoptosis, and/or necroptosis, 

but not accounting for any of these pathways alone) called PANoptosis (regulated by 

the PANoptosome); this has been observed in murine models of severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) infection, as well as sepsis, hemophagocytic 

lympho-histiocytosis, and cytokine shock [3]. Overall, the CS is associated with a variety 

of conditions, including severe infections, autoimmune and inflammatory disorders (e.g., 

rheumatoid arthritis), medical interventions (transplantation), drug administration, and 

anaphylaxis [1,3]. Moreover, different pathologies can result in similar proinflammatory 

cytokine profiles while their etiologies dramatically differ. For example, influenza viruses 

(IAV), SARS-CoV(−2), and hantavirus infect different cell types in different parts of the 

mammalian respiratory system, but can result, in certain instances, in acute lung injury, 

sepsis, and, potentially, CSs [2]. Therefore, understanding the mechanistic underpinnings 

of the hyperinflammatory response is a crucial step towards identifying new and putative 

life-saving therapeutic strategies.

Moreover, paracrine signaling, involving immune and nonimmune cells, can also form 

positive feedback loops that amplify and maintain certain pathways of immune responses 

[5]. Cells participating in these feedback loops secrete extracellular ligands in response 

to the signals present in their environment, which in turn are sensed by other cells in 

these loops. For example, during IAV-induced inflammation in human lungs, macrophages 

release IL-1 and TNF in response to granulocyte-macrophage colony-stimulating factor from 

alveolar epithelial cells [2,6].

In the era of big data, the steadily increasing availability of different -omics data 

(genomics, transcriptomics, proteomics, etc.) allows the refined development and application 

of computational systems biology approaches to immunology (Figure 1). This large 

amount of data enables more sophisticated computational models generating more accurate 

predictions. For instance, using single-cell sequencing data (i.e., single-cell RNA-seq, 

single-cell assay for transposase-accessible chromatin sequencing) it is possible to identify 

novel cellular subpopulations and provide a better molecular characterization of these cells. 

Indeed, single-cell sequencing platforms, such as 10XGenomics [7], allow the profiling of 

thousands of cells. Moreover, with the current progress in methodology of spatially resolved 

transcriptomics [8], scientists can obtain location-specific gene expression data, enabling the 

development of computational models that consider the spatial information of different cell 

types. These models can be employed to identify key molecules in inflammatory processes 

and design novel and more efficient strategies for modulating hyperinflammation in the 

context of diverse disease pathologies, including infectious and inflammatory diseases. 

Hence, the time is ripe to foster the synergy between experimental and computational 

researchers to accelerate the discovery of new, promising therapeutic targets for clinical 

intervention. This synergy must entail a coordinated research effort from the onset, aiming 

to build an adequate and accurate computational model, define the necessary input data, 

and design follow-up experiments to fully validate the computational predictions. To this 

end, we foresee some rate-limiting steps to enact such a synergy, namely, technological 

limitations, such as current scale of single-cell phosphoproteomics [9] and resolution of 
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tissue spatial information [8], shortage of good experimental models impeding the validation 

of computational predictions, and mutual unawareness of the advances in experimental and 

computational methods.

A clear example of how experimental and computational approaches support each other 

includes the discovery of modulators of hyperinflammation and was recently shown by 

two individual studies [10,11]. Independently, these studies predicted Toll-like receptor 

(TLR) 2 as a putative immunomodulator of COVID-19-induced lung hyperinflammation: 

one report was solely based on a computational systems biology model that relied on 

scRNAseq data [10], while the other used in vitro and in vivo mouse screening of key 

innate pattern recognition receptors activating inflammatory cytokine production [11]. In 

the computational study, a holistic model of intercellular ligand–receptor interactions, 

intracellular signaling pathways, and transcriptional regulation allowed the reconstruction 

of the positive feedback loops maintaining and amplifying the hyperinflammatory immune 

response in critically ill patients with COVID-19 [10].

Computational simulation of the perturbation of the feedback loops allowed the 

prioritization of inflammatory regulators based on their capacity to disrupt pathological 

yet preserve physiological loops. Thus, TLR2 was identified as one of the target molecules 

implicated in modulating the uncontrolled immune response in severe COVID-19 patients 

[10]. In an independent study [11], increased expression of TLR2 in the peripheral blood 

of human patients correlated with disease severity during COVID-19, with TLR2 expression 

increasing from healthy patients to those with moderate, severe, or critical COVID-19. 

Experimental evaluation of the specific role of TLR2 in disease showed that TLR2 

responded to the SARS-CoV-2 E protein to activate the production of proinflammatory 

cytokines; indeed, inhibition or deletion of TLR2 in human or murine macrophages, 

respectively, reduced cytokine release compared with controls. These cytokines included 

TNF-α and IFN-γ [11,12], known to be key mediators of the CS via PANoptosis (see 

earlier) [3,11,]). Murine macrophages treated with TNF-α and IFN-γ activated biochemical 

markers of PANoptosis and treatment of mice with this combination or with SARS-

CoV-2 infection led to mortality that was characterized by key features of the CS and 

COVID-19, including lymphopenia, thrombocytopenia, and increased numbers of caspase-3- 

and TUNEL-positive cells in the tissue [12]. Treatment of K18-hACE2 transgenic mice 

with a TLR2 inhibitor, oxPAPC, protected the animals against SARS-CoV-2-mediated 

inflammatory cytokine production and mortality [11]. This further suggested that TLR2 

might act as a key modulator of COVID-19-induced hyperinflammation, providing a proof-

of-concept for the utility of targeting TLR2 to modulate inflammation [11].

In another COVID-19-related study [13], sepsis and severe COVID-19 manifestations 

were associated with increased number of suppressive myeloid cells relative to controls. 

Using computational tools and scRNA-seq data, the authors identified an expanded CD14+ 

monocyte state: a gene expression program that correlated with sepsis severity and was 

activated in monocytes from severe COVID-19 patients [13]. They further showed that 

plasma from such patients induced myelopoiesis in healthy human bone marrow stem 

and progenitor cells and the expression program in monocytes and neutrophils induced 

differentiation from these progenitors [13].
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Additional studies have also shown the utility of combining computational and experimental 

approaches to understand inflammatory processes. In the context of hepatic ischemia-

reperfusion (IR), time-dependent changes in cytokine concentrations were correlated 

to computationally predict interactions between inflammatory mediators [14]. These 

interactions grew in number and complexity following IR in the liver. This computational 

analysis implicated IL-17A as an early central driver of inflammation and inducer of a 

self-propagating CS. The subsequent in vivo validation in mice confirmed that IL-17A 

promoted liver injury after reperfusion by sustaining neutrophil recruitment to areas of 

inflammation, identifying IL-17A as a potential therapeutic target for liver damage after 

hepatic IR [14]. In a recent study, a network-based model enabled the inference of a novel 

control network of chemokine interactions, which was used to identify crucial mediators of 

acute systemic inflammation in post-traumatic injury [15]. Namely, this model predicted 

that CCL2, CXCL9, and CXCL10 formed a regulatory core upstream of IL-6. These 

cytokine concentrations correlated with the severity of injury and the magnitude of systemic 

inflammation. Thus, the model accurately predicted hospitalization time of blunt trauma 

survivors based on molecular patterns [15] and suggested potential treatment strategies.

The development of strategies aiming to mitigate the CS is essential for reducing the 

mortality associated with the severe form of various infectious and inflammatory diseases. 

Thus, computational modeling can certainly inform traditional experimental approaches 

to identify targets that may reduce the hyperinflammatory immune response. Indeed, in 

a growing number of studies, systems immunology approaches are being successfully 

employed to help predict novel therapeutic targets for modulating uncontrolled immune 

responses. Nevertheless, the full potential of computational modeling to systematically assist 

experimental endeavors has not been exploited.

We envision new challenges when building computational models in the context of 

hyperinflammation. These include access to tissue-specific data to model local inflammatory 

signatures, which cannot always be inferred from blood samples, integration of time-

series data to determine predictors and effectors of hyperinflammation, and timing of 

intervention strategies to modulate hyperinflammation while maintaining the beneficial 

immune response.

Currently, advances in systems biology and the increasing generation of large amounts of 

big -omics data are contributing to the development of more sophisticated computational 

models. We posit that the key to designing novel and more efficient therapeutic intervention 

strategies for reducing hyperinflammation is to synergize experimental and computational 

efforts from the onset. We argue that computational approaches and experimental 

validation should represent a key partnership in biomedical research, needed for identifying 

fundamental therapeutic targets.
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Figure 1. Synergy between computational and experimental efforts to tackle hyperinflammation-
associated morbidity and mortality.
Patient samples are processed with the most advanced -omics technologies and are partnered 

with a fundamental understanding of cell and molecular biology and immunology to yield 

accurate biological predictions together with computational modeling (e.g., reconstruction of 

the feedback loops during cytokine storms). Experimentalists coordinate building adequate 

and accurate computational models and validate the predictions (using in vitro/vivo 
experimental models). Experimental trials generate new hypotheses and renew the modeling 

paradigms.
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