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Abstract: This study aimed to investigate whether the progression risk score (PRS) developed from
cytoplasmic immunohistochemistry (IHC) biomarkers is available and applicable for assessing risk
and prognosis in oral cancer patients. Participants in this retrospective case-control study were
diagnosed between 2012 and 2014 and subsequently underwent surgical intervention. The specimens
from surgery were stained by IHC for 16 cytoplasmic target markers. We evaluated the results of
IHC staining, clinical and pathological features, progression-free survival (PFS), and overall survival
(OS) of 102 oral cancer patients using a novel estimation approach with unsupervised hierarchical
clustering analysis. Patients were stratified into high-risk (52) and low-risk (50) groups, according
to their PRS; a metric consisting of cytoplasmic PLK1, PhosphoMet, SGK2, and SHC1 expression.
Moreover, PRS could be extended for use in the Cox proportional hazard regression model to estimate
survival outcomes with associated clinical parameters. Our study findings revealed that the high-risk
patients had a significantly increased risk in cancer progression compared with low-risk patients
(hazard ratio (HR) = 2.20, 95% confidence interval (CI) = 1.10–2.42, p = 0.026). After considering
the influences of demographics, risk behaviors, and tumor characteristics, risk estimation with PRS
provided distinct PFS groups for patients with oral cancer (p = 0.017, p = 0.019, and p = 0.020). Our
findings support that PRS could serve as an ideal biomarker for clinical use in risk stratification and
progression assessment in oral cancer.
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1. Introduction

A high occurrence of oral cancer recurrence and metastasis events result from this can-
cer’s late presentation, resulting in poor survival in patients with oral cancer [1]. Multidisci-
plinary interventions, including radical surgery, radiotherapy, and cytotoxic chemotherapy,
worsen the quality of life of patients. Thus, the creation of a practical approach to the
interaction among clinicopathologic factors, immunohistochemistry, and genetic specificity
to estimate the outcomes and prognosis of patients has been gradually emphasized [2].
Early diagnosis and identification of high-risk patients for potential recurrence prevent
their progression and improve their survival.

In oral cancer, well-known clinicopathologic factors, such as tumor size, stage, nodal
status, the positivity of margin, lymphovascular invasion, perineural invasion, and extran-
odal extension, are widely regarded as having potential for risk stratification for further
therapeutic strategies [3,4]. Some studies have evaluated chromogen-based in situ hy-
bridization (ISH) and immunohistochemistry (IHC) biomarkers from cancerous tissues or
databases, such as stromal microRNA-204 and RFC4, to assess the feasibility of prognostic
prediction [5,6]. Recent studies have started to emphasize personalized biomarker-driven
therapeutic strategies to guide treatments in refractory advanced cancer, including basket
trials and umbrella trials [7,8]. Some biomarker-driven treatment strategies have even
moved to guide multidisciplinary interventions. For example, the epithelial-mesenchymal
transcription marker Slug predicts the survival benefit of up-front surgical intervention
for head and neck cancer. Patients with high Slug expression on IHC have a higher risk of
radio- and chemotherapy resistance, and earlier surgery resulted in better survival than
either definitive radiotherapy or chemoradiotherapy [9]. However, there is still a lack of
standard guidelines for biomarkers of IHC expression or genetic alterations to predict the
treatment response or prognosis in oral cancer.

The cytoplasm consists of the cytosol and organelles. Antibodies for biomarkers
detect proteins within the cytoplasm, which can modulate cell morphology and cy-
toskeletal structure. Cytoplasmic markers can clarify the specific roles of a protein and
illustrate the executive tasks of a protein in cancer cells. With the consequent explosion
of various genomic and molecular data, an upcoming question is how to organize the
high-throughput clinical data into meaningful interpretations and structures. Unsuper-
vised hierarchical clustering analysis has been widely used to separate biological objects
with common characteristics into different groups and to integrate data by underlying
biology. In non-small cell lung carcinoma, unsupervised hierarchical clustering analysis
successfully identified and stratified different subgroups of patients based on molecular
expression profiles [10]. In breast cancer, hierarchical clustering analysis demonstrated
that the overexpression of hypomethylated X-linked genes was associated with lower
survival rates [11]. However, the clinical applications of clustering algorithms are in-
sufficient in cancer patients. In this study, we aimed to develop a novel approach and
calculation to evaluate prognostic biomarkers according to the diverse expression of
cytoplasmic IHC staining.

2. Materials and Methods
2.1. Patient Selection

We collected 163 patients with oral cavity cancers from the Kaohsiung Medical
University Hospital and followed up these patients for 5 years. We included the pa-
tients based on the following criteria: patients older than 20 years old, ICD-9 site code
specific for the oral cavity, squamous cell carcinoma with a histologic grading of 1 to 3
(well-differentiated, moderately differentiated, and poorly differentiated type), patients
who underwent wide excision, and diagnosis between 2012 and 2014. The exclusion
criteria included patients who underwent biopsy without wide excision, with secondary
malignancy, histology of carcinoma in situ, and SCC of the nasopharynx, oropharynx, hy-
popharynx, and larynx. We retrospectively collected medical records, including age, sex,
areca nut usage, alcohol consumption, tobacco habits, and other clinical parameters. The
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clinicopathological factors we recorded included histologic type and grade, tumor size,
lymph node status, surgical margin, perineural invasion (PNI), lymphovascular invasion
(LVI), and extranodal extension (ENE). We excluded patients without complete clinical
data and clinicopathological factors. Finally, 102 patients were analyzed. We evaluated
the results of a retrospective study with the primary endpoint of assessing outcomes at
a comprehensive cancer institution in southern Taiwan. We analyzed progression-free
survival (PFS) and overall survival (OS) after surgery. This study was approved by
the Institutional Review Board and Ethics Committee of Kaohsiung Medical University
Hospital (KMUHIRB-E(I)-20170034). The data were analyzed anonymously; therefore,
no informed consent was obtained. All methods were performed under approved
guidelines and regulations.

2.2. Tissue Microarrays and Immunostaining

We adopted an analysis similar to that used in our previous study to identify novel IHC
prognostic biomarkers associated with synthetic lethality (SL) in lung adenocarcinoma and
colorectal cancer [12,13]. The SL-associated genes included oncogenes, tumor suppressor
genes, and genome stability genes. From these validated SL-associated genes, we selected
16 genes to perform cytoplasmic IHC staining and evaluated the possible cytoplasmic IHC
prognostic markers among them.

Figure 1 illustrates the schematic diagram for target gene selection from the vali-
dated SL gene pairs and the identification of the protein staining matrix according
to the 16 individual cytoplasmic IHCs. Initially, 742 SL pairs of genes were selected,
and the microarray gene expression data from the Cancer Genome Atlas (TCGA) of
79 Asian OSCC samples (57 cancerous and 22 noncancerous) were analyzed. Gene
expression datasets were screened according to the following parameters: cancer-
ous and noncancerous tissues, no treatments, no metastasis, and Affymetrix chips
(up to November 2010). OSCC genes were downloaded from the GEO database [14].
Gene expression data were collected from patients of Han Chinese origin (57 OSCC and
22 noncancerous tissues from Taiwanese patients, GSE 25099), the same ethnicity as that
of the IHC and clinicopathological data previously used [15]. Gene expression profiles
for the 57 OSCC and 22 noncancerous tissues in the dataset were quantile-normalized
using the “expresso” function in R, and log ratios were computed for the target gene
expression in each cancerous tissue versus the mean expression in the noncancerous tis-
sues. The selected SL gene pairs were further sorted by the fractions of the upregulation
and downregulation patterns, and the SL pairs with 1.5-fold differential expression in
fractions computed from gene pairs were selected as target genes. Overall, 21 genes were
selected using the above criteria, and the cancer specimens collected from the Taiwanese
population in the current study were then used to produce tissue microarrays with
three cancerous and one noncancerous tissue core, as in our previous study [16]. Tissue
microarrays were further processed for the cytoplasmic IHC of 16 target proteins among
the 21 genes. Hence, 16 protein staining scores were obtained for the 16 target proteins.
The 16 target cytoplasmic proteins included FEN1, FLNA, PIM1, STK17A, CDH3, SHC1,
POLB, SGK2, PhosphoMet, CNSK1E, PLK1, CDK6, KRAS, EGFR, RB1, and P16. The
antibodies and retrieval buffers for each protein are summarized in Table 1. In addition,
the cancer tissue samples from two OSCC patients with IHC staining using control IgG
antibody are summarized in Supplementary Figure S1.
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Table 1. The antibodies and retrieval buffers for each protein.

Protein Name Associated
Protein Name Clonality Source Catalogue

Number Dilution Retrieval
Buffer

CDH3 Cadherin 3 R Abgent AP1499B 1:50 T-EDTA

CDK6 Cell division
protein kinase 6 R Abcam Ltd. ab124821 1:100 T-EDTA

CSNK1E Casein Kinase 1
Epsilon R Abgent AP7403a 1:50 T-EDTA

EGFR
Epidermal
Growth Factor
Receptor

R Zeta
Corporation Z2037 1:50 T-EDTA

FEN1
Flap Structure-
Specific
Endonuclease 1

R Abcam Ltd. ab70815 1:1000 T-EDTA

FLNA Filamin A R Abgent AP7770a 1:50 T-EDTA

KRAS

KRAS Proto-
Oncogene,
GTPase
Kirsten rat
sarcoma virus
protein

R Abcam Ltd. ab216890 1:200 C

MET a
Mesenchymal
epithelial
transition factor

R Abgent AP3167a 1:50 C

P16

p16 (INK4a)
tumor
suppressor
protein

M BD biosciences 550834 1:100 T-EDTA

PIM1

Pim-1 Proto-
Oncogene,
Ser-
ine/Threonine
Kinase

R Abgent AP7932d 1:50 T-EDTA

PLK1 Polo-like
Kinase 1 R Abgent AP7937a 1:100 C

POLB
DNA
Polymerase
Beta

R Abgent AP50642 1:100 T-EDTA

RB1 Retinoblastoma
1 M Leica

Biosystems NCL-L-RB-358 1:50 T-EDTA

SGK2
Serum/Glucocorticoid
Regulated
Kinase 2

R Abgent AP7947b 1:100 C

SHC1

Src homology 2
domain
containing
transforming
protein 1

R Abgent AP50024 1:100 C

STK17A
Serine/threonine-
protein kinase
17A

R Abcam Ltd. ab97530 1:100 C

a PhosphoMet; R is Rabbit polyclonal; M is Mouse monoclonal; T-EDTA is Tris-EDTA buffer; C is Citrate buffer.
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Figure 1. Schematic diagram for target gene selection from the validated synthetic lethality (SL) gene
pairs and the identification of the protein staining matrix.

2.3. Data Analysis

The baseline characteristics of the study population according to PFS status are sum-
marized in terms of frequency and percentage. Two survival outcomes were observed: PFS
and OS. For PFS, the patients who were diagnosed with progressive disease within the
study follow-up period were defined as disease-progressed cases; otherwise, they were
defined as progression-free cases. For OS, the patients who died within the study follow-up
period were defined as dead cases, and the remaining patients were defined as alive cases.
Both survival outcomes were tracked from the first diagnosis date of oral cancer until the
date of disease progression or death, while the disease-free and alive cases were tracked
until the last date of study follow-up.

Unsupervised hierarchical clustering was used to identify the protein combinations
according to the similarity of the immunostaining profiles. The unsupervised hierarchical
clustering analysis workflow for the protein staining results is shown in Figure 2. First,
the staining intensity of the 16 target proteins was transformed into a normalized staining
matrix. Subsequently, each protein was assigned to the corresponding cluster to generate a
protein cluster, and the optimal number of clusters was determined using the silhouette
index. Next, the patients were dichotomized into two groups according to the immunos-
taining profiles of each protein cluster. Therefore, the group with a higher proportion
of disease progression was defined as the high-risk group; otherwise, it was defined as
the low-risk group. Therefore, the survival difference between the high-risk and low-risk
groups in each protein cluster was estimated using the log-rank test.
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according to the proportion of disease progression of each protein cluster. (Step 5) Derived progression risk score (PRS) using
immunostaining score of the specific target protein within specific cluster, and the harmonic mean of the immunostaining
score in correspond risk group.

The protein cluster with a significant survival difference between the high-risk and
low-risk groups was selected as a candidate cluster. Therefore, the candidate protein cluster
was used to derive a PRS for oral cancer PFS and OS. The calculation of PRS was as follows:

Sh = ‖P1 − H1‖+ ‖P2 − H2‖+ · · ·+ ‖Pn − Hn‖ (1)

where P is the immunostaining score for a specific target protein and H is the harmonic
mean of the immunostaining score in the high-risk group.

Sl = ‖P1 − L1‖+ ‖P2 − L2‖+ ‖P2 − L2‖ (2)

where P is the immunostaining score for a specific target protein and L is the harmonic
mean of the immunostaining score in the low-risk group.

PRS = Sh − Sl (3)

where Sh is computed from Equation (1) and Sl is computed from Equation (2).
A positive PRS value indicates that the patient might increase the risk of disease

progression, while a negative PRS indicates the opposite situation. Therefore, the PRS
was used to determine the appropriate risk strata for the study population. The Kaplan–
Meier method was used to compare the survival curves between PRS risk strata. The Cox
proportional hazard regression model was used to evaluate the impact of PRS risk strata
on PFS and OS. The multiple model comparisons for PFS and OS, including PRS risk strata,
were illustrated using forest plots. All p-values were two-sided, and the significance level
was set at 0.05. All analyses were performed using the computing environment R 4.0.2 (R
Core Team, 2020).
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3. Results
3.1. Baseline Characteristics

A total of 102 patients were retrospectively analyzed. The baseline characteristics of the
study population according to PFS status are summarized in Table 2. Sixty-six patients were
maintained in a progression-free status, while 36 patients experienced disease progression.
Chi-squared or Fisher’s exact tests were used to analyze the association between these two
groups. There were no significant differences between the two groups in terms of age, sex,
risk behaviors (including alcohol, betel, or cigarette consumption), primary site (buccal or
non-buccal), grade, LVI, PNI, margin status, ENE, tumor stage (according to the 8th edition
of the AJCC/UICC TNM staging system) [17], lymph node invasion, and pathological stage.
However, more patients died in the disease-progressed group (19 patients, 52.8%) than
in the progression-free group (7 patients, 10.6%), with significant differences (p = 0.001).
Despite the insignificant findings for other characteristics, the disease-progressed group
still shown a higher proportion in age ≥50 years (disease-progressed vs. progression-
free: 77.8% vs. 62.1%) and experienced risk behaviors (91.7% vs. 89.4%). Moreover, the
disease-progressed group also showed a higher proportion of poor clinical characteristics,
including LVI (disease-progressed vs. progression-free: 13.9% vs. 7.6%), PNI (19.4% vs.
9.1%), ENE (13.9% vs. 6.1%), tumor stage IV (33.3% vs. 12.1%), lymph node invasion (27.8%
vs. 24.2%), and advanced pathological stage (50.0% vs. 34.8%).

Table 2. Baseline characteristics of study population according to progression-free survival status.

Characteristics Progression-Free Disease-Progressed p-Value

Cases 66 36

Age 0.163

<50 years 25 (37.9%) 8 (22.2%)
=50 years 41 (62.1%) 28 (77.8%)

Sex 1.000

Female 4 (6.1%) 2 (5.6%)
Male 62 (93.9%) 34 (94.4%)

Risk behaviors a 59 (89.4%) 33 (91.7%) 0.984

Site 0.577

Non-buccal 29 (43.9%) 13 (36.1%)
Buccal 37 (56.1%) 23 (63.9%)

Grade 0.116

1 35 (53.0%) 13 (36.1%)
2 29 (43.9%) 23 (63.9%)
3 2 (3.0%) -

LVI 5 (7.6%) 5 (13.9%) 0.318

PNI 6 (9.1%) 7 (19.4%) 0.212

Margin not free 3 (4.5%) 3 (8.3%) 0.663

ENE 4 (6.1%) 5 (13.9%) 0.273

Tumor stage 0.055

I 32 (48.5%) 16 (44.4%)
II 21 (31.8%) 6 (16.7%)
III 5 (7.6%) 2 (5.6%)
IV 8 (12.1%) 12 (33.3%)
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Table 2. Cont.

Characteristics Progression-Free Disease-Progressed p-Value

Lymph node invasion 0.878

Negative 50 (75.8%) 26 (72.2%)

Positive 16 (24.2%) 10 (27.8%)

Pathological stage 0.200

I-II 43 (65.2%) 18 (50.0%)
III-IV 23 (34.8%) 18 (50.0%)

Death 7 (10.6%) 19 (52.8%) 0.001
a Risk behavior, including alcohol, betel or cigarette consumption. p-value was estimated using the chi-square test
or Fisher’s exact test.

3.2. Unsupervised Hierarchical Clustering Analysis

Figure 2 demonstrates the analysis workflow of unsupervised hierarchical cluster-
ing analysis and the derivation of PRS using candidate protein clusters. In Step 1, the
immunostaining scores of 16 target proteins were normalized to a staining matrix and
visualized using a heatmap. In Step 2, the optimal number of clusters was eight, which
was estimated using the silhouette index. In Step 3, the 16 target proteins were assigned to
the eight protein clusters using the unsupervised hierarchical clustering method. In Step 4,
the proportion of disease progression in each protein cluster according to the dichotomous
risk group was computed.

The group with a higher proportion of disease progression was considered the high-
risk group, while that with a lower proportion was considered the low-risk group. The red
bar indicates the proportion of the high-risk group in disease progression, and the blue
bar indicates the proportion of the low-risk group in disease progression. The details of
the patient’s number, proportion, and log-rank test results of disease progression in the
dichotomous risk group are summarized in Table 3. The protein clusters were ordered
according to the number of target proteins, ranked from 1-factor to 4-factor. The number
and proportion of disease-progressed in the high-risk and low-risk groups for each protein
cluster were summarized, and the survival difference between both risk groups were
estimated using the log-rank test. The optimal 1-factor protein clusters include p16 (high-
risk vs. low-risk: 73.1% vs. 26.9%, log-rank p = 0.527), STK17A (80.8% vs. 19.2%, log-rank
p = 0.677), and PIM1 (65.4% vs. 34.6%, log-rank p = 0.708). The optimal 2-factor protein
clusters include EGFR–CDH3 (high-risk vs. low-risk: 96.2% vs. 3.8%, log-rank p = 0.151),
KRAS–FLNA (73.1% vs. 26.9%, log-rank p = 0.205), and POLB–FEN1 (69.2% vs. 30.8%,
log-rank p = 0.279). The optimal 3-factor protein cluster includes RB1–CDK6–CNSK1E
(high-risk vs. low-risk: 69.2% vs. 30.8%, log-rank p = 0.745). The optimal 4-factor protein
cluster includes PLK1–PhosphoMet–SGK2–SHC1 (high-risk vs. low-risk: 61.5% vs. 38.5%,
log-rank p = 0.023). Survival analysis using the log-rank test indicated that only the 4-factor
protein cluster had a significant survival difference between the high-and low-risk groups.
Thus, the 4-factor protein cluster is selected as the candidate cluster for the PRS derivation
shown in Step 5.

Table 3. The proportion of disease-progressed in each protein cluster derived by the unsupervised
hierarchical clustering method.

Protein Clusters High-Risk n (%) Low-Risk n (%) p-Value

1-factor
p16 71 19 (73.1%) 31 7 (26.9%) 0.527
STK17A 77 21 (80.8%) 25 5 (19.2%) 0.677
PIM1 71 17 (65.4%) 31 9 (34.6%) 0.708
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Table 3. Cont.

Protein Clusters High-Risk n (%) Low-Risk n (%) p-Value

2-factor
EGFR–CDH3 91 25 (96.2%) 11 1 (3.8%) 0.151
KRAS–FLNA 19 19 (73.1%) 83 7 (26.9%) 0.205
POLB–FEN1 66 18 (69.2%) 36 8 (30.8%) 0.279

3-factor
RB1–CDK6–CNSK1E 73 18 (69.2%) 29 8 (30.8%) 0.745

4-factor
PLK1–PhosphoMet–

SGK2–SHC1 52 16 (61.5%) 50 10 (38.5%) 0.023

p-value was estimated using the log-rank test.

3.3. Cytoplasmic IHC Stainings and PRS Calculation

The PRS is generated based on the cytoplasmic IHC staining results of individual
proteins included in the 4-factor protein cluster. The cytoplasmic IHC staining images of
four individual proteins, including PLK1, PhosphoMet, SGK2, and SHC1, for high-risk
and low-risk patients, were summarized in Figure 3. The PLK1, PhosphoMet, SGK2, and
SHC1 IHC staining of tumor samples from high-risk (disease progression) patients mostly
showed low cytoplasmic expression, while tumor samples from low-risk (progression-free)
patients mostly showed high cytoplasmic expression. Low cytoplasmic expression includes
negative to weak staining in IHC, and high cytoplasmic expression includes medium
or strong staining in IHC. To fit the PRS calculation, we transformed the cytoplasmic
expression into an immunostaining score ranging from 1 to 4, high to low cytoplasmic
expression, respectively. For instance, the strong staining expression will inversely be
transformed into score 1, and the negative staining expression will inversely be transformed
into score 4.

The PRS calculation and risk strata identification of each patient were based on the
transformed immunostaining score (P). The harmonic means of PLK1, PhosphoMet, SGK2
and SHC1 in the high-risk group were 2.46 (HPLK1), 3.08 (HPhosphoMet), 3.06 (HSGK2), and
3.21 (HSHC1), respectively. According to Equation (1), the Sh can be computed using
Equation (4).

Sh = ‖PPLK1 − 2.46‖+ ‖PPhosphoMet − 3.08‖+ ‖PSGK2 − 3.06‖+ ‖PSHC1 − 3.21‖ (4)

According to Equation (2), the Sl can be computed using Equation (5). The harmonic
means of PLK1, PhosphoMet, SGK2, and SHC1 in the low-risk group were 1.76 (LPLK1),
2.14 (LPhosphoMet), 2.38 (LSGK2), and 2.76 (LSHC1), respectively.

Sl = ‖PPLK1 − 1.76‖+ ‖PPhosphoMet − 2.14‖+ ‖PSGK2 − 2.38‖+ ‖PSHC1 − 2.76‖ (5)

Hence, the PRS can be computed using Equation (3), which is just simply subtracting
the Sh and Sl , and the positive PRS indicates the increased risk in disease-progressed, while
the negative PRS indicates decreased risk in disease progression.

3.4. PRS Risk Strata Survival Analysis and Model Comparison

A total of 52 patients were considered and assigned to high-risk strata, and 50 patients
were assigned into low-risk strata derived by PRS. Figure 4 illustrates the Kaplan–Meier
plot of PFS and OS according to the PRS risk strata derived from the best multifactor
protein combination. The 5-year PFS and OS rates of the high-risk strata were 49.0% and
65.6%, respectively. In addition, the 5-year PFS and OS rates of the low-risk strata were
67.6% and 77.4%, respectively. Compared with low-risk strata, the high-risk strata showed
worse 5-year PFS (p = 0.023) and OS (p = 0.270).
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Figure 4. Kaplan–Meier plot of (A) progression-free survival (PFS) and (B) overall survival (OS) according to the PRS risk
strata derived from the best multifactor protein combination.

Multiple Cox proportional hazard regression models were used to estimate the impact
of PRS strata on PFS and OS in patients with oral cancer (Figure 5). Model 1 performed the
univariate analysis including only PRS strata, and the results showed that PRS strata had a
similar impact on PFS (HR = 2.20, 95% CI = 1.10–4.41, p = 0.026) and OS (HR = 1.55, 95% CI =
0.71–3.43, p = 0.274), but was only significant in PFS. Models 2 to 4 performed multivariate
analyses, including PRS risk strata and multiple covariates. In model 2, demographic
variables including age and sex were included as covariates, and the results showed that
the PRS risk strata still had a significant impact on PFS (HR = 2.37, 95% CI = 1.17–4.83,
p = 0.017) after model adjustment. Model 3 added the demographic variables and risk
behaviors (any consumption of alcohol, betel, or cigarette) as covariates, while PRS risk
strata still had a significant impact on PFS (HR = 2.35, 95% CI = 1.15–4.78, p = 0.019). Model
4 included the tumor characteristics site, grade, LVI, PNI, surgical margin status, ENE,
tumor stage, lymph node invasion, and pathological stage. The adjusted model results
also indicated that PRS risk strata still had a significant impact on PFS (HR = 2.47, 95%
CI = 1.15–5.28, p = 0.020). Although PRS risk strata showed a similar impact on OS, no
significant results were found in the adjusted Models 2 to 4.
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4. Discussion

Oral cancer is a malignancy arising from the epithelium of the oral cavity, and the
most common histology of oral cancer is squamous cell carcinoma. Due to its location in
the oral cavity, oral cancer is more prone to exposure to external materials and carcinogens
that construct a particular environment resulting in heterogeneous phenotypes. In the
treatment of cancer, novel molecular identification and stratification have high clinical
value because of their correlation with gene expression profiles, clinical features and
phenotypes, overall survival, and prognosis. Gene expression profiling and its associated
molecular expression have been widely used to generate a wealth of transcriptomic profiles
in many cancer types [18]. Combinations of clinical parameters and gene-based biomarkers
have also been used to predict prognosis and to evaluate therapeutic responses in other
malignancies [19–21]. In our study, we performed unsupervised hierarchical analysis to
stratify different patterns of patient groups and thus derived the progression risk score
using candidate protein clusters, which enabled the generalization of the current study
IHC findings into clinical settings. Furthermore, the PRS modules could be applied to
survival analysis, including the Cox model, to investigate the simultaneous impact of
baseline clinical characteristics and PRS risk on PFS.

The PRS can recognize the interaction between factors by considering associations
within a protein cluster and is available in the extended analysis with clinical parameters
in typical survival analysis approaches. The prognostic role of clinical parameters in oral
cancer has been previously reported and indicated that oral cancer patients with a poorly
differentiated grade, LVI, PNI, presence of tumor in the surgical margin, lymph node
invasion, ENE, lymph node invasion, and the advanced pathological stage could obtain a
poor survival outcome [22,23]. Moreover, the expression of four individual proteins, such
as phosphoMet, was also altered in different clinical characteristics subgroups, including
age and stage [24]. The study results demonstrated that PRS alone and incorporating
clinical parameters, such as demographics, risk behaviors, and tumor characteristics, could
be used as reasonable predictors of disease progression in patients with OSCC.

The PRS was generated based on a hierarchical agglomerative algorithm, and the
avoidance of classification or dichotomous procedures in data preprocessing could partly
prevent the loss of information and allow a decrease in type 1 errors (false positives).
Consistent with previous studies of other cancers, we demonstrated that the agglomer-
ative hierarchical clustering algorithm is advantageous for handling multifactor disease
outcomes with uncertain interactions between multiple factors [25–27].

The four-factor protein cluster, including PLK1, PhosphoMet, SGK2, and SHC1, was
found to be the optimal combination for predicting disease progression via IHC staining
results. The PRS was estimated according to the co-expression of PLK1, phosphoMet,
SGK2, and SHC1. Although PLK1 is frequently reported as an oncogene, the co-expression
of PLK1 with specific genes could also play a tumor suppressor role and contribute to
tumor progression by inhibiting the growth of oral cancer cells [28,29]. SGK2 is one of the
isoforms of the SGK family, which is associated with the regulation of cell proliferation and
survival [30]. The previous study has reported that inhibited SGK2 could induce cell death
in multiple types of cancer, which could play a new role in cancer treatment [31]. SHC1,
also known as p66Shc, is correlated to apoptosis-regulating gene expression [32]. The
increasing expression of SHC1 could negatively regulate the T-cell activation and survival,
which might result in poor survival outcomes in cancer patients [33,34]. PhosphoMet
is commonly overexpressed in squamous cell carcinoma and involves increased gene
copy number and mutation [35]. However, the phosphoMet could interact with multiple
genes, such as HGF, PIK3, and SRC. The current study’s findings revealed converse results,
which indicates the low cytoplasmic expression of PhosphoMet was associated with poor
prognosis outcome and co-operated with low-expression of PLK1, SGK2, and SHC1. The
function of PhosphoMet was complicated and was also affected by the clinical parameters
of cancer patients. Hence, further evaluation for cytoplasmic alteration effects on the
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biological mechanism of PhosphoMet collaborating with PLK1, phosphoMet, and SHC1
should be investigated.

In summary, the simultaneous low expression of PLK1, phosphoMet, SGK2, and
SHC1 might be associated with the immune response and tumor cell survival, which could
result in poor survival outcomes in cancer progression. However, the results from IHC
can vary widely depending on the staining protocol and the antibody or reagents used.
The interpretation of staining patterns is another source of variability [36–38]. Thus, before
any biomarker can be used clinically, it must be rigorously tested and validated in a large
number of cases and in different laboratories. Recent advances in technology, such as the
development of tissue microarrays (TMAs), should greatly help in this endeavor [39–41].

5. Conclusions

We identified a novel statistical method using unsupervised hierarchical analysis. By
incorporating IHC biomarkers and clinical parameters, we found a potential biomarker,
PRS, to predict PFS outcomes for OSCC. PRS is easily approached through IHC staining of
surgical tissue specimens. Thus, we can stratify patients into high-risk groups and rapidly
assess their outcomes based on the tumor expression of cytoplasmic PLK1, phosphoMet,
SGK2, and SHC1. Hence, PRS may serve as a potential signature for predicting disease
progression and assessing the risk of OSCC.
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