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Insulin resistance (IR), a key component of the metabolic syndrome, precedes the development of diabetes, cardiovascular disease,
and Alzheimer’s disease. Its etiological pathways are not well defined, although many contributory mechanisms have been
established. This article summarizes such mechanisms into the hypothesis that factors like nutrient overload, physical inactivity,
hypoxia, psychological stress, and environmental pollutants induce a network of cellular stresses, stress responses, and stress
response dysregulations that jointly inhibit insulin signaling in insulin target cells including endothelial cells, hepatocytes,
myocytes, hypothalamic neurons, and adipocytes. The insulin resistance-inducing cellular stresses include oxidative, nitrosative,
carbonyl/electrophilic, genotoxic, and endoplasmic reticulum stresses; the stress responses include the ubiquitin-proteasome
pathway, the DNA damage response, the unfolded protein response, apoptosis, inflammasome activation, and pyroptosis, while
the dysregulated responses include the heat shock response, autophagy, and nuclear factor erythroid-2-related factor 2 signaling.
Insulin target cells also produce metabolites that exacerbate cellular stress generation both locally and systemically, partly
through recruitment and activation of myeloid cells which sustain a state of chronic inflammation. Thus, insulin resistance may
be prevented or attenuated by multiple approaches targeting the different cellular stresses and stress responses.

1. Introduction

The hormone insulin plays an important role in maintaining
physiological levels of blood glucose, through various effects
on insulin target cells. In endothelial cells, it promotes the
release of nitric oxide and endothelin, which, respectively,
promote vasodilation and vasoconstriction, and the com-
bined vasodilatory and vasoconstrictive effects improve the
distribution of blood glucose to target organs such as skeletal
muscles [1]. It promotes glycogen synthesis in hepatocytes,
skeletal myocytes, and adipocytes [2, 3], downregulates the
expression of gluconeogenetic enzymes in hepatocytes, and
promotes glucose uptake through the GLUT 4 receptor in
skeletal myocytes and adipocytes [2, 3]. In specific types of
hypothalamic neurons, it inhibits the expression of orexi-
genic neuropeptides such as neuropeptide Y (NYP) or
agouti-related peptide (AgRP) and thereby contributes to
decreased food intake [4–8]. Insulin also inhibits food intake
by promoting expression of anorexigenic neuropeptides such

as proopiomelanocorticotropin (POMC) and cocaine- and
amphetamine-regulated transcript (CaRT) in the arcuate
nucleus, which together promote the activity of α-melano-
cyte-stimulating hormone in neurons in the paraventricular
nucleus (4–8). Besides inhibiting AgRP synthesis, insulin-
induced hyperpolarization of the AgRP-expressing arcuate
neurons reduces the firing rate of these neurons and results
in the generation and transmission of signals from the motor
nucleus of the vagus nerve to the liver, resulting in increased
hepatic interleukin 6 (IL-6) production, IL-6-mediated acti-
vation of signal transducer and activator of transcription 3
(STAT-3), and STAT-3-mediated decrease in the expression
of gluconeogenic genes such as glucose-6-phosphatase and
phosphoenol pyruvate carboxykinase (PEPCK) [9–12].

Insulin resistance refers to a condition in which insulin-
responsive cells undergo a less than normal response to insu-
lin, such as a reduced activation of endothelial nitric oxide
synthase in endothelial cells [13]. It involves disruption of
specific events in the insulin signaling pathways. Insulin
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signaling begins with insulin binding to the insulin receptor
(IR), a receptor tyrosine kinase, which then undergoes auto-
phosphorylation of various intracellular tyrosine residues,
resulting in the recruitment and tyrosine phosphorylation
of adaptor proteins including insulin receptor substrates
(IRS) such as IRS1 and IRS2 (Figure 1).

Signaling downstream of IRS occurs by several path-
ways (Figure 1). One such pathway sequentially involves
activation of phosphatidyl inositol 3-kinase (PI3K); conver-
sion of phosphatidyl inositol 4,5-biphosphate (PIP2) to
phosphatidyl inositol 3,4,5-triphosphate (PIP3); recruitment
of Akt (protein kinase B (PKB)) to the plasma membrane;

phosphorylation of Akt by 3-phosphoinositide-dependent
kinase-1 (PDK 1) and mammalian target of rapamycin com-
plex 2 (mTORC 2); and Akt-mediated phosphorylation of a
number of downstream protein substrates that induce effects
such as activation of glycogen synthase (GS) in adipocytes,
skeletal myocytes, and hepatocytes, translocation of glucose
transporter 4 (GLUT 4) to the plasma membrane of adipo-
cytes and skeletal myocytes, phosphorylation of the fork-
head transcription factor (FOXO 1) to inhibit expression
of gluconeogenic enzymes in hepatocytes, or activation of
endothelial nitric oxide synthase in endothelial cells [1–3, 13]
(Figure 1). Akt also activates mTORC 1 which not only is
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Figure 1: Insulin signaling pathways via the insulin receptor (IR) and insulin receptor substrates (IRS) [1–4, 9–12]. ERK: extracellular
signal-regulated kinase; eNOS: endothelial nitric oxide synthase; FOXO: forkhead box O transcription factor; GLUT 4: glucose transporter 4;
Grb2-SOS: growth factor receptor-bound 2- (Grb2-) son of sevenless (Sos) protein complex; GS: glycogen synthase; GSK3: glycogen synthase
kinase 3; IL-6: interleukin 6; MEK: MAPK (mitogen-activated protein kinase)/ERK kinase; mTORC 2: mammalian target of rapamycin
2; NO: nitric oxide; PDK 1: 3-phosphoinositide-dependent kinase-1; PIP2: phosphatidyl inositol 4,5-biphosphate; PIP3: phosphatidyl
inositol 3,4,5-triphosphate; STAT-3: signal transducer and activator of transcription 3.
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involved in feedback inhibition of IRS but also inhibits
synthesis of orexigenic neuropeptides by hypothalamic
neurons (not shown) [14].

In another pathway which involves orexigenic (AgRP-
producing) hypothalamic neurons, PI3K promotes opening
of ATP-sensitive K+ channels, resulting in sequential hyper-
polarization of these neurons, transmission of signals from
the vagus nerve to the liver, increased hepatic IL-6 synthesis,
activation of STAT-3, and decreased expression of gluco-
neogenic enzymes (Figure 1) [9–12]. On the other hand,
insulin-mediated upregulation of the production of anorexi-
genic neuropeptides by hypothalamic neurons proceeds
through IRS-mediated activation of the growth factor
receptor-bound 2- (Grb2-) son of sevenless (Sos) protein
complex (Grb2-Sos) and downstream activation of the
Ras-Raf-MEK-ERK pathway [4]. In endothelial cells, ERK
promotes the synthesis of endothelin-1 [1].

Because insulin resistance contributes to the develop-
ment of noncommunicable diseases such as diabetes, cardio-
vascular disease, fatty liver disease, Alzheimer’s disease, and
impaired lung function [12, 13, 15–18], much effort has been
directed toward understanding the mechanisms of its patho-
genesis through studies involving cell cultures, animal
models, and clinical studies. Cell cultures of hepatocytes, adi-
pocytes, skeletal muscle cells, endothelial cells, or neurons
incubated with palmitate or high sugar concentrations
develop insulin resistance [19–26]. Some of the cellular
events and mechanisms that have been shown to be involved
in the development of insulin resistance in these cells both
in vitro and in vivo include (i) toll-like receptor 4 (TLR4)
and associated inhibitor of kappa B kinase- (IKK-) nuclear
factor kappa B (NF-κB) signaling [27–31]; (ii) advanced
glycation end products (AGEs) or uric acid-induced recep-
tor for AGE (RAGE) signaling via NF-κB [30, 32–34]; (iii)
oxidized low-density lipoprotein- (oxLDL-) mediated RAGE
or Lox-1 signaling and the resultant activation of NF-κB and
formation of peroxynitrite [30, 35, 36]; (iv) upregulation of
NADPH oxidase (Nox) expression and activity [20, 21, 30,
37–39]; (v) increased mitochondrial reactive oxygen species
(ROS) generation [30, 40]; (vi) upregulation of inducible
nitric oxide synthase (INOS) [30, 41–43]; (vii) increased
diacylglycerol synthesis [30, 44]; (viii) increased ceramide
synthesis [30, 45, 46]; (ix) activation of protein kinase C
(PKC) isoforms [30, 37, 47]; (x) activation of mitogen-
activated protein kinases (MAPKs) such as c-Jun N-terminal
kinase (JNK), p38 MAPK, and extracellular signal-regulated
kinase (ERK) [20, 28, 30]; (xi) endoplasmic reticulum
stress and the unfolded protein response [30, 43, 48–50];
(xii) dysregulation of the heat shock response [51–53]; (xiii)
autophagy dysregulation [54]; (xiv) apoptosis [55]; (xv) p53
activation [56]; and (xvi) inflammasome activation [57, 58].
Thus, insulin resistance is regarded as a complex disorder
that defies a single etiological pathway [59].

This review summarizes the above mechanisms into a
unifying hypothesis that the pathogenesis of insulin resis-
tance involves generation of oxidative stress, nitrosative
stress, carbonyl stress, endoplasmic reticulum stress, and
genotoxic stress through interconnected pathways; induction
of various responses to these stresses, such as the unfolded

protein response (UPR), the ubiquitin proteasome pathway
(UPP), DNA damage response (DDR), the NRLP3 inflam-
masome, and apoptosis; and the dysregulation of stress
responses such as autophagy, heat shock response, and
nuclear factor erythroid-2-related factor 2 (Nrf2) signaling
in insulin target cells (as exemplified in Figure 2). Each of
the stresses, stress responses, and stress response dysregula-
tions contributes to insulin resistance in multiple ways.

2. Pathways to Cellular Stresses in Insulin
Target Cells

2.1. Pathways to Oxidative and Nitrosative Stresses in
Response to Overnutrition, Physical Inactivity, Hypoxia,
Psychological Stress, or Environmental Pollutants. As illus-
trated in Figure 2, cell surface receptors such as the TLR4,
RAGE, Lox-1, and angiotensin receptor type 1 (AT1) are
involved in signaling pathways that generate oxidative stress
and nitrosative stress.

A high-fat or high-fructose diet promotes the growth
of gram-negative bacteria in the colon, resulting in endo-
toxemia and the release of enteric lipopolysaccharide (LPS)
into blood plasma [60, 61]. LPS is a direct ligand for TLR4
and induces TLR4-dependent oxidative stress and inhibi-
tion of insulin signaling in both peripheral insulin target
cells and hypothalamic neurons [28, 30, 62, 63]. TLR4 sig-
naling via MyD88 and IRAK 4 leads to the activation of
IKK [28, 30, 64]. One of the most important targets of
IKK activation is NF-κB, which, for example, was found
to be essential for palmitate-induced insulin resistance in
C2C12 skeletal muscle cells [65]. NF-κB induces expression
of protein tyrosine phosphatase B (PTPB), a negative regula-
tor of the insulin receptor [66] and proinflammatory genes
such as tumor necrosis factor-α (TNF-α), interleukin 1β
(IL-1β), and interleukin 6 (IL-6) [67]. It also upregulates
the expression of Nox and iNOS, which produce superoxide
anions (O2

−) and nitric oxide (NO), respectively [28–30, 68,
69]. Superoxide anions are rapidly converted to hydrogen
peroxide (H2O2) by superoxide dismutase (SOD) [70].
Superoxide anions also rapidly react with NO to form perox-
ynitrite (OONO−) [70], which reacts with hydrogen peroxide
(H2O2) to form singlet oxygen (1O2) [30, 71], which in turn
reacts with biomolecules such as lipids and proteins to form
organic hydroperoxides (ROOH) [30]. Excessive production
of reactive oxygen species (ROS) such as superoxide anions,
hydrogen peroxide, organic hydroperoxides, and singlet
oxygen results in oxidative stress when the ROS outweigh
the cellular antioxidant capacity [72]. Likewise, excessive
formation of peroxynitrite results in nitrosative stress.
NF-κB-dependent induction of iNOS and Nox may further
contribute tomitochondrial oxidative and nitrosative stresses.
This is because, even whenH2O2 andNO are generated extra-
mitochondrially, they readily enter the mitochondria and
induce electron leakage from the electron transport chain
(ETC), thus promoting the generation of mitochondrial
superoxide anions, H2O2, peroxynitrite, singlet oxygen, and
lipid hydroperoxides [30, 70].

The nonenzymatic reaction of sugars with proteins
(Maillard reaction) leads to the formation of hydrogen
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peroxide, singlet oxygen, and advanced glycation end prod-
ucts (AGEs) such as glyoxal lysine and methylglyoxal lysine
[73, 74]. AGEs accumulate in plasma and tissues of animals
and humans on diets rich in fructose or preformed AGEs
[75]. AGEs signal via the RAGE receptor to induce activation
of NF-κB via some components of the TLR4 pathway and
thus produce similar effects as LPS, including the induction
of oxidative and nitrosative stresses (Figure 2) [30, 32, 76].

Oversupply of fatty acids to insulin target cells occurs
because of excessive dietary intake, obesity, or muscle
inactivity-associated decrease in beta oxidation of fatty acids
[59, 77, 78]. Palmitate and laurate can induce the activation
of IKK, NF-κB, and oxidative stress independently of LPS
[79–84]. This at least partly involves increased synthesis of
diacylglycerol (DAG), a cofactor of protein kinase C (PKC)
isoforms which activate Nox isoforms and NF-κB [30, 59,

80, 82–85]. Similarly, exposure of endothelial cells to high
glucose levels results in DAG formation and subsequent
activation of PKC and Nox [80]. The activation of Nox
and NF-κB by PKC isoforms may involve PKC-induced
TLR4 signaling as shown in Figure 2 [30, 64, 81]. How-
ever, DAG-PKC-induced insulin resistance without TLR4
activation has also been reported [84].

Palmitate is a substrate of serine palmitoyl transferase
(SPT) in the first step of the de novo biosynthesis of the
sphingolipid ceramide, an inhibitor of insulin signaling by
multiple mechanisms including activation of protein phos-
phatase 2A (PP2A) and PKC-ζ, which promote dephosphor-
ylation of Akt or serine phosphorylation of IRS, respectively
[45, 81, 86, 87]. Long-term ceramide action also promotes
serine phosphorylation of IRS via sequential activation of
the double-stranded RNA-activated protein kinase (PKR)
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Figure 2: Pathways to interconnected cellular stresses, stress responses, and stress response dysregulations that contribute to insulin
resistance in insulin target cells exposed to excess nutrients (sugars or fatty acids such as palmitate), angiotensin II (Ang II), or bacterial
lipopolysaccharide (LPS). ALDR: aldose reductase; AGE: advanced glycation end product; AT1: angiotensin receptor type 1; DAG:
diacylglycerol; DDR: DNA damage response; GS-HNE: glutathione-HNE adduct; GS-HN: glutathionyl-1,4-dihydroxynonene; GSK:
glycogen synthase kinase; HSR: heat shock response; IL-1β: interleukin 1β; IL1-R: interleukin 1 receptor; iNOS: inducible nitric oxide
synthase; IKK: inhibitor of kappa B kinase; LMP: lysosomal membrane permeabilization; MAPK: mitogen-activated protein kinase;
NF-κB: nuclear factor kappa B; Nox: NADPH oxidase; PKC: protein kinase C; PLC: phospholipase C; TLR4: toll-like receptor 4; UPP:
ubiquitin-proteosome pathway; UPR: unfolded protein response. The stresses, stress responses, and signaling pathways generating them
contribute to insulin resistance by multiple mechanisms as described in the text. Insulin resistance may occur because of the combined
effects of different components of the system, and these components may promote IR to different extents in different cell types.
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and JNK [88]. Palmitate-induced TLR4-IKK signaling pro-
motes ceramide biosynthesis by upregulating the synthesis
of SPT and ceramide synthases (Figure 2) [81, 86]. Ceramide
is an important contributor to oxidative stress. It induces
mitochondrial superoxide anion and H2O2 generation by
blocking the electron transport system at complex III [89].
Mitochondrial superoxide anions generated in this manner
induce opening of the mitochondrial permeability transition
pore, allowing mitochondrial ROS to move into the cyto-
plasm [90]. Some mechanisms by which ceramide induces
insulin resistance, such as apoptosis induction, JNK activa-
tion, and mitochondrial fission, depend on such ceramide-
induced oxidative stress [91–95]. ROS and NO promote
mitochondrial fission, which in turn promotes ROS forma-
tion through cytochrome c oxidase [96, 97].

In a recent clinical trial, a high-saturated-fat diet increased
the serum concentrations of angiotensin-converting enzyme
(ACE) independently of weight gain [98]. In the classical
renin-angiotensin system (RAS), ACE converts angiotensin I
to the active angiotensin II which signals via angiotensin
receptors 1 and 2 (AT1 and AT2) [99] and TLR4 to induce
NF-κB activation, mitochondrial fission, and insulin resis-
tance in skeletal muscle cells, vascular smooth muscle cells,
and endothelial cells [31, 99–104]. Angiotensin II signaling
upregulates xanthine oxidase protein expression and activity
in a Nox-dependent manner in endothelial cells [105]. Fur-
thermore, it activates 12-lipoxygenase, whose product, 12-
hydroxyeicosatetraenoic acid (12-HETE), induces NF-κB in
endothelial cells and aldosterone in adrenal glomerulosa cells
[106, 107]. Aldosterone levels increase in humans during obe-
sity, and this hormone correlates with insulin resistance

independently of the bodymass index [108, 109]. Aldosterone
increases superoxide production in endothelial cells though
mineralocorticoid receptor- (MR-) mediated activation of
Nox and Rac 1 [110]. It also promotes MR-induced de novo
ceramide synthesis in these cells [111]. This adrenal hormone
readily enters the brain, such that its levels in the brain are
directly proportional to its plasma levels in rats [112]. It acti-
vates the hypothalamic renin-angiotensin system and associ-
ated oxidative stress in hypothalamic neurons [112, 113].

Psychological stress (PS) is another major inducer of
oxidative stress and insulin resistance [114–116]. This is
partly through increased production of aldosterone [109],
angiotensin II [117], and glucocorticoids such as cortico-
sterone and cortisol (Figure 3) [118–120]. Glucocorticoids
upregulate the expression of SPT and ceramide synthases
and thus contribute to ceramide-mediated oxidative stress
and insulin resistance [121, 122]. They have a higher affinity
for the mineralocorticoid receptor than for the glucocorticoid
receptor, and theirbinding to the former increasesNoxexpres-
sion in adipocytes [123]. PS also contributes to LPS-induced
oxidative stress and insulin resistance by promoting colonic
barrier permeability and the translocation of bacteria and
LPS from the intestinal lumen to the blood [124]. Chronic
peripheral administration of corticotropin-releasing factor
was demonstrated to cause such colonic barrier dysfunc-
tion in rats [125]. This involves glucocorticoid-mediated
downregulation of the intestinal epithelial tight junction
protein, claudin 1 [126].

Chronic activation of the sympathetic nervous system
and the associated increase in catecholamines such as epi-
nephrine and norepinephrine are another hallmark of PS
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Figure 3: Psychological stress-dependent pathways to oxidative and nitrosative stresses. Psychological stress activates the renin-angiotensin-
aldosterone system (RAAS), the hypothalamic-pituitary-adrenal axis (HPA), and the sympathetic adrenomedullary system (SAS), leading to
increased availability of angiotensin II (Ang II), aldosterone, glucocorticoids, catecholamines, and free fatty acids which induce oxidative and
nitrosative stresses in insulin target cells [109, 117–120, 127, 128]. Glucocorticoids and aldosterone promote de novo ceramide synthesis in
endothelial cells and may thereby contribute to plasma ceramides [111, 121–123]. Glucocorticoids also increase colon epithelial barrier
permeability and thus increase circulating LPS [124–126]. Angiotensin II, glucocorticoids, aldosterone, and catecholamines upregulate
Nox activity in various insulin target cells [105, 110, 130, 132].
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[127]. These catecholamines contribute to insulin resistance
in the heart by activating β-adrenergic receptors (β-AR)
[128]. Activation of β-AR induces oxidative stress in cardio-
myocytes, adipocytes, and endothelial cells, at least partly by
β2-AR-mediated upregulation of Nox [128–132]. The β3-AR
activates hormone-sensitive lipase in adipocytes and thus
promotes accumulation of free fatty acids and the associated
increase in ceramide synthesis and MAPK activation [133].
AR stimulation inhibits adiponectin gene expression in adi-
pocytes via protein kinase A [134], and this should further
promote ceramide accumulation and ceramide-dependent
oxidative stress because adiponectin increases ceramidase
activity [135].

Mountain climbing or obstructive sleep apnea (OSA)
induces insulin resistance, and this is associated with
hypoxia-induced oxidative and nitrosative stresses [136,
137]. OSA worsens during periods of rapid weight gain
[138]. Chronic asthma also induces intermittent hypoxia
[139], and an association between asthma and insulin resis-
tance was demonstrated in children and adolescents [18,
140, 141]. Many mechanisms have been reported to be
involved in hypoxia-induced oxidative and nitrosative
stresses. During the switch from normoxia to hypoxia, a
burst of superoxide formation occurs at mitochondrial com-
plex 1 due to deactivation of this complex in cells such as
endothelial cells and neurons [142]. Hypoxia also increases
superoxide formation at mitochondrial complex III [143].
In human umbilical endothelial cells, hypoxia was found to
induce expression of the human circadian locomotor output
cycle protein kaput (hCLOCK), which promoted the pro-
duction of ROS, which in turn promoted Rhoa and NF-κB
signaling [144]. Hypoxia upregulates 12/15-lipoxygenase,
whose metabolites, namely, 13-hydroperoxyoctadecadienoc
acid (13-HPODE), 12-hydroxyeicosatetraenoic acid (12-
HETE), and 15-hydroxy-eicosatetraenoic acid (15-HETE),
activate NF-κB, iNOS, and mitochondrial oxidative stress in
endothelial cells, cardiomyocytes, smooth muscle cells,
neurons, and adipocytes [145–151]. Since 13-HPODE,
12-HETE, and 15-HETE activate PKC isoforms [149, 152,
153], the 12/15-lipoxygenase-dependent, hypoxia-induced
oxidative and nitrosative stressesmay follow the pathway out-
lined in Figure 4.

As indicated in this figure, 15-S-HETE also activates xan-
thine oxidase (XO) in endothelial cells [154]. Such increase in
XO activity occurs during hypoxia [155] and leads to
increased uric acid (UA) formation in lowlanders at high alti-
tude [156]. Uric acid is a promoter of oxidative stress via the
RAGE receptor in endothelial cells [34]. During intermittent
hypoxia, XO-derived ROS activate Nox2 [157]. In addition,
hypoxia increases catecholamine production [158] and, like
psychological stress, has been reported to induce mucosal
barrier failure and endotoxemia in rats and primates [159,
160]. However, a recent study in humans found that hypoxia
increased gut inflammation but not gut permeability [161].

Long-term exposure to traffic-related air pollution was
found to be positively associated with insulin resistance in
children [162]. Particulate matter, ozone, nitrogen oxides,
and transition metals are among the potent oxidants in pol-
luted air that induce endogenous ROS formation and

oxidative stress [163]. Cadmium, a heavy metal pollutant
from industrial plants, which makes its way into the food
chain and induces oxidative stress was recently found to be
positively associated with insulin resistance [164].

2.2. Oxidative Stress Produces Carbonyl Stress and Vice
Versa. Decomposition of lipid hydroperoxides produces
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Figure 4: Pathways for the hypoxia-induced generation of oxidative
and nitrosative stresses through the human circadian locomotor
output cycle protein kaput- (hCLOCK-) mediated 12/15-
lipoxygenase activation [143–150]. 12/15-Lipoxygenase catalyses
the production of ROS in the form of 13-hydroperoxy-
octadecadienoic acid (13-HPODE) from linoleic acid (LA) or
12-hydroperoxy-eicosatetraenoic acid (12-HPETE) and 15-
hydroperoxy-eicosatetraenoic acid (15-HPETE) from arachidonic
acid (AA). 13-HPODE, 12-HPETE, and 15-HPETE are reduced to
the corresponding hydroxy derivatives 13-HODE, 12-HETE, and
15-HETE, respectively. 13-HPODE, 12-HETE, and 15-HETE
activate PKC isoforms [148, 151, 152], which promote activation
of NF-κB, NADPH oxidase (Nox) isoforms, and inducible nitric
oxide synthase (iNOS) [30, 144–150]. iNOS and Nox produce
nitric oxide (NO) and superoxide anions (O2

·−), respectively,
which undergo enzymatic and nonenzymatic reactions that lead to
the formation of other ROS such as hydrogen peroxide and singlet
oxygen, as well as the RNS, peroxynitrite [30]. 15-HETE activates
xanthine oxidase (XO) [154], which catalyses the formation of
both superoxide anions and uric acid, and the latter signals via the
receptor for advanced glycation end products (RAGE) to activate
NF-κB [34].
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reactive carbonyl compounds including acrolein, glyoxal,
methylglyoxal, malondialdehyde, 4-hydroperoxy-2-nonenal,
4-hydroxy-2-nonenal (HNE), 4-oxo-2-nonenal, 2,4-decadie-
nal, and 9-oxo-nonanic acid [165]. Elevated formation of
such products constitutes carbonyl stress. Thus, oxidative
stress, through increased production of lipid hydroperoxides,
promotes carbonyl stress. As mentioned in the previous sec-
tion, methylglyoxal- and glyoxal-derived AGEs promote oxi-
dative stress via the RAGE receptor. Likewise, 4-HNE, one of
the predominant lipid-derived aldehydes formed in insulin-
responsive cells during high-fat or high-glucose diets, pro-
motes the formation of reactive oxygen and nitrogen species
[166]. Cholesterol secosterol aldehydes, which are produced
via the reaction of cholesterol with singlet oxygen or ozone
[30, 167], increase oxidative stress by inactivating catalase
and thus promoting the accumulation of hydrogen peroxide
and lipid hydroperoxides [168].

2.3. Oxidative and Carbonyl Stresses Promote Endoplasmic
Reticulum Stress and Vice Versa. Noncytoplasmic and non-
membrane proteins synthesized at the rough endoplasmic
reticulum (ER) undergo translocation into the ER lumen,
where calcium-dependent molecular chaperones assist their
folding into the correct tertiary structures [169]. The ER cal-
cium transporter, sarco- (endo-) plasmic reticulum Ca2+

ATPase (SERCA), pumps calcium ions into this organelle
and thereby promotes the activity of the molecular chaper-
ones [170, 171]. The reversible S-glutathionylation of SERCA
thiols by NO and peroxynitrite increases SERCA activity, but
the irreversible sulfonation of these thiols by ROS such as
hydrogen peroxide and singlet oxygen causes its inactivation
[30, 170–172]. The ensuing accumulation of unfolded or
misfolded proteins in the ER constitutes ER stress [173]. Car-
bonylation by aldehydes such as acrolein, methylglyoxal,
glyoxal, and HNE also reduces SERCA activity [174, 175].
ER stress leads to enhanced Nox 4 activity in the ER, resulting
in increased hydrogen peroxide formation and oxidative
stress [176]. Such increased ER oxidative stress promotes cal-
cium efflux from the ER and calcium influx into the mito-
chondria, which induces mitochondrial ROS production
and oxidative stress [30, 176]. Thus, there is a vicious cycle
between ER stress and oxidative stress [30, 177].

2.4. Oxidative, Carbonyl, and Nitrosative Stresses Generate
Genotoxic Stress. Oxidative stress, carbonyl stress, and nitro-
sative stress contribute to genotoxic stress by availing geno-
toxic reactive oxygen, carbonyl, and nitrogen species that
modify DNA. ROS react with the nitrogenous bases in
DNA to induce a variety of base modifications. One of the

most common of such modifications is the conversion of
guanine to 8-oxo-7,8-dihydroguanine (8-oxoG), whose levels
in urine have been suggested to be a marker of whole-body
oxidative stress [178, 179]. 8-oxoG is most readily formed
by singlet oxygen, although the hydroxyl radical also contrib-
utes to its formation [180, 181]. Mitochondrial DNA is
exposed to singlet oxygen generated through mechanisms
such as the reaction of peroxynitrite with hydrogen peroxide
or cytochrome c-mediated conversion of cardiolipin hydro-
peroxide to triplet carbonyls in the mitochondria [30].
DNA-damaging hydroxyl radicals may be generated by the
Fenton reaction between DNA-bound Fe2+ and hydrogen
peroxide [182]. 8-oxoG undergoes further oxidative modifi-
cations, as well as crosslinking with lysine to generate
protein-DNA adducts [183]. The reaction of singlet oxygen
or hydroxyl radicals with deoxyribose in DNA generates
single-strand breaks, but double-strand breaks can be gener-
ated when the single-strand breaks occur in close proximity
[178, 184]. Peroxynitrite induces single-strand breaks in
DNA through deoxyribose oxidation or via the formation
of 8-nitroguanine [185]. Reactive carbonyl compounds
derived from the decomposition of lipid hydroperoxides
react with DNA bases to form exocyclic propano- and
etheno-DNA adducts, as recently reviewed [186]. The gly-
coxidation of histone proteins by glyoxal and methylglyoxal
promotes the oxidative generation of DNA strand breaks
[187]. The formation of hydrogen peroxide and singlet oxy-
gen during protein glycoxidation [74] may explain this phe-
nomenon. Genotoxic stress in turn promotes oxidative
stress (Section 3.4).

3. Mechanisms of the Inhibition of Insulin
Signaling by Cellular Stresses

3.1. Oxidative Stress. The oxidative modifications of biomol-
ecules including lipids, nucleic acids, and proteins contribute
to insulin resistance. Some common types of oxidative pro-
tein modifications include hydroperoxidation, glutathionyla-
tion, and sulfonation. As shown in Figure 5, proteins (Pr)
react with singlet oxygen to form protein hydroperoxides
(Pr-OOH). The latter is relatively long lived and inactivates
enzymes even when singlet oxygen is no longer in the system
[188, 189]. Pr-OOHs react with thiol (-SH) groups in other
proteins to form hydroxy proteins (Pr-OH) and protein sul-
fenic acids (Pr-S-OH), and the latter readily reacts with glu-
tathione (GSH) to form glutathionylated proteins (Pr-S-SG)
[190–192]. Hydrogen peroxide also induces protein glu-
tathionylation, analogously to protein hydroperoxides, but

1
2

Pr Pr-OOH PrOH

Pr-SH

GSH H2O

Pr-S— SGPr-S— OH

O

Figure 5: Mechanism of singlet oxygen-mediated protein glutathionylation. Reaction of 1O2 with a protein (Pr) on residues such as
tryptophan and histidine generates a protein hydroperoxide (Pr-OOH). Reaction of Pr-OOH with cysteine residues in other proteins
(Pr-SH) converts the latter to sulfenic acids (Pr-SOH) [189], which readily react with glutathione (GSH) to form glutathionylated
proteins (Pr-S-SG) [190, 191].
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the latter is more reactive [189]. Sulfenic acids (Pr-SOH)
react further with H2O2 to form sulfinic acids (Pr-SO2H),
which react with H2O2 to form sulfonic acids (Pr-SO3H)
[190]. The reaction of superoxide radicals with thiols may
also lead to the conversion of the latter to sulfonates via
persulphenyl derivatives [193]. Ozone or ozone-like oxi-
dants have been suggested to be formed in biological sys-
tems [74, 167]. Ozone largely converts thiolate ions to
sulfonates [194] and was postulated to be an important
contributor to the conversion of methionine sulfoxide to
methionine sulfonate [195].

At low levels, ROS including H2O2 and singlet oxygen
stimulate insulin signaling by the PI3K-Akt pathway through
inhibition of protein tyrosine phosphatase 1B (PTP1B)
which dephosphorylates the insulin receptor [196, 197]. On
the other hand, a high concentration of H2O2 was found to
induce insulin resistance in hepatocytes, and systemic
removal of hydrogen peroxide improved insulin resistance
in obese mice [196, 198]. ROS activate stress-sensitive kinases
which reduce insulin signaling [199], and it was proposed
that at high H2O2 concentrations, JNK activation outweighs
PTP1B inactivation [196].

Activation of JNK and p38 by ROS occurs through the
modification of their regulatory proteins. For example,
MAPK phosphatase 1 deactivates JNK and p38 MAPK by
dephosphorylation, but glutathionylation targets this phos-
phatase for proteosomal degradation [199].

Protein-protein interaction between glutathione S-
transferase P (GSTP) and JNK keeps the latter in an inactive
state, but oxidative modification of the former breaks this
interaction and activates JNK [200, 201]. Another protein
whose oxidative modification promotes insulin resistance is
thioredoxin which, in the native state, binds to and inacti-
vates apoptotic signaling kinase 1 (ASK1), an upstream
activator of both JNK and p38 pathways [202, 203]. While
the release of thioredoxin from ASK would also allow the
former to act as a thiol-reducing antioxidant, oxidative stress
promotes the p38 MAPK- and FOXO-dependent expression
of thioredoxin-interacting protein (TXNIP) [204] and trans-
fer of the latter from the nucleus to the cytoplasm and mito-
chondria, where it binds to thioredoxin 1 and thioredoxin 2,
respectively, and this aggravates oxidative stress [204, 205].
Increased oxidative stress also favors the activatory binding
of TXNIP to the NLRP3 inflammasome [205], a key contrib-
utor to insulin resistance as described in Section 4.5.

Several studies have reported that the inhibition of gly-
colysis in muscle cells induces insulin resistance [206–208],
for example, through a compensatory increase in lipid
uptake [208]. Protein peroxides generated by singlet oxygen
inhibit the glycolytic enzyme glyceraldehyde-3-phosphate
dehydrogenase (GPD) [209]. Besides reduced glycolysis,
GPD inhibition enhances the conversion of dihydroxyace-
tone phosphate to methylglyoxal [210], which is one of
the major reactive carbonyls contributing to insulin resis-
tance (Section 3.3).

Reactive oxygen species such as H2O2 promote Ser637
dephosphorylation of the GTPase, dynamin-related protein
1 (Drp1), resulting in translocation of the latter to the mito-
chondria, where its polymerization into a ring-like structure

induces mitochondrial fission [211], an important contribu-
tor to insulin resistance and oxidative stress [94, 95].

Perhaps one of the greatest contributions of oxidative
stress to insulin resistance is that it generates metabolites that
create positive feedback loops for potentiation of TLR4,
RAGE, and other signaling pathways associated with activa-
tion of NF-κB and insulin signal-inhibiting serine kinases
such as PKC, IKK, JNK, and p38 MAPK. For example, oxida-
tive stress leads to the oxidation of low-density lipoproteins
(LDL), and oxidized LDL (oxLDL) signals via Lox-1, RAGE,
and Fas receptors to activate NF-κB and MAPKs as recently
reviewed [30], and the plasma concentration of oxLDL is
an independent risk factor for insulin resistance [212].

p38 MAPK promotes the expression of aldose reductase
(ALDR) [213], which is subsequently activated by oxidative
modification [214], and makes a major contribution to insu-
lin resistance [215]. ALDR reduces HNE-glutathione adduct
(GS-HNE) to glutathionyl-1,4-dihydroxynonene (GS-HN),
which activates phospholipase C, leading to DAG formation
and the activation of PKC, MAPKs, and NF-κB (Figure 2)
[166, 216]. DAG oxidation also contributes to PKC-
dependent signaling, since DAG hydroperoxide is a more
potent activator of PKC than unoxidized DAG [217]. In the
presence of excess glucose, ALDR catalyses the first reaction
of the polyol pathway, which leads to the production of both
DAG and AGES, thus contributing to signaling via both
TLR4 and RAGE [218]. The role of ALDR in potentiating
LPS-TLR4 signaling via PKC is evidenced by findings that
its inhibition alleviates endotoxin-induced inflammatory dis-
eases [216, 219, 220].

Mammalian xanthine dehydrogenase (XDH) is reversibly
converted to xanthine oxidase (XO) by oxidative modifica-
tion of specific cysteine residues [221]. As already mentioned,
lipoxygenase-mediated 15-HETE formation during hypoxia
activates XO. Fructose metabolism in hepatocytes is asso-
ciated with increased XO-mediated conversion of AMP
to uric acid [85, 222–224], which promotes insulin resis-
tance through RAGE, TLR4, NF-κB, Nox, mitochondrial
oxidative stress, ER stress, and skeletal muscle atrophy
[30, 34, 223–227].

Oxidative stress promotes ceramide synthesis even inde-
pendently of SPT and ceramide synthases. Singlet oxygen
converts sphingomyelin to ceramide, even in protein-free
liposomes [228]. In glioma cells, superoxide promotes
ceramide formation through activation of neutral sphin-
gomyelinase [229]. Sphingomyelinase inhibition reduces
intramyocellular ceramide and protects muscle cells from
insulin resistance [230, 231].

H2O2 downregulates the expression of carnitine palmi-
toyl transferase 1 (CPT1), acyl COA oxidase (ACOX), and
peroxisome proliferator-activated receptor-alpha (PPAR-α)
in hepatocytes [232] and PPAR-γ in endothelial cells [233].
CPT1 and ACOX are involved in fatty acid oxidation and
reduction of DAG and ceramide levels [232, 234, 235].
PPAR-α reduces oxidative stress by upregulating superoxide
dismutase and catalase expression and inhibiting NF-κB
activity [232, 236, 237]. PPAR-γ inhibits NF-κB and upregu-
lates the expression of adiponectin, an adipokine that
improves insulin sensitivity [238–240].
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3.2. Nitrosative Stress. The importance of nitrosative stress in
insulin resistance is evidenced by reports that inhibition of
iNOS or peroxynitrite in various cell types prevents insulin
resistance [41–43]. Peroxynitrite decomposes into radicals
that cause inhibitory tyrosine nitration of proteins in the
insulin signaling pathway [70]. The reaction of peroxynitrite
with proteins generates thyl radicals and sulfenates, leading
to protein glutathionylation [192]. Nitrosoglutathione causes
glutathionylation and inhibition of GADPH [241]. Peroxyni-
trite contributes to palmitate-induced DNA damage and
inflammasome activation [23, 242]. It also induces ceramide
formation in endothelial cells [243]. Nevertheless, the effects
of peroxynitrite are mediated to some extent by ROS since
peroxynitrite-derived radicals can initiate free radical lipid
peroxidation [244], and the reaction of peroxynitrite with
hydrogen peroxide generates singlet oxygen [30, 71]. Thus,
iNOS and NO donor-induced IRS-1 degradation in skele-
tal muscle cells was accentuated by concomitant oxidative
stress [245].

3.3. Carbonyl/Electrophilic Stress. Reactive carbonyl species
contribute to insulin resistance in various ways. Methyl-
glyoxal, HNE, and cholesterol secosterol aldehydes partici-
pate in the generation of oxidative stress and associated
NF-κB and MAPK activation (Sections 2.1, 2.2, and 3.1). In
addition, methylglyoxal adducts insulin and inhibits the lat-
ter’s proper interaction with the insulin receptor [246].
Protein-HNE adducts correlate with intramyocellular lipid
content and the severity of insulin resistance in humans
[247]. HNE forms Michael adducts with His196 and
Cys311 of Akt2 and thus inhibits downstream phosphoryla-
tion of Akt substrates such as glycogen synthase kinase 3β
(GSK3β) and MDM2, resulting in the activation of the for-
mer and inhibition of the latter [247]. GSK3β inhibits glyco-
gen synthase and IRS and thus prevents both glycogen
synthesis and glucose transport [248–250]. It also promotes
hepatic gluconeogenesis by an unknown mechanism [251]
and contributes to the dysregulation of the Nrf2 antioxidant
response [252]. MDM2 is a negative regulator of the p53
protein, which promotes insulin resistance as discussed
in Section 3.4.

Human adipocytes and white adipose tissue express
the full enzymatic machinery required for the synthesis
and metabolism of asymmetric NGNGdimethylarginine
(ADMA) which uncouples NOS and thus promotes ROS
formation, increases TLR4 expression, decreases IRS-1
and GLUT-4 expression, and inhibits IRS-1 tyrosine phos-
phorylation and GLUT-4 translocation [253–256]. Plasma
levels of ADMA increase during oxidative stress, mainly
due to decreased expression and activity of the ADMA-
degrading enzyme, dimethylarginine dimethylaminohydro-
lase (DDAH) [255–259]. HNE downregulates DDAH-1
expression through an miR-21-dependent mechanism [259].

3.4. Genotoxic Stress. Increased oxidative DNA damage
determined as serum 8-hydroxy-2-deoxy-guanosine (8-
OHdG) was found in lean normoglycemic offspring of type
2 diabetics, who are more predisposed to insulin resistance
[260]. Similarly, serum level of 8-OHdG was found to be

increased in prediabetes [261]. Mice deficient in 8-
oxoguanine DNA glycosylase (the enzyme that performs
base excision repair of DNA by cleaving 8-oxoG and other
modified bases) were found to be prone to insulin resistance
upon high-fat feeding [262]. Mitochondrial DNA damage
promotes palmitate-induced insulin resistance mainly by
increasing mitochondrial oxidative stress, ER stress, JNK
activation, and apoptosis, since overexpression of DNA gly-
cosylase/apurinic/apyrimidinic lyase (hOGG1) in the mito-
chondria of skeletal muscle cells abrogated these effects
[263, 264]. Interestingly, prevention of mitochondrial DNA
damage in cardiomyocytes exposed to angiotensin II pre-
vented mitochondrial superoxide production in these cells
[265]. In the latter study, mtDNA damage was found to cause
impairments in mitochondrial protein expression, cellular
respiration, and complex 1 activity prior to enhanced mito-
chondrial superoxide production. In addition, oxidized mito-
chondrial DNA released into the cytoplasm during apoptotic
signaling activates the NLRP3 inflammasome [266].

3.5. Endoplasmic Reticulum Stress. Endoplasmic reticulum
stress contributes to insulin resistance by promoting oxida-
tive stress, especially mitochondrial oxidative stress and the
resultant carbonyl and genotoxic stresses (Section 2.3) and
ceramide synthesis [46], as well as by triggering the unfolded
protein response [267], inflammasome activation [268], and
apoptosis (Section 4.4).

4. Inhibition of Insulin Signaling by Cellular
Stress Responses

4.1. The Ubiquitin-Proteosome Pathway. The ubiquitin-
proteosome pathway (UPP) is the major cytosolic mecha-
nism for the selective degradation of damaged proteins, such
as oxidatively modified proteins, whereby the damaged pro-
teins are conjugated to multiple ubiquitin molecules and then
degraded by the 26S proteasome [269]. This system is upreg-
ulated by mild and moderate oxidative stress and is required
for cells to cope with oxidative stress [269]. On the other
hand, UPP-mediated degradation of the NF-κB inhibitor,
iKB, causes activation of NF-κB [270]. NF-κB promotes oxi-
dative stress and induces expression of proinflammatory
cytokines including TNF-α and IL-6 which, via the JAK-
STAT pathway, upregulate expression of suppressors of cyto-
kine signaling (SOCS) proteins such as SOCS1 and SOCS3
[271–273]. Association of the SOCS proteins with IRS targets
the latter for degradation by the ubiquitin-proteosome path-
way in multiple cell types [271–273]. Accordingly, palmitate-
induced insulin resistance in L6 myotubes was found to be
dependent on constitutive phosphorylation of STAT 3 and
the associated increase in protein expression of SOCS 3
[274], and the ubiquitination and proteosomal degradation
of IRS-1 and Akt was demonstrated to contribute to palmi-
tate or NO donor-induced insulin resistance in HepG2 cells
and skeletal muscle cells, respectively [245, 275]. Moreover,
increased SOCS1/SOCS3 expression during uveitis induces
insulin resistance in neuroretina [276], and SOCS3 overex-
pression is responsible for the induction of insulin resistance
in mice infected with hepatitis C virus [277].
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Several factors contribute to increased UPP during the
pathogenesis of insulin resistance. For example, the 15-
lipoxygenase product, 15-HETE, induces the expression of
key enzymes of the UPP pathway [150]. Inhibition of the adi-
pose tissue ERK1/2 pathway during a high-fat diet was
reported to enhance the UPP-mediated degradation of adi-
ponectin [278], although contradictory results that ERK
activity increases in hypertrophic adipocytes have also been
obtained [279]. Increased HNE activity during a high-fat diet
enhances the ubiquitin-proteosome-mediated degradation
of adiponectin [280]. This is detrimental since adiponectin
improves insulin sensitivity by (i) upregulating ceramidase
activity to decrease ceramide levels [135]; (ii) increasing
the levels of tetrahydrobiopterin (BH4), which lowers hepa-
tocyte gluconeogenesis by activating AMP-activated kinase
(AMPK) in an eNOS-dependent process [281]; and (iii)
upregulating the silent information regulator 1 (SIRT1),
a nicotinamide adenine dinucleotide-dependent histone
deacetylase [282].

SIRT1 plays a role in the reduction of oxidative stress
through increased expression of superoxide dismutase and
catalase subsequently to FOXO4 deacetylation [283]. It also
activates AMP-activated kinase (AMPK), which promotes
insulin sensitivity by inhibiting PKC isoforms and the
associated NF-κB activation, oxidative stress, ER stress,
and apoptosis [284–291]. AMPK also induces mitochon-
drial biogenesis, which limits endothelial cell dysfunction,
for example, in response to angiotensin II signaling [292].
Phosphorylation of SIRT1 by JNK1 primes SIRT1 for ubiqui-
tination and degradation, and persistent JNK1 activation in
obesity causes severe hepatic SIRT1 degradation [293].
SIRT1 reduction is detrimental to insulin signaling in various
tissues including liver, skeletal muscle, and adipose tissues
[294–296]. AMPK1 is also diminished in insulin-resistant
individuals, and pharmacological agents that activate it, such
as metformin, improve insulin signaling [290].

Increased mitochondrial DNA methylation in NADH
dehydrogenase 6 (ND6) and displacement loop (D-loop)
regions significantly correlates with insulin resistance, and
SIRT1 deregulation was suggested to be involved in such
epigenetic changes [297]. Since AMPK-mediated phos-
phorylation results in inhibition of DNA methyl transferase
1 (DNMT1) [298], UPP-mediated SIRT1 downregulation
may induce such epigenetic changes through AMPK inhibi-
tion. Inflammasome activation might also contribute to this
process by promoting DNMT1 expression (see Section 4.5).
On the other hand, one study recently found that oxida-
tive stress downregulated DNMT1 isoform 3, the isoform
that is responsible for mitochondrial DNA methylation
[299]. Further studies are necessary to resolve this appar-
ent contradiction.

The UPP may especially be relevant in skeletal muscle
insulin resistance by contributing to skeletal muscle atrophy,
which occurs in two steps, namely, (i) the release of myofila-
ments from the sarcomere by cysteine proteases such as cal-
pain and caspases and (ii) UPP-mediated degradation of the
myofilament fragments [300, 301]. Calpain activation may in
turn rely on the release of calcium from the ER during ER
stress. Calpain activation in the skeletal muscle results in

inhibited Akt activity, which in turn results in the activation
of Foxo transcription factors that activate expression of com-
ponents of the ubiquitin-proteosome system involved in
muscle protein degradation [301]. Muscle atrophy per se
has been associated with insulin resistance due to a decline
in muscle oxidative capacity [302]. Exposure of C2C12 myo-
tubes to 25μM H2O2 induced calpain-dependent atrophy
without cell death [300]. Exposure of C2 myotubes to perox-
ynitrite induced degradation of the myosin heavy chain mus-
cle through activation of p38 MAPK and upregulation of the
muscle-specific E3 ubiquitin ligases atrogin-1 and MuRF1
[303]. Increased expression of the transforming growth
factor-β (TGF-β) and myostatin, via NF-κB, induces pro-
teosomal degradation of cellular proteins [304, 305], and
muscle myostatin mRNA correlates with HOMA2-IR in
nondiabetic individuals [306].

While mild or moderate oxidative stress upregulates the
ubiquitin-proteosome pathway, severe or sustained oxidative
stress inactivates this system, especially the 26S proteasome
[269, 307]. This also contributes to insulin resistance since
proteosomal dysfunction, characterized by increased levels
of carbonylated and ubiquitinated proteins, aggravates oxi-
dative stress and ER stress [308].

4.2. The Unfolded Protein Response. ER stress triggers a
transcriptional and translational response referred to as the
unfolded protein response (UPR), aimed at reducing the
translation of global proteins, enhancing the degradation of
unfolded proteins, and increasing the transcription of genes
that enhance the protein folding capacity of the ER [267].
The double-stranded RNA-dependent protein kinase-
(PKR-) like ER kinase (PERK), the inositol requiring kinase
1 (IRE 1), and activating transcription factor 6 (ATF 6) are
ER transmembrane proteins that are key components of
three different UPR signaling pathways [267]. Details of the
signaling events that occur after activation of PERK, IRE1,
and ATF 6 have been described elsewhere [267, 309].

All three UPR pathways promote NF-κB activity and oxi-
dative stress [310, 311]. Besides, IRE-1 stimulates ASK-1 and
thus activates JNK and p38 MAPK [312]. PERK promotes
insulin resistance by (i) activating JNK and p38 MAPK
[49, 313]; (ii) phosphorylating FOXO on S298, a site which
is not phosphorylated by Akt and whose phosphorylation
counteracts the effects of Akt [49]; (iii) downregulating
expression of the serine protease prostatin (PRSS8), which
regulatorily degrades TLR4 [314]; (iv) inducing the pseudo-
kinase tribble 3 (TRB3), which is increased in the liver of
obese mice and humans and contributes to hepatic insu-
lin resistance [49, 315]. TRB3 binds to Akt and prevents
insulin-mediated Akt phosphorylation [49, 173, 315].

Low-grade hypothalamic inflammation induced by
TNF-α was found to reduce oxygen consumption and the
expression of thermogenic proteins in adipose tissue and
skeletal muscles, and this was associated with insulin resis-
tance in a rat model [316]. PERK, to a lesser extent, ATF,
and IRE upregulate the C/EBP homologous protein (CHOP)
[317], which downregulates cAMP-induced upregulation of
uncoupling protein 1 in adipocytes and thus prevents adap-
tive thermogenesis [318].
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4.3. The DNA Damage Response. The DNA damage response
is a complex mechanism to detect DNA damage, including
strand breaks or base modifications, promote their repair,
and in case of excessive damage to activate cell death
pathways [319]. Sensing of double-strand breaks by the
Mre11-Rad50-Nbs1 (MRN) complex leads to the activa-
tion of ataxia telangiectasia mutated (ATM) and subsequent
activation of DNA damage checkpoints [319]. ATM activates
NF-κB following DNA damage [320]. Checkpoints induce
changes in telomeric chromatin, recruit DNA repair proteins
to sites of DNA damage, and induce cell death by apoptosis
[321]. One of the checkpoints, Chk2, promotes transcription
of genes involved in DNA repair and phosphorylates tumor
suppressor p53, thereby reversing inhibition of the latter by
MDM2 [319]. Chk2 also phosphorylates MDM4 and thereby
reduces p53 degradation [319]. Such activation of the p53
pathway is upregulated in adipose, endothelial, hepatic,
and skeletal muscle tissues of obese rodents and humans
[322–326]. Although this protein exhibits antioxidant activ-
ity at low levels of oxidative stress, it becomes prooxidant at
higher oxidative stress levels, through activation of NF-κB
[327] and promotion of ceramide synthesis by upregulating
ceramide synthases [328]. p53 promotes cellular senescence
in adipose tissue, and this is associated with increased pro-
duction of proinflammatory cytokines, which promote adi-
pose tissue infiltration by neutrophils and macrophages,
and systemic insulin resistance [322–326]. Many other meta-
bolic effects of p53 are opposed to insulin signaling, as has
been exhaustively reviewed [322, 327], including but not lim-
ited to JNK activation; apoptosis; repressed expression of the
insulin receptor and glucose transporters 1, 3, and 4;
enhanced transcription of phosphatase and tensin homo-
logue (PTEN) which reduces phosphorylation of P13K and
Akt; Akt degradation; glycolysis inhibition; and downregu-
lated expression of peroxisome proliferator-activated recep-
tor-γ coactivator-1α (PGC-1α) in the skeletal muscle,
leading to the reduction in mitochondrial biogenesis and
energy consumption. Reduced mitochondrial biogenesis
leads to a lower capacity for fatty acid metabolism in skeletal
muscle cells and accumulation of intramyocellular lipids
including DAG which is a major contributor to skeletal mus-
cle insulin resistance [329, 330].

4.4. Apoptosis. Apoptosis is a type of programmed cell death
in response to cellular damage or other physiological cues,
characterized by controlled autodigestion of the cell by cas-
pases [331, 332]. It is regarded as extrinsic when it involves
death receptors such as CD95 (Fas) or intrinsic if it occurs
independently of such receptors, and both forms of apoptosis
were found to be involved in insulin resistance in a mouse
model [55]. Caspase-8 and caspase-9, respectively, act as ini-
tiator caspases for extrinsic and intrinsic apoptosis, and each
initiator caspase starts off a cascade for the activation of exe-
cuter caspases, which degrade key cellular proteins [333].

Oxidative stress promotes Fas ligand expression in vari-
ous cell types and thus promotes extrinsic apoptosis [334].
Activation of the Fas receptor by metabolites such as IL-1β,
oxLDL, singlet oxygen, HNE, or JNK leads to its intracellular
recruitment of the adaptor protein FADD to form a death-

inducing complex (DISC) which activates initiator caspase-
8, while the autocatalytic activation of procaspase-9, the
initiator of intrinsic apoptosis, requires the assembly of a
multiprotein complex, the apoptosome, which comprises
seven copies of heterodimers between apoptotic protease-
activating factor 1 (Apaf-1) and cytochrome c [331–335].
Thus, the release of the latter from the mitochondrial mem-
brane into the cytoplasm is a key event in intrinsic apoptosis.

During unresolved ER stress, ER calcium efflux pro-
motes lysosomal membrane permeabilization (LMP) and
the release of lysosomal cathepsins, which promote mito-
chondrial outer membrane permeabilization (MOMP) and
the release of cytochrome c from the mitochondrial inter-
membrane space [331, 332]. Localization of p53 protein on
the lysosomal membrane upon sustained DNA damage also
contributes to LMP [336]. Activated JNK contributes to apo-
ptosis in various ways including (i) inducing the expression
of proapoptotic genes through transactivation of c-jun or
p53, (ii) phosphorylating the BH3-only family of Bcl2 pro-
teins which antagonize the antiapoptotic activity of Bcl2 or
Bcl Xl, and (iii) activating Bim, a BH3-domain-only protein
which activates Bax, which in turn promotes MOMP and
cytochrome c release [337].

In humans, the progression of nonalcoholic fatty liver
disease is associated with increasing apoptosis and insulin
resistance in the muscle, liver, and adipose tissue [338]. The
link between hepatocyte apoptosis and insulin resistance
was demonstrated in a mouse model [56]. Adipocytes of
obese mice were found to display a proapoptotic phenotype,
and genetic inactivation of the key proapoptotic protein Bid
protected against adipose tissue macrophage infiltration
and systemic insulin resistance [55]. Prevention of apoptosis
prevents palmitate-induced insulin resistance in hypotha-
lamic neurons [339]. Palmitate induces apoptosis and insulin
resistance in skeletal muscle myotubes, and cell-permeable
effector caspase inhibitors reverse the insulin resistance,
indicating that cellular remodeling associated with apopto-
tic signaling induces insulin resistance [340]. In these cells,
caspases inhibit glycolysis, in particular the glycolysis-
limiting enzymes phosphofructokinase and pyruvate kinase
[340, 341]. In adipocytes, the proapoptotic caspase-3 and
caspase-6, which participate in both intrinsic and extrinsic
apoptosis, cleave peroxisome proliferator-activated recep-
tor-γ (PPAR-γ), which results in the nuclear export and
cytoplasmic degradation of this transcription factor [342].
Inactivation of PPAR-γ in adipocytes leads to downregula-
tion of some genes that are important for insulin sensitiv-
ity not only in adipose tissue but also in other tissues such
as those of the skeletal muscle. For example, PPAR-γ inac-
tivation results in decreased expression of GLUT 4 and
decreased secretion of adiponectin [343, 344]. Extensive
apoptosis of adipocytes, hepatocytes, and skeletal muscle
cells is also expected to contribute to systemic hyperglyce-
mia and hyperglycemia-induced stresses that lead to insu-
lin resistance.

4.5. NRLP3 InflammasomeActivation. Interleukin-1β (IL-1β)
is an inflammatory cytokine which activates both myeloid
and nonmyeloid cells to produce other inflammatory
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cytokines and chemokines [345, 346]. Processing of the
inactive pro-IL-1β into the active IL-1β requires the forma-
tion and activation of a cytoplasmic multiprotein complex
called the inflammasome [58, 345]. One of the most inten-
sively studied inflammasomes is the NLRP3 inflammasome
which is expressed by myeloid cells and some nonmyeloid
cells such as adipocytes, hepatocytes, endothelial cells, skel-
etal muscle cells, and aortic smooth muscle cells [345, 347–
350]. Components of the NLRP3 inflammasome include
the NLRP3 sensor, ASC adaptor, and caspase-1 [345]. Sig-
naling pathways through NF-κB, p38, and ERK1 are
involved in the expression of both NLRP3 and pro-IL-1β
[345, 351–353]. Assembly of the NLRP3 components into
the active inflammasome complex occurs in response to
“danger signals” including increased intracellular ceramide;
RAGE- or IREα-dependent increased expression of
thioredoxin-binding protein (TXNIP); oxidation of thiore-
doxin and its dissociation from TXNIP, allowing the latter
to bind to the inflammasome; release of lysosomal cathepsin
B as a result of LMP; IRE1-α- and PERK-dependent activa-
tion of CHOP; and release of oxidized mitochondrial DNA
as a result of MOMP [58, 204, 205, 265, 267, 353–359].

IL-1β is a ligand for the IL-1 receptor which, like TLR4,
signals via MyD88, IL-1 receptor-activated kinases (IRAK1
to 4), IKK, and NF-κB (Figure 2) [57, 58, 360] and should
thus potentiate the whole model for insulin resistance in
insulin target cells (Figure 2). It downregulates IRS-1 expres-
sion and reduces tyrosine phosphorylation of IRS-1 in adipo-
cytes [58, 361]. Preadipocytes release IL-1β, which both
controls adipocyte differentiation and promotes adipocyte
insulin resistance even in the absence of macrophages [58].
IL-1β also induces epigenetic changes that promote insulin
resistance. For example, it stimulates the expression of
DNA methyl transferase 1, which hypermethylates the adi-
ponectin promoter and thereby suppresses the expression
of this proinsulin signaling adipokine [362].

While inflammasome assembly, caspase-1 activation, and
IL-1β processing occur and promote insulin resistance in
hepatocytes and mature adipocytes, secretion of IL-1β by
these cells is controversial [58, 268, 363]. Nevertheless,
caspase-1 induces the highly inflammatory pyroptotic death
of these cells, and this could contribute to the recruitment
and activation of inflammatory myeloid cells such as macro-
phages that secrete IL-1β [268, 363]. In the skeletal muscle,
activation of the inflammasome contributes to muscle atro-
phy through activation of atrogenic genes such as MuRF1
and atrogin 1 [350].

NLRP inflammasome activation in endothelial cells
leads to increased IL-1β in serum and C-reactive protein
(CRP) production by endothelial cells [349]. IL-1β stimu-
lates endothelial cell production of chemokines such as
monocyte chemoattractant protein-1 (MCP-1) and vascular
cell adhesion molecule-1 (VCAM-1) which promote
leukocyte-endothelium interactions [349, 364], and this
may contribute to the transient migration of neutrophils into
adipose tissue that occurs at an early stage of high-fat feeding
[365]. This process may be further facilitated by the che-
motactic effects of H2O2 and IL-8 produced by adipocytes
[30, 366]. Once in adipose tissue, neutrophils may produce

large quantities of chemokines and cytokines including IL-
1β and IL8, resulting in the recruitment of other immune
system cells such as macrophages which sustain chronic
inflammation [367, 368].

5. Inhibition of Insulin Signaling through the
Dysregulation of Cellular Stress Responses

5.1. Dysregulation of the Heat Shock Response. The heat shock
response, which relies on heat shock proteins such as HSP70,
is important for physiological resolution of inflammation
[369]. Cellular HSP70, HSP72, and HSP25 protect against
insulin resistance in humans by mechanisms involving pre-
vention of JNK phosphorylation and apoptosis [51–53].
Obese, insulin-resistant individuals have reduced expression
of HSP72 [51]. In adipocytes, downregulation of HSP
expression follows sustained NLRP3 inflammasome activa-
tion and the associated caspase-1-mediated cleavage of HuR,
an mRNA-binding protein that enhances the expression of
SIRT1 [369]. This results in reduced SIRT1-dependent upreg-
ulation of the transcription and activity of heat shock factor 1
(HSF1), the transcription factor of heat shock proteins [369].

5.2. Autophagy Dysregulation. (Macro)autophagy is a homo-
eostatic process for the bulk degradation of cytoplasmic
components including damaged organelles, misfolded pro-
teins, and oxidized lipids, whereby such components are
enclosed into double-membraned vesicles called autophago-
somes that subsequently fuse with lysosomes [54, 370–372].
Autophagy-related proteins (Atg) are involved in autophago-
some formation, and these are functionally categorized into
several units, namely, the Atg1/ULK complex (mammals
express Ulk 1/2), the class III phosphatidyl inositol 3-kinase
(PI3K) complex, the Atg2-Atg18/WIPI complex, the Atg12
conjugation system, the Atg8/LC3 conjugation system, and
Atg9 vesicles [373].

Low levels of ROS induce autophagy [373–375], but
higher ROS levels inhibit this response [376]. Obesity, which
is associated with oxidative stress, is characterized by inhib-
ited autophagy [377], even in adipose tissue that has elevated
expression of autophagy genes [378]. Autophagy inhibition
occurs partly due to (i) degradation of autophagy proteins
by cell death proteases including calpain 1 and caspases such
as caspase-3, caspase-6, and caspase-8 [379], (ii) LMP and
the release of cathepsins [379, 380], (iii) SIRT downregula-
tion [381, 382], (vi) inhibition of PPAR-α [383], and (vii)
increased expression of GSK3β [384].

Severe hepatic downregulation of the autophagy gene
Atg7 was found to occur in genetic and dietary models of
obesity, and this caused insulin resistance through enhanced
ER stress [54]. Paradoxically, muscle- or liver-specific knock-
out of the Atg7 gene protected mice from obesity and insulin
resistance by upregulating the expression of fibroblast growth
factor (FGF21) [385]. FGF21 improves insulin sensitivity by
inhibiting mTORC 1 [385, 386], activating NRf2 antioxidant
signaling, suppressing the NF-κB pathway, enhancing adipo-
nectin production, and promoting thermogenesis [387–391].
The apparently contradictory effects of obesity-associated
downregulation of Atg7 and genetic knockout of Atg7 on
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hepatocyte insulin resistance [54, 385] may be better under-
stood by considering that Atg7 knockout prevents obesity
[385]. In obesity, but not in the lean state, there is resis-
tance to FGF21, because of downregulation of its receptor
machinery, including β-klotho protein levels [392–394].
Although klotho is critical for FGF21 function [395], it
was recently reported that factors beyond β-klotho down-
regulation are important contributors to adipose tissue
FGF21 resistance [396].

5.3. Dysregulation of the Nrf2 Antioxidant Response. The
nuclear factor erythroid-2-related factor-2 (Nrf2) is the
master regulator of antioxidant responses, attenuating both
oxidative and electrophilic stresses [397, 398]. Under basal
conditions, Nrf2 localizes on the cytoskeleton, where its
activity is limited through interaction with Kelch-like
ECH-associated protein 1 (Keap1), which targets it for
ubiquitination and proteosomal degradation [399]. Modifi-
cation of cysteine residues in Keap1 by ROS, RNS, or
RCCs frees Nrf2 to translocate to the nucleus and induce
transcription of antioxidant genes having the antioxidant
response element in the promoter region [397, 400]. Nev-
ertheless, Nrf2 levels were found to be lower in prediabetic
and diabetic patients than in healthy subjects [401], and
short-term treatment of high-fat diet-fed mice with curcu-
min was found to improve insulin sensitivity through
attenuating Nrf2 signaling defect [402].

Suppression of Nrf2 activity may be partly due to the
direct interaction of p53 with ARE-containing promoters
[403]. ERK activation was reported to induce Nrf2 suppres-
sion and insulin resistance in cardiomyocytes exposed to
hydrogen peroxide [404], but an opposite effect of ERK acti-
vation was reported in HepG2 cells exposed to methylglyoxal
[405]. In neuronal cells exposed to H2O2, GSK3β activation
was shown to be responsible for the cytoplasmic accumula-
tion of Nrf2 [251]. This may involve H2O2-mediated activa-
tory phosphorylation of tyrosine 216 of GSK3β, and the
latter phosphorylates the tyrosine kinase Fyn, which then
translocates to the nucleus, and phosphorylates tyrosine
568 of Nrf2, leading to Nrf2 export from the nucleus [406].

Nrf2 antioxidant response is also downregulated by cor-
tisol [407], whose production is increased during psycholog-
ical stress [117]. Obesity is associated with higher adipose
tissue expression of 11β-hydroxysteroid dehydrogenase type
1 (11βHSD1), an enzyme that converts cortisone to active
cortisol [408, 409]. Cortisol is a ligand for the mineralocorti-
coid receptor, whose expression increases in obesity [122].

Notably, Nrf2 is Janus-faced, and its overexpression was
found to worsen insulin resistance in mice [410]. Nrf2-
knockout mice on a long-term high-fat diet had increased
FGF21 expression and better insulin sensitivity than wild-
type mice on the same diet, and overexpression of Nrf2 in
ST-2 cells was found to decrease insulin sensitivity associ-
ated with decreased FGF21 mRNA levels and activity
[411]. Nrf2 overexpression may occur during autophagy
blockade, which is associated with an increase in the cellu-
lar levels of p62 [412, 413]. p62 normally participates in
autophagosome formation and undergoes lysosomal degra-
dation with the contents of the autophagosome [412, 413].

However, during autophagy blockade, it sequesters Keap1
into autophagosomes, leading to stabilization and overacti-
vation of Nrf2 by the so called noncanonical pathway
[412]. Thus, for beneficial effects, the level of Nrf2 activa-
tion needs tight regulation.

6. Conclusion

There is substantial literature in support of the hypothesis
that insulin resistance develops from a coordinated inter-
play between various cellular stresses and stress responses
that develop upon the exposure of insulin-responsive cells
to hypoxia, excess sugars or certain types of fatty acids,
environmental pollutants, or hormones released during
psychological stress and obesity. This knowledge will help
in the design of better strategies for the prevention and
management of insulin resistance.
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