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Abstract

In order to understand and represent the importance of nodes within networks better, most

of the studies that investigate graphs compute the nodes’ centrality within their network(s) of

interest. In the literature, the most frequent measures used are degree, closeness and/or

betweenness centrality, even if other measures might be valid candidates for representing

the importance of nodes within networks. The main contribution of this paper is the develop-

ment of a methodology that allows one to understand, compare and validate centrality indi-

ces when studying a particular network of interest. The proposed methodology integrates

the following steps: choosing the centrality measures for the network of interest; developing

a theoretical taxonomy of these measures; identifying, by means of Principal Component

Analysis (PCA), latent dimensions of centrality within the network of interest; verifying the

proposed taxonomy of centrality measures; and identifying the centrality measures that best

represent the network of interest. Also, we applied the proposed methodology to an existing

graph of interest, in our case a real friendship student network. We chose eighteen centrality

measures that were developed in SNA and are available and computed in a specific library

(CINNA), defined them thoroughly, and proposed a theoretical taxonomy of these eighteen

measures. PCA showed the emergence of six latent dimensions of centrality within the stu-

dent network and saturation of most of the centrality indices on the same categories as

those proposed by the theoretical taxonomy. Additionally, the results suggest that indices

other than the ones most frequently applied might be more relevant for research on friend-

ship student networks. Finally, the integrated methodology that we propose can be applied

to other centrality indices and/or other network types than student graphs.

1. Introduction

Many centrality measures for representing nodes within graphs exist in social network analysis

(SNA). Many studies [e.g., 1–5] found correlations between several centrality indices within

different network types. However, those researches did not deepened their results, i.e., did not

explained their results in detail and /or classified the centrality indices based on the
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correlations that were found. First, it is crucial to classify centrality measures, i.e., to create tax-

onomies of centrality indices, and to verify such theoretical classifications by means of thor-

ough methodologies applied to real data. Second, in addition to the measures that are mostly

used in network studies, alternative centrality indices could be considered when investigating

such networks: since each centrality measure that has been developed in SNA differs in its

meaning of centrality, using several measures in networks studies could bring more informa-

tion about nodes centrality. Moreover, the appropriateness of the centrality measures should

also be taken into account when studying networks, since each graph is different as far as its

nature is concerned (e.g., its type: social, biological, financial, etc.; the direction of its edges:

directed versus undirected).The paper’s main contribution is to propose an integrated meth-

odology that allows for choosing, comparing, and verifying centrality indices when investigat-

ing nodes within some network of interest. A subsequent contribution is the application of the

proposed methodology to eighteen centrality indices computed from the CINNA library [6]

and to an existing graph of interest: a friendship student network. To the best of our knowl-

edge, the development of such a methodology, together with its application to real data, has

never been done.

First, many centrality measures (e.g., degree, closeness, betweenness, eccentricity, geodesic

k-path distance, eigenvector measure, Page rank score, etc.) were developed and defined in

SNA to assess node centrality within a graph [7–14]. However, literature reviews on centrality

measures are rare [15]. Furthermore, it is crucial to understand centrality measures in light of

the network(s) of interest, i.e., in the context of the studied graph(s). Glossaries that thoroughly

describe and define centrality measures within networks can serve this purpose. One of the

objectives of this paper is to explain in detail a number of centrality measures found in the lit-

erature, that is, to give thorough definitions about those centrality indices, together with their

formulas, in order to understand those indices in light of student networks, i.e., of our graph

of interest.

Then, according to Lü et al. [15], it is important to compare and classify well-known cen-

trality measures in order to highlight their similarities and differences. Theoretical, i.e., not yet

empirically verified, classifications of centrality indices are useful to visualize [14] and under-

stand those centrality measures better. As far as we know, such theoretical taxonomies of cen-

trality measures [e.g., 12–15] are rare in the literature. Another purpose of the paper concerns

the comparison and theoretical classification of centrality indices according to several criteria,

such as their formulas, the benefits of high levels of centrality (e.g., access to information), and

the consideration (or not) of neighborhood properties such as prestige [12–15]. Moreover, we

found that the rare taxonomies of centrality measures that existed in the literature were not

systematically verified, whether on real data or by thorough methodologies. However, in order

to be sure to classify within same categories measures of centrality whose meaning is similar,

and to separate within different categories centrality indices that are different in nature, it is

crucial to verify the validity, accuracy, and appropriateness of the proposed classifications of

centrality indices by means of criteria that are relevant for taxonomies. This paper therefore

aims to develop a methodology that lets one verify theoretical taxonomies for centrality mea-

sures and that can be applied to any network type. An accurate taxonomy might also serve to

validate classifications of centrality indices proposed in other studies.

Third, as stated before, many centrality measures exist in SNA, but according to our litera-

ture review, which is detailed further in the paper, it seems that only a few have been used. In

studies related to the centrality of nodes within graphs, it is therefore useful to investigate

other indices than those studied systematically. Also, the ways centrality is defined and com-

puted might be relevant for best identifying central actors within graphs. In order to identify

important nodes within a network, it is therefore crucial to test several centrality measures
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based on the specific network type and the centrality definitions and to identify the most

appropriate indices, i.e., that best represent the nodes within a network of interest among

those measures [8–10].

We applied the proposed methodology to an existing graph of interest, in our case a real

friendship student network. On the one hand, the question of selecting the best-suited central-

ity measures for representing a student network has received little attention in student net-

works research, and the literature on the topic mainly concerns other network types, e.g.,

biological networks, terrorist cells, and customer networks. Just as Ashtiani et al. [14] argue for

biological networks, we argue that there is a need for guidelines pertaining to the relevance of

centrality measures for student networks. Using relevant centrality indices might yield deeper

understanding of friendship student networks and the mechanisms at work, e.g., the impact of

student centrality within the peer group on the student’s performance. On the other hand,

applying the methodology that is developed in the paper to real data—our friendship student

network- enables us to verify the validity of the proposed theoretical classification of centrality

measures.

Our proposed methodology is composed of the following steps: (1) making the relevant

choice for our network of interest, i.e., in our case a friendship student network, together with

a thorough understanding and clear descriptions of some of the centrality measures that are

computed in the CINNA library elaborated by Ashtiani & Jafari [6]; (2) developing and pro-

posing a theoretical taxonomy of the chosen centrality indices according to several criteria,

such as their definition, logic, and formulas; (3) identifying, by means of Principal Component

Analysis (PCA), latent dimensions of centrality within our particular friendship student net-

work; (4) verifying the proposed theoretical classification of centrality measures by comparing

the theoretical taxonomy with the latent dimensions highlighted by the PCA and by means of

useful criteria when validating taxonomies; and (5) identifying, also by means of the PCA

results, the centrality measures that are the most representative and significant when identify-

ing important nodes within friendship student networks. This research is exploratory and con-

stitutes a first step to the development and applying of methodologies that compare and

validate centrality measures which highlight central nodes within networks.

The four empirical research questions that are investigated in this paper are:

Research question 1) Which centrality measures should be chosen among a large set of indices
because they seem relevant for friendship student networks?

Research question 2)Which theoretical taxonomy might allow classifying those chosen indices?

Research question 3)By using PCA on those centrality measures, which are the centrality dimen-
sions that are highlighted, and does the proposed theoretical taxonomy align with those
dimensions?

Research question 4)Which are the representative centrality indices for friendship student
networks?

The second section of the paper relates to the theoretical background about (student) net-

works and centrality measures, together with their taxonomies for student networks. The third

section presents the integrated methodology. The fourth section presents the data and friend-

ship student network drawn from the data. The fifth section presents the results of the study:

on the one hand, the comparison between the latent dimensions of centrality resulting from

the PCA procedure and the theoretical classification of the centrality measures, and on the

other hand, the centrality measures that contribute the most to representing the friendship
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student network. Finally, the last section discusses the results and limitations of this study and

points out the need for further research.

2. Theoretical background: Centrality measures and taxonomies

for student networks

2.1. The relevance and use of centrality measures within (student) networks

A network is a set of nodes connected by edges or ties. For instance, with regard to student net-

works, a students’ graph represents the students (i.e., the nodes) and their connections (i.e.,

the edges or ties) with other student(s) within the network. The literature recognizes the rele-

vance of centrality measures for representing the importance of nodes in a graph [16]. The

centrality concept gives information about its prestige, prominence, or involvement, how a

node get access to and spreads information, and the node’s proximity to phenomena that are

observed within a network [16–19]. Various network studies in many fields have used central-

ity measures to represent nodes and possibly the links between the nodes’ centrality and some

variable(s) of interest. Among them we find studies in management and organizations [12,

20–26], economics and finance [27–31], marketing research [8, 32–35], sociology and political

science [36–42], and biological networks [14, 43–51]. Also, student centrality within their net-

work and the links with education outcome(s) have been the subjects of many studies. Those

investigations concern performance and achievement [4, 24, 52–70], other aspects of learning

(e.g., attitudes about the courses, sharing and construction of knowledge) [54, 71], delinquency

[72, 73], sense of community [74, 75], and dropping out of school [76, 77]. Table 1 in S1

Appendix shows 63 studies conducted on centrality within networks (of which 27 were student

networks), together with the centrality indices that were computed and used within those stud-

ies. In Tables 2 and 3 in S1 Appendix we computed the numbers and percentages of the cen-

trality measures that were used within all network types (Table 2) or within student networks

only (Table 3). Those percentages, which are represented in Fig 1, show that studies dedicated

Table 1. Centrality measures taxonomy: Categories.

Topological structure of the network Neighborhood

Category number 1 2 3 4 5

Logic & formula Geodesic distance-

based

Geodesic path- based Connectivity-

based

Prestige of

Neighborhood

Topology properties of

neighborhood

Processes linked to centrality and advantages

brought by high levels of centrality

(Speed of) access to

information

Control over the

information

Power and

influence

Power and influence Spread of Information

Spread of

Information

Cohesiveness role

Bridge role

Eccentricity (in- & out-) •

Closeness (in- & out-) •

Residual closeness (in- & out-) • •

Geodesic k-path (in- & out-) • •

Betweenness •

Bottleneck (in- & out-) •

Eigenvector prestige score • •

Hub &authority scores • •

Page rank • •

Cross-clique connectivity • •

MNC (in- & out-) •

https://doi.org/10.1371/journal.pone.0244377.t001
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to networks have mostly conceptualized centrality as (1) the simplest measure of centrality,

i.e., degree centrality; (2) closeness centrality; and/or (3) betweenness centrality. However, as

stated earlier, many other metrics have been developed in SNA in order to assess a node’s cen-

trality within a graph. S1 Appendix and Fig 1 show that (student) networks have rarely been

represented using those alternative centrality measures.

Then, for network studies that concerned student centrality linked to some outcome of

interest, some results showed centrality to have positive effects on education outcomes while

others demonstrated no or even negative impacts. For instance, with regard to student perfor-

mance, while the degree and closeness centralities seemed to have a positive effect on

Table 2. Structural properties of the respondents’ network and of the augmented network.

Respondents only Augmented network

Number of nodes 574 870

Number of links 1911 2550

Smoothed number of links 1260 -

Reciprocity 0.49 0.37

Diameter 27 18

Average shortest path length 9.40 7.13

Degree distribution KS.stat KS.stat

0.07 0.05

KS.p KS.p
0.68 0.93

https://doi.org/10.1371/journal.pone.0244377.t002

Table 3. Pearson correlations between the eighteen centrality measures for the augmented network.

Ecc

in-
Ecc

out-
Clos

in-
Clos

out-
Res

clos

in-

Res

clos

out-

Be-

tween

k-path

in-
k-path

out-
Bottle

in-
Bottle

out-
Eigen. Page

rank

Authority Hub MNC

in-
MNC

out-
Clique

Ecc in- 1.00

Ecc out- 0.17 1.00

Clos in- 0.96 0.18 1.00

Clos out- 0.15 0.97 0.18 1.00

Res clos in- 0.44 0.23 0.63 0.26 1.00

Res clos

out-
0.13 0.59 0.19 0.72 0.36 1.00

Between 0.18 0.32 0.29 0.40 0.60 0.62 1.00

k-path in- 0.33 0.21 0.51 0.24 0.97 0.35 0.62 1.00

k-path out- 0.12 0.46 0.17 0.60 0.33 0.97 0.62 0.34 1.00

Bottle in- -.01 -.04 .00 -.03 -.02 .02 -.01 -.02 .03 1.00

Bottle out- 0.01 -.02 0.01 -.01 0.03 0.00 0.04 0.04 -.01 0.21 1.00

Eigenvector 0.00 0.02 0.08 0.06 0.21 0.10 0.09 0.21 0.10 0.00 0.06 1.00

Page rank 0.26 -.07 0.35 -.10 0.51 -.03 0.26 0.49 -.03 0.02 0.07 0.08 1.00

Authority 0.01 0.02 0.08 0.07 0.20 0.12 0.11 0.21 0.13 -.02 0.05 0.97 0.06 1.00

Hub 0.00 0.04 0.06 0.10 0.16 0.18 0.10 0.16 0.18 0.00 0.06 0.85 0.06 0.86 1.00

MNC in- 0.27 0.21 0.35 0.25 0.50 0.33 0.32 0.48 0.31 0.03 0.08 0.35 0.30 0.37 0.31 1.00

MNC out- 0.13 0.37 0.20 0.41 0.32 0.48 0.24 0.31 0.44 0.10 0.08 0.32 0.24 0.34 0.43 0.68 1.00

Clique 0.15 0.25 0.25 0.33 0.49 0.51 0.43 0.50 0.50 0.02 0.10 0.43 0.22 0.46 0.48 0.78 0.72 1.00

In bold front: coefficients for which the p-value is� 0.05 (including those for which the p-value is� 0.01).

https://doi.org/10.1371/journal.pone.0244377.t003
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achievement, the impact of betweenness centrality appeared to be less clear (see S2 Appendix

for non-exhaustive instances of college student network studies and academic achievement).

Together with other issues, such as the tie type (e.g., friendship versus strategic ties) that is

investigated [4, 70], the choice of the centrality measures might explain the nature of the

observed links between centrality and education outcomes, along with the inconsistencies in

the findings [6]: The way centrality is computed mathematically defines centrality and estab-

lishes how individuals are represented within a network. Furthermore, studies showed that the

ranks of the scores obtained for different centrality indices did not always match (e.g., a node

could have high scores on some centrality measures, but average or low scores on other mea-

sures of centrality) [1, 8, 9]. As explained earlier, one objective of this paper is to highlight

which centrality measures might be the most informative for friendship student networks.

This research aims to select, from some chosen indices, the best-suited centrality measures for

representing a friendship student network. Those centrality indices might then be used to

study the impacts of student networks on education outcomes (e.g., student performance) in

further research.

2.2. A theoretical taxonomy of centrality measures for student networks

Taxonomies have been defined as “a formal specification of a shared conceptualisation” [78].

Used in a variety of fields (pharmacology, engineering, physic, law, finance, etc.), they help to

describe, organize, explain and predict phenomena; they yield knowledge about the relation-

ships between different categories or objects; and they help researchers or practitioners to

communicate about those phenomena [79–81]. Taxonomies may, however, “be subject to a
wide range of interpretations and misunderstandings” [81]. Their appeal to a community (i.e.,

their sharedness) and fit with the reality they represent (i.e. their conceptualisation) therefore

need to be validated [82]. Four criteria discussed in Guizzardi [83, 84] may be used in order to

verify their fit with reality, namely, their soundness, completeness, lucidity, and laconicity (see

Fig 2, where the constructs and/or objects colored in grey represent an absence of soundness,

completeness, lucidity, or laconicity).

A taxonomy is sound when there is no construct excess and each of its constructs matches

an underlying reality in an intended universe of discourse (e.g., within a student network). For

example, a sound taxonomy of centrality measures for student networks contains only theoret-

ical categories that represent centrality notions or dimensions for student networks in the real

world faithfully. A complete (or exhaustive) taxonomy has no construct deficit and, hence, a

construct for each aspect of the underlying reality [80]. For example, with an exhaustive list of

theoretical categories, a complete taxonomy of centrality measures would reflect each central-

ity dimension existing within student networks, including those that have not been observed

yet. A lucid taxonomy has no construct overload (homonymy) and hence only constructs that

each maps to (at most) a single aspect of the underlying reality. For example, a lucid taxonomy

would not contain a theoretical category that refers to several latent dimensions of student

Fig 1. Top 10 centrality measures in networks studies.

https://doi.org/10.1371/journal.pone.0244377.g001
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centrality. A laconic taxonomy has no construct redundancy (synonymy) and, hence, at most

one construct for each aspect of the underlying reality. Classes must therefore be mutually

exclusive, with no object that might belong to more than one category [80]. For example, a

laconic taxonomy would contain only one theoretical category for each centrality dimension

existing in student networks. In the absence of these criteria, the taxonomy could lead to

ambiguous interpretations of the centrality measures pertaining to, for instance, a student

network.

According to Lü et al. [15], “a valuable work is to arrange well-known centralities and classify
them.” As stated before, numerous centrality indices exist in SNA, and clear theoretical classifi-

cations that are easy to use might help both experienced and novice researchers to understand

and choose centrality indices from the vastness of options [32]. This work might be especially

valuable for novice researchers in student networks, since taxonomies are useful to understand

quickly the “essential traits of the classified object by simply knowing in which category and with
which other objects it has been grouped” [80]. Moreover, centrality measures are related to the

objectives linked to the use of those indices [9]. As Kozma et al. [79], who proposed a taxon-

omy of instructional treatments, different instructional treatment types having different

impacts on learning and cognition, classifications of centrality indices might be valuable for

efficiently visualizing and determining centrality measures that correspond to the goals of

studies on student networks. For instance, if the purpose of one research initiative is to study

the impact of a student’s information control on some variable(s) of interest, such as learning

or academic performance, taxonomies of centrality measures could help to select the most

appropriate indices. Moreover, as stated before, the four criteria discussed in Guizzardi [83,

84] may be used to verify the validity of taxonomies that conceptualize the notion of centrality

within (student networks). Now, not only has this work never been done before for student

graphs, but a valid taxonomy of centrality measures tested on a student network might also be

useful to generalize and validate the theoretical classifications of centrality indices proposed in

other studies and for other graph types [e.g., in 12–15].

3. A proposed integrated methodology for studying centrality

within networks

Fig 3 shows the integrated methodology. The first step consists of choosing a set of centrality

indices according to not only the nature of the graph(s) considered (network type(s), an undi-

rected versus a directed graph, etc.), but also the definition of the centrality indices, which

must be evaluated in light of the specific network(s) of interest (social, biological, financial,

etc.) and future research questions that will be investigated on the network(s). Second, a theo-

retical taxonomy of the chosen centrality measures is proposed. Third, those centrality indices

are computed on one (or more) real network(s) of interest (in our paper, a single friendship

student network). Fourth, PCA is applied to the computed centrality measures, and its outputs

Fig 2. Soundness, completeness, lucidity, and laconicity: Comparison between the theoretical classes or constructs

and the reality or objects they represent.

https://doi.org/10.1371/journal.pone.0244377.g002
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are used (1) to verify the theoretical taxonomy of centrality indices by comparing this theoreti-

cal classification with factorial components emerging from the PCA, and (2) to determine the

most informative centrality measures for the network(s) considered.

3.1. Choosing and defining the centrality measures

As stated before, our specific graph of interest is a friendship student network. We obtained a

list of suitable centralities for our friendship student network by using the CINNA package [6]

implemented in R©, and more precisely the function proper_centralities. The CINNA package

can compute a great variety of centrality indices and is able to deal with directed and un-

weighted networks, which is the case for our graph. The function output, i.e., the complete list

of the suitable centralities applicable to our graph, is presented in S3 Appendix. Among those

suitable centralities, the measures for representing our friendship student network were

selected by means of the sequence shown in Fig 4 and composed of the following steps:

1. Who are the nodes, what is/are the network type(s)? (i.e., in our case, a directed friendship

student network; see the data section for the details);

2. A deep understanding of centrality measures is a necessary condition for (1) pursuing the

methodology, (2) choosing the centrality indices from a vast set of measures, and (3)

enabling deeper knowledge of the considered network(s) and the mechanisms occurring

within the graph(s) of interest. With regard to the definitions of the centrality indices that

were proposed by the CINNA library (see S3 Appendix for the proposed measures and S4

Appendix for the thorough definitions of the centrality indices that we chose), the second

step consists of selecting which centrality measure might be suitable and interesting for fur-

ther studies to investigate the links between some network(s) and outcome(s) of interest (in

our case, between student centrality and education outcomes such as learning, perfor-

mance, and so on). Our selection of the centrality indices—made in line with the perspec-

tive of a friendship student network—are justified below, when we present the centrality

measures that we chose. Finally, for this second step, indices considered as irrelevant to the

network(s) of interest and future research questions related to this/these network(s) were

Fig 3. Choosing, comparing, and verifying centrality indices on networks: An integrated methodology.

https://doi.org/10.1371/journal.pone.0244377.g003

Fig 4. Choosing networks’ centrality indices: Sequence.

https://doi.org/10.1371/journal.pone.0244377.g004
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not selected for further analyses. For instance, the current flow closeness centrality [85] is

an index specific to electrical currents and was therefore not chosen since it is not suitable

for social networks.

3. For the remaining indices: In the third step, we determined whether there were any mea-

sures with highly similar formulas, i.e., that differed by only a very few parameters. For

instance, communicability betweenness centrality, flow betweenness centrality, load cen-

trality, and stress centrality are all variants of betweenness centrality. We chose the central-

ity index figuring in the highest number of documents on Google Scholar and—as a

benchmark—that was most used in network literature (see S1 Appendix): For betweenness

centrality, we chose the measure that was proposed by Freeman [86].

4. For the remaining indices: In order to continue the methodological process with a reason-

able number of indices, centrality measures that figured in very few documents on Google

Scholar were not selected for further analyses.

Among the complete list of suitable centralities presented in S3 Appendix, the set of central-

ity measures chosen for our friendship student network is composed of eighteen centrality

indices. Detailed definitions and explanations of these indices are given in S4 Appendix. We

consider a centrality measure that takes into account the edge’s direction, i.e., that can be com-

puted separately on the incoming and outgoing ties, as two distinct indices. We explain, for

each of the eighteen centrality measures, why they might be suitable for friendship student net-

works, and eventually for further studies conducted on those graph types and for their links

with some education outcome(s):

Eccentricity centrality (computed separately on the incoming and outgoing ties): Eccentricity

represents proximity versus isolation, i.e., the ease versus the difficulty of being reached by

or to reach others within the network [66, 67]. As this centrality measure is related to the

access of valuable information disseminated within a network [59], we found it important

to investigate its representativeness for friendship student networks, since it was potentially

linked to education outcomes of interest.

Closeness centrality (Freeman) (computed separately on the incoming and outgoing ties): This

index was selected as a benchmark whose representativeness needed to be tested, since it is

used mostly in the literature on student networks (see S1 Appendix). Furthermore, we

included this measure because the closeness centrality concerns the speed or efficiency with

which information will spread between nodes [12, 56, 87]: students with high levels of close-

ness centrality will enjoy efficient, easier, and faster access to information, advice, resources,

and (academic) benefits in the network [12, 24, 26, 62, 64, 69, 88].

Residual closeness centrality (computed separately on the incoming and outgoing ties): Resid-

ual closeness centrality reflects the significance of a node as a communication link for its

network [12], given that its removal significantly increases the distance between other

nodes. This index was used to investigate nodes’ centrality in several investigations [12, 14,

89]. However, as far as we know, no studies have yet used this measure on social networks,

and we selected this index to assess its representativeness for such graph types, since being a

strong communication link might be important in student networks.

Betweenness centrality (Freeman): We also chose this measure as a benchmark to be assessed,

since it has been used widely in previous studies on student networks (see S1 Appendix).

Moreover, this index is interesting for studies conducted on student networks since
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students with high levels of betweenness centrality connect other nodes and facilitate com-

munication between other students in the network [26, 55, 56, 66, 67, 69]. Betweenness cen-

trality represents the access and control that a node has over the (novel) information and

resources contained in and flowing through a graph [9, 12, 15, 61, 69, 90], and therefore

reflects its power or influence on other nodes [64, 87, 88].

Geodesic k-path centrality (computed separately on the incoming and the outgoing ties): This

bounded k-betweenness index—proposed by Borgatti & Everett [91]- allows for computing

the number of neighbors that are reachable by the fastest path up to length k, i.e., that are

on a geodesic path less than k away. According to the authors, “long” shortest paths, which

are considered when computing betweenness centrality, are not necessarily relevant for the

spread of information through the network. Moreover, as stated before, the role of between-

ness centrality in student network literature is still not clear. As far as we know, no research

has yet studied geodesick-path centrality in student networks, and we selected this index

because it might be important for students by informing about their reception and/or dis-

semination of local information instead of the totality of information that circulates

through the entire network [13].

Bottleneck centrality (computed separately on the incoming and outgoing ties): According to

Obadi et al. [55], bottlenecks are “central nodes that provide the only connection between dif-
ferent parts of a network”. Nodes with high bottleneck scores are therefore the most impor-

tant ones in the network [92]. This index is used mostly in biological studies [44, 46, 50, 92,

93], but we decided to assess its importance for social graphs such as friendship student net-

works, since it represents the degree of confluence of links through a given node [93], i.e.,

through a given student in our case.

Eigenvector centrality: This centrality measures reflects the power, influence, or importance of

a node in a network [8, 10, 61, 64]. The additional idea behind this score is that a node will

be more prestigious or powerful if its neighbors are also central or well-connected [9, 18,

19, 26], an interesting centrality concept for social graphs. Few studies [e.g., 61, 64, 66, 67,

77] have investigated eigenvector centrality for student networks. We included this index

since, given the advantages provided by high levels of eigenvector centrality, its representa-

tiveness for those graphs might be important and should therefore be assessed.

Page rank: The Page rank score [94, 95] quantifies the relative importance of a node within the

network [61]. In social networks (e.g., friendship student networks), members that are cited

by many individuals who have a high degree of Page rank will see their own Page rank

increase [4, 19]. Only two [4, 61] of the twenty-seven studies concerning student networks

that we reviewed used the Page rank score to investigate the centrality of students within

their network, even though this measure might be a valid candidate for centrality and pro-

vides valuable information about the importance of a student within her/his friendship

network.

Hub &authority scores: Related to networks, the authority score of a node reflects the impor-

tance of a node according to the number of important nodes, i.e., hubs that point towards

it. Then, a node will be central if it points towards other important nodes, i.e., if it possesses

a high hub score by pointing to good authorities. Here again, few studies [61, 77] have used

those two distinct indices for investigating the central position of a student within her/his

network, even though those measures provide different types of information, and might

reflect specific and important centrality measures of a node within friendship student

networks.
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MNC–Maximum Neighborhood Component (computed separately on the incoming and outgo-

ing ties): The MNC [46] is used mostly in the study of biological networks [e.g., 14, 47, 96,

97], even though it could also be used to identify central nodes in other graph types, such as

human networks [46]. As far as we know, no study has already used the MNC to compute

centrality within friendship student networks. We included this measure because the repre-

sentativeness of this index could be interesting to estimate, since it concerns a student’s cen-

trality, which is related to the degrees of connectivity of her/his friends.

Cross-clique connectivity: The cross-clique connectivity [41] of a node represents the level of

connectedness of this node to different sub-communities in a network. For a node, a high

value of cross-clique connectivity represents its large influence in the graph, the spread and

promotion of its ideas, its transfer of information between sub-communities in the net-

work, and its role in the cohesiveness of its clique [13, 26, 87]. As far as we know, this way

of representing centrality has yet not been the focus of research within friendship student

networks, even though it could potentially highlight important information linked to (a stu-

dent’s) having a cohesiveness role within her/his network.

3.2. Proposed theoretical taxonomy

Based on the definitions of the eighteen indices that we chose (S4 Appendix) and examples of

taxonomies from Song et al. [12], Lü et al. [15]; Ghazzali & Ouellet [13] and Ashtiani et al.

[14], who each worked on different sets of centrality measures, we propose five theoretical cat-

egories to classify our eighteen centrality measures (see Table 1). To construct our theoretical

taxonomy, we took three criteria that concern centrality measures into account, namely, (1)

their formulas, (2) the benefits of high levels of centrality, and (3) the topological structure of

the network and consideration (or non-consideration) of neighborhood properties. As the def-

initions of the eighteen indices show (see S4 Appendix), the first category (distance-based)

assesses a node’s proximity to the other members of the graph. The second category (geodesic

path-based) is related to the geodesic paths on which nodes are located. The third category is

based on connectivity, i.e., on the number of direct connections a node possesses. Finally, the

fourth and five categories take the neighborhood of a node, the former neighbors’ prestige,

and, lastly, the topology of the members adjacent to the node in question into account.

3.3. Computation of the centrality measures on a real network

We used the igraph package [98] implemented in R© to compute the eighteen centrality mea-

sures for each student in our specific friendship student network.

3.4. Principal Component Analysis as a methodological tool

Previous studies have used various techniques to compare several centrality indices and/or

highlight the most representative centrality measures within specific networks. Among those

methods, we find, for instance, the computation of correlation coefficients between centrality

indices [3, 13, 32]; Principal Component Analysis [6, 14, 99]; hierarchical clustering [e.g., 14];

the comparison between published network data sets and a Erdös–Renyi random network

used as a baseline [10]; and more complex techniques, such as the influence maximization

problem (IMP), heuristic and greedy algorithms, message passing theory, and percolation

methods (see [15]).

According to Ashtiani & Jafari [6] and Ashtiani [100], PCA allows one to determine the

most informative centrality indices and which centrality measures best represent the nodes

within a network, i.e., which indices identify the central nodes most accurately.
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PCA is a factorial analysis method that uses the correlations, i.e., inter-dependencies,

between variables (in our case the eighteen centrality indices) to reduce the p-dimensional

space of these variables to a k-dimensional space (with k<p). PCA results in a minimal number

of principal components, i.e., factorial axis or latent dimensions that corresponds to maximum

data dispersion, with these principal components being linear combinations of the initial vari-

ables. We performed PCA on our eighteen centrality indices and worked on standardized data

to neutralize the problem of centrality measures with different units. We used the Varimax
procedure as it ensures a better distribution of the variables over the factors by rotating the

axis and allows easier interpretation of the factorial axis [101, 102]. We used SPSS 23 to per-

form PCA on our eighteen centrality measures.

First, we performed PCA on the centrality indices because the method can highlight the k
latent dimensions of centrality within a graph, in our case our friendship student network.

Also, by computing the coordinates of each variable on each highlighted dimension, PCA

enables one to identify the factor on which a variable has the highest loading, so that identify-

ing the centrality indices that belong to the same latent dimension is possible in turn. Compar-

ison of the PCA output—the k highlighted latent dimensions—with the proposed theoretical

classification of centrality indices then enabled us to check whether this theoretical classifica-

tion could be validated.

Second, we performed PCA because it also enables one to determine the most representa-

tive centrality indices (among a complete set of measures) for a network of interest such as our

student graph. The first step consists of retrieving the relative contribution of each centrality

index (i.e., each p variable) for each of the k dimensions (i.e., the k factorial axes) retained in

the PCA. The following formula computes a variable’s contribution to a factorial axis k:

Contpk ¼
rðXp; FkÞ

2

P
rðXp; FkÞ

2
ð1Þ

Where ρ(Xp, Fk)2 represents the quality of the variable’s representation on the factorial axis k,

and is equal to the squared correlation coefficient between the variable Xp and the axis Fk; and

∑ρ(Xp, Fk)
2 represents the variance or inertia preserved on the factorial axis k, and is equal to

the sum of the squared correlation coefficients between each variable p and the factorial axis k
[102].

The second step then consists of computing each centrality measure’s average contribution

to the factorial plan, i.e., the average contribution on all k factorial axes, i.e., Contp We com-

pared each average contribution to a threshold of (1/18)×100 = 5.55%−, i.e., in our case a cen-

trality measure’s theoretical contribution, since we worked on eighteen indices. For our paper,

values higher or lower than 5.55% indicate a contribution that is above or below the theoretical

average contribution, respectively.

4. Data

4.1. Collect of the data and management of the missing ties

The data were collected at Saint-Louis University in Brussels (i.e., USL-B), Belgium, in October

2016. The juridic department of the USL-B approved the study. The survey that was dispensed

contained all the required information for an informed consent by the participants, and the

survey was not mandatory. The data were anonymized before further analyses. Data collection

took place during academic lectures that covered all curricula proposed by the university, i.e.,

law; economics; management sciences; literature, philosophy & history; communication, polit-

ical science, & social science; and translation & interpretation studies. A total of 574 (43.95%
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of the population) first-generation freshmen students (students registered in their first year of

studies for the first time) completed a paper survey. They were asked about their friendship

ties at university. In the survey, the student’ friends were described as the “persons with whom
students spend personal time, with whom they interact on a regular basis (face to face, by phone,

or on online social medias), whom they see outside classes, whom they trust, and/or with whom
they share their personal issues” [52, 55, 57].The nodes graph, i.e., the friendship student net-

work, was drawn from the collected data. Since the survey was not mandatory, students who

did not participate could nevertheless be cited as ties—a case of missing or non-respondent

actors [103]. Thorough analysis of our graph revealed that 296 students were named as friends

at least once by the 574 respondents but did not complete the survey and 651 of the 1911 desig-

nations (the total number of ties within the network) made by the respondents concern those

missing students. Since SNA methods require complete recording of interactions between

actors belonging to the studied network [16], we decided to impute the friendship relations for

the 296 missing actors by means of Exponential Random Graph Models (ERGMs) [103] and

statnet [104, 105], more specifically the ERGM package [106] implemented in R©. We tested

progressively inclusive models and the final model used to simulate the ties on the missing

actors included the effects of the number of edges in the network, node mixing by gender (gen-

der was significant to predict the edge probabilities), node mixing by curriculum (the curricu-

lum was significant to predict the edge probabilities), and a homophily effect for students in

the same curriculum (i.e., nodes with the same curricula were more likely to be connected). All

details (the justification for imputing the missing ties by means of ERGMs, the general formu-

las of the ERGMs, the terms used in our model, and its validation) are shown in S5 Appendix.

The simulation enabled us to impute 639 ties to the 296 missing students. The total number of

ties within the augmented network was therefore 2550. This imputation enabled us to compute

centrality measures for each of the 870 students belonging to the augmented network, that is,

the 574 respondents and the 296 missing actors to whom ties were imputed.

4.2. Comparison between the respondents’ network and the augmented

network: Visualization and structural properties of the two graphs

Since as explained earlier, SNA methods require the complete recording of interactions

between actors within the studied network, in order to compare the augmented network to the

respondents’ network, we had to use—for this last network—the complete cases methodologi-

cal approach, i.e., we had to delete within the respondents’ network the nominations corre-

sponding to students that did not complete the survey (i.e., we removed the 651 nominations

made towards the missing actors).

Fig 5 shows the two networks: the original graph- i.e., the respondents’ network—that

haves a number of nodes that is equal to 574, and the augmented network that haves a number

of nodes that is equal to 870. Table 2 shows the structural properties of the original network

and of the augmented network.

The reciprocity (i.e., the percentage of dyads with mutual ties within a network: [18]) shows

that, for the respondents, 49% of the links are reciprocal, and that, for the augmented network,

the proportion of reciprocated ties is equal to 37%. The proportion of mutual ties is higher in

the respondents’ network probably because of the deletion of nominations towards missing

actors, which has for effect to artificially increase the reciprocity. The diameter—i.e., the lon-

gest geodesic distance between any two students in the network [18, 61]—is equal to 27 for the

network composed of the students who responded to the survey, and equal to 18 for the aug-

mented network. Results show that the imputation of missing ties allowed decreasing the

shortest distance between the two most distant students within the graph, which seems logical
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since in the respondents’ network we deleted the nominations made by students towards miss-

ing actors. Then, the average shortest path length computes the mean of the geodesic distance

between each pair of nodes within the network [107]. In average, the shortest path length

between each dyad is equal to 9.40 in the respondents’ graph and equal to 7.13 in the aug-

mented network. The imputation process also allowed decreasing the average geodesic dis-

tance that is needed to access other students within the network. Finally, Fig 6 shows left-skew

phenomena for the degree distribution of our two networks: the two histograms and cumula-

tive density graphs show that there is a maximum of density at low values of node degree. Left-

skewed degree distributions show similarity to scale-free networks [14]. In scale-free networks,

most nodes have few links and only few nodes entertain many ties [108]. Since the probability

of measuring a high value of node degree varies inversely as a power of that value [109], the

distribution of nodes linkages in scale free-networks follows a power law [108]. The power law

appears in many fields, including the social sciences [109]. As in Ashtiani et al. [14], we com-

pared the degree distribution of both of our networks to the power law distribution in order to

assess the scale-free property of our two graphs. Both of our networks seem to follow a power

law distribution (Table 2). First, we observed small scores (which denote a better fit between

the power law distribution and the data) for the Kolmogorov-Smirnov test statistic (i.e.,

resp. 0.07 and 0.08 for the respondents’ network and for the augmented network). Second, if

the resulting p-value of the Kolmogorov-Smirnov test is greater than 0.1, then the power law is

a plausible hypothesis for fitting the distribution of nodes [110]. The two high p-values (i.e.,

resp. 0.68 and 0.93 for the respondents network and for the augmented network) show that

the distribution of nodes for both our two networks do not significantly differ from the power

law distribution (i.e., our two networks could have been drawn from the fitted power-law dis-

tribution). It is interesting to see that the augmented network seems to better fit the power-law

distribution than the network composed only of respondents (again, probably because, for the

respondents’ network, we deleted the nominations that were sent towards students who did

not answer to the survey).

5. Results

5.1. Correlations between the centrality measures

Three conditions are necessary for a PCA to be relevant. The first condition is that the vari-

ables must be correlated [111]. For the augmented network, the Pearson’s correlation coeffi-

cients between each centrality measure together with their significance levels are shown in

Table 3. The results show that the correlations between centrality measures that can be

Fig 5. Representation of the original network and of the augmented network.

https://doi.org/10.1371/journal.pone.0244377.g005
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computed separately on the incoming and outgoing ties (e.g., the eccentricity in- and out- cen-

tralities) are all positive and significant (p-values� 0.05). Then, the results show many positive

significant correlations between centrality measures (p-values� 0.05), except for the bottleneck

indices (in- and out-), for which few significant correlations are observed. We notice the stron-

gest relationships between the eccentricity and closeness in- centralities (ρ = 0.96); the eccentric-

ity and closeness out- centralities (ρ = 0.97); the residual closeness and geodesic k-path in-

centralities (ρ = 0.97); the residual closeness and geodesic k-path out- centralities (ρ = 0.97);

betweenness with the residual closeness in- (ρ = 0.62), geodesic k-path in- (ρ = 0.62), and geode-

sic k-path out- (ρ = 0.62) centralities; the eigenvector prestige and Kleinberg’s authority central-

ity scores (ρ = 0.97); Kleinberg’s hub centrality with Kleinberg’s authority centrality (ρ = 0.86)

and the eigenvector prestige scores (ρ = 0.85); the Page rank score with the residual closeness

(ρ = 0.51) and geodesic k-path (ρ = 0.49) in- centralities; and cross-clique connectivity and the

MNC: the maximum neighborhood component (in-: ρ = 0.78, and out-: ρ = 0.72).

5.2. The centrality latent dimensions within friendship student networks

For a PCA to be relevant, two other conditions (other than the correlations between variables)

must be met. First, the Bartlett’s test verifies whether highly correlated variables might be cor-

related to the same latent factor(s) [101, 111], which is the case (χ2 = 20512.07; p-value =

0.000). Second, the Kaiser-Meyer-Olkin index (KMO) tests the compressibility of information

[111]. As the value of the KMO (= 0.713) is higher than 0.5 (the critical threshold), we can con-

sider the factorization to be statistically acceptable.

Concerning the quality of a variable’s representation, 50% of the information contained in

each variable must be preserved in the factorial plan [101]. This fourth condition, which was

computed automatically by SPSS 23, was met for all our centrality measures (see Table 4).

Fig 6. Distribution of node degree for the two networks.

https://doi.org/10.1371/journal.pone.0244377.g006
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Then, to determine the minimum number of axes that preserves the maximum percent-

age of information, we used the Kaiser criterion, which consists of keeping the k factorial

axes possessing eigenvalues (i.e. projected inertia/variance or information’s degree pre-

served by an axis) that are higher than 1 [101, 111]. According to this criterion, six latent

dimensions were retained. Moreover, they conserved 82.82% of the total inertia present in

the original dimensional space (see Table 5). This respects an additional criterion based on

a 60% threshold for the minimum percentage of conserved variance in the factorial plan

[101, 111].

Table 6 shows the variables and their factor loading on the components for which their sat-

uration is the highest, i.e., the latent dimensions on which the variables have the highest load-

ing. The closeness, residual closeness, eccentricity, and geodesic k-path out- centralities are

correlated with the first factorial axis. According to these four indices’ definitions and formulas

(in S4 Appendix), this first component or latent dimension might therefore reflect the ease

with which a node reaches the other nodes, connects them, and transmits information

throughout the network. The second dimension, which is highly correlated with Kleinberg’s

authority & hub centrality scores and the eigenvector prestige score, relates to centrality

Table 4. Sum of the squared correlation coefficients between a variable and each factorial axis.

Variables Extraction

Ecc in- 0.93

Ecc out- 0.78

Clos in- 0.96

Clos out- 0.88

Res clos in- 0.90

Res clos out- 0.89

Between 0.80

k-path in- 0.87

k-path out- 0.80

Bottle in- 0.62

Bottle out- 0.59

Eigenvector 0.95

Page rank 0.59

Authority 0.96

Hub 0.87

MNC in- 0.83

MNC out- 0.85

Clique 0.84

https://doi.org/10.1371/journal.pone.0244377.t004

Table 5. Percentages of variance retained by the first six factorial axes.

Components Initial Eigenvalues

Total % of Variance Cumulative %

1 6.07 33.71 33.71

2 2.80 15.54 49.25

3 2.48 13.77 63.02

4 1.32 7.33 70.35

5 1.23 6.82 77.17

6 1.02 5.65 82.82

https://doi.org/10.1371/journal.pone.0244377.t005
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through the number of connections with prestigious friends. The geodesic k-path and residual

closeness in- centralities, betweenness, and Page rank score load on the third factor. This

dimension might therefore denote the ability to control the received information and a node’s

degree of significance, especially by being located on the shortest (local) paths converging

towards the node. The fourth dimension (the maximum neighborhood components and

cross-clique connectivity) is linked to the degree of cross-connectivity of a student and her/his

neighbors. The fifth component, which is highly correlated with the eccentricity and closeness

in- centralities, relates to the ease with which a node is reached by the other nodes in the net-

work and its ability to receive information. The sixth and last dimension reflects the degree of

bottleneck, i.e., the degree of confluence through a given student.

5.3. Verifying the taxonomy on real data: A friendship student network

In order to verify the proposed taxonomy, we compared our theoretical classification (in

Table 1) with the six centrality dimensions that emerged from the PCA that was performed on

the augmented network, i.e., with the composition of the dimensions in terms of the eighteen

centrality indices (in Table 6).

Within the taxonomy, four indices, namely, the eccentricity, closeness, residual closeness,

and geodesic k-path centralities, are gathered within a first category (Category 1 in Table 1),

which is built on the criteria of a geodesic distance-based formula and access to information as

a centrality corollary. Those four indices, but computed for the outgoing ties only, saturate on

the first latent dimension in the PCA (Table 6), which therefore matches Category 1 in

Table 1. This theoretical category is therefore validated, but only for centralities computed on

the nominations (declared friends) that are made by a node (student). Moreover, the closeness

and eccentricity centralities that are computed on the incoming ties, i.e., the nominations

received by a node, and which both saturate on the fifth factorial axis (Table 6), seem to form a

subset within the first theoretical category in Table 1. Then, in the theoretical taxonomy, we

Table 6. Results of the Varimax rotation: Correlation of each variable on the factorial axis on which the saturation is the highest.

Components

Centrality Indices 1 2 3 4 5 6

Closeness centrality (out-) 0.91

Residual closeness centrality (out-) 0.88

Eccentricity centrality (out-) 0.83

Geodesic k-path centrality (out-) 0.81

Kleinberg’s authority centrality scores 0.96

Eigenvector prestige score 0.96

Kleinberg’s hub centrality scores 0.91

Geodesic k-path Centrality (in-) 0.86

Residual closeness centrality (in-) 0.83

Betweenness 0.74

Page rank 0.60

MNC—maximum neighborhood component (out-) 0.86

MNC—maximum neighborhood component (in-) 0.82

Cross-clique connectivity 0.72

Eccentricity centrality (in-) 0.94

Closeness centrality (in-) 0.91

Bottleneck centrality (in-) 0.79

Bottleneck centrality (out-) 0.76

https://doi.org/10.1371/journal.pone.0244377.t006
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assigned the residual closeness and geodesic k-path centralities to the first category, but also to

a second family of indices (Category 2 in Table 1) based on a geodesic-path formula and that

relies on information control and diffusion. As seen above, residual closeness and geodesic k-

path out- centralities have been verified to be part of Theoretical Category 1. However, they

are validated for Theoretical Category 2 when they are computed on the incoming ties. They

form a latent construct (the third dimension in Table 6) together with the betweenness index,

with the latter also being validated for Theoretical Category 2 of centrality measures. As shown

for the eccentricity and closeness centralities, the residual closeness and geodesic k-path indi-

ces therefore seem to be divided into two distinct categories according to the nature of the ties

(i.e., in- versus out-),.

Then, the second latent dimension resulting from the PCA (Table 6), which brings together

Kleinberg’s authority & hub centrality scores along with the eigenvector prestige score, vali-

dates the third and fourth theoretical categories of indices within the taxonomy (Table 1), i.e.,

the categories based on the degree of connectivity and the prestige of the connections, respec-

tively, which both reflect power and influence.

The fifth theoretical category in Table 1 concerns centrality indices that take the topology

properties of the neighborhood into account in their formulas and relate to information spread

and cohesiveness roles. The cross-clique connectivity and maximum neighborhood compo-

nents (in- and out-) were proposed as being part of this category. That was confirmed by the

PCA, which showed those three indices gathering on a same latent factor (the fourth dimen-

sion in Table 6). It should be noted that since a clique is composed of three or more nodes,

cross-clique connectivity was also proposed as part of the third theoretical category in Table 1,

which is based on the number of connections. However, the PCA confirmed that cross-clique

connectivity belonged to the same category as the MNC scores.

Finally, bottleneck (in- and out-) and Page rank scores do not behave as expected according

to the taxonomy. First, as shown above with the correlations and PCA, the two bottleneck indi-

ces do not correlate significantly with most of the other sixteen centrality measures, and both

saturate on a specific factorial axis (the sixth dimension in Table 6). Yet based on the shortest

paths in their algorithms, bottlenecks seem therefore to measure a different centrality type

than the residual closeness, geodesic k-path, and betweenness indices. Second, we expected the

Page rank score to be validated within the same theoretical category as the eigenvector and

Kleinberg’s authority & hub scores, since the Page rank formula takes the prestige of the

incoming ties into account when computing a node’s centrality. Instead, PCA showed a maxi-

mum saturation of Page rank on the same factorial axis as the geodesic k-path (in-), residual

closeness (in-), and betweenness centralities.

5.4. Generalization and summary of the results

In order to generalize our findings, we computed the centrality indices on the original network

(i.e., on the 574 respondents). Then, we applied the PCA to the eighteen centrality measures

computed for those 574 respondents only and compared the PCA outputs with those from on

the augmented sample (the 870 students). The tables related to the PCA performed on the 574

respondents are presented in S6 Appendix. The results show that even though some differ-

ences are highlighted between the two PCAs, we found roughly the same latent factors, which

supports the generalizability of our results. The similarities and differences that were

highlighted are as follows: (1) five factorial axes emerged for the PCA carried out on the 574

respondents instead of six latent dimensions for the augmented sample (see Table 5 in S6

Appendix); (2) the first dimension (which included the closeness out-, residual closeness out-,

eccentricity out- and geodesic k-path out- centralities in the initial PCA) is similar between the
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two PCA, except for the fact that betweenness is added to this dimension when the PCA is per-

formed on the 574 respondents. However, as shown in Table 3 of the S6 Appendix, between-

ness does not meet the requirement of 50% of the information preserved in the factorial plan.

Therefore, its proximity to the four centrality measures that compose the first dimension

should be considered with caution; (3) the second dimension (which includes the Kleinberg’s

authority, eigenvector, and Kleinberg’s hub scores) matches with the dimension in the PCA

carried out on the augmented sample exactly; (4) as in the initial PCA, the third dimension

includes the geodesic k-path in- and residual closeness in- centralities, but, on the one hand,

the eccentricity in- and closeness in- centralities are now part of this component, and, on the

other hand, betweenness and the Page rank score are no longer included in this dimension.

We stated earlier that betweenness is not well represented in the factorial plan, which, as for

the initial PCA, is also the case for the Page rank score (see Table 4 in S6 Appendix). We also

note that this dimension highlighted for the respondents only would validate the first category

in our theoretical taxonomy, but only for incoming ties. This might be due to the fact that the

incoming ties no longer include the imputed ties from the non-respondents; (5) the fourth

dimension (which includes the MNC in- and out- together with cross-clique connectivity) cor-

responds to the latent factor generated by the first PCA, except for the Page rank score, which

is now added to this dimension. But as just stated, its proximity to the three other centrality

measures that compose this latent factor must be considered with caution; (6) in the correla-

tion matrix (see Table 1 of S6 Appendix), the two bottleneck scores seem to be more linked to

the other centrality measures than when computed for the 870 students. However, whether the

PCA is performed on the respondents only, as on the augmented sample, they continue to

form a unique latent dimension.

Table 7 compares the centrality dimensions that came out of the PCA (for both networks)

with the theoretical categories proposed within the taxonomy, and summarizes the above find-

ings: For both networks, the first latent dimension validates the first theoretical category, but

for indices computed on the outgoing ties only, while for the augmented network (resp. the

respondents’ network), the fifth (resp. third) dimension matches, but only for incoming ties,

two centrality measures that were proposed within Theoretical Category 1. For both networks,

a unique dimension, i.e., Dimension 2, which includes and represents three indices, validates

the membership in a unique class for those indices that were theoretically proposed as belong-

ing to two theoretical categories, i.e., the third and fourth categories in Table 1. Then, for both

networks, except for the Page rank score (for which we expected saturation on the second

dimension) and the two bottleneck indices, which both saturate on the sixth (resp. fifth)

dimension, the third dimension matches with Theoretical Category 2. However, for the

respondents’ network, the betweenness does not belong to the third dimension as it was

expected. Finally, for both networks, the fifth theoretical category of centrality measures is vali-

dated by the fourth PCA dimension.

5.5. The most representative measures of centrality for friendship student

networks

The last objective of the paper was to find the best centrality measures, i.e., the most represen-

tative and significant indices, when we investigate and represent friendship student networks.

As in Ashtiani et al. [14] for biological networks, our goal was therefore to establish, from

within a set of centrality indices, the measures that best categorize the central students and dis-

tinguish them from the peripheral ones.

As explained earlier in Section 3.4., we first retrieved the relative contribution of each of the

eighteen centrality indices for each of the six dimensions that were retained in the PCA
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(performed on the augmented network). Then, we computed the average contribution of each

of the eighteen centrality measures to the factorial plan (i.e., Contp). We compared each aver-

age contribution to the threshold of 5.55%, with higher (lower) values than this threshold indi-

cating a contribution that is above (below) the theoretical average contribution. Table 8 shows

the centrality measures and their average contributions (in descending order) to the factorial

plan. The eight indices that best represent the variance of student centrality within a network

are the bottleneck indices (in- &out-), eccentricity and closeness centralities computed on the

incoming ties, maximum neighborhood component measures (in- &out-), and Kleinberg’s

authority & eigenvector prestige scores. On the contrary, other centralities (e.g., the between-

ness index and eccentricity and closeness centralities computed on the outgoing ties) seem to

contribute less to the factorial plan, being below the average threshold of 5.55%.

6. Discussion

We applied to a friendship student network the integrated methodology that we developed,

i.e., (1) choosing, defining, and proposing a theoretical classification of centrality measures; (2)

highlighting centrality dimensions within the network of interest; (3) verifying the proposed

theoretical taxonomy by means of those dimensions; and (4) identifying representative cen-

trality indices for friendship student networks.

Table 7. The proposed theoretical classification and the centrality dimensions that came out of the PCA: Comparison.

Centrality

measures

Theoretical constructs

(From Table 1)

Latent dimensions (reality) for the augmented

network (From Table 6)

Latent dimensions (reality) for the respondents’ network

(From Table 5 in S6 Appendix)

Eccentricity (out-) 1 1 1

Closeness (out-)
Residual closeness

(out-)
Geodesic k-path

(out-)
Eccentricity (in-) 5 3

Closeness (in-)
Residual closeness

(in-)
2 3

Geodesic k-path

(in-)
Betweenness 1

Bottleneck (in-) 6 5

Bottleneck (out-)
Eigenvector prestige

score

3 or 4 2 2

Hub score

Authority score

Page rank 3 4

Cross-clique

connectivity

5 4

MNC (in-)
MNC (out-)

As detailed above, the first category within Table 1 is based on geodesic distance and access to information, the second category is based on geodesic path and diffusion

of information, the third category is based on connectivity and power, the fourth category is based on neighborhood prestige and power, and the fifth category is based

on the neighborhood’s topology and spread of information.

https://doi.org/10.1371/journal.pone.0244377.t007
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In accordance with other studies conducted on other network types (e.g., sociometric net-

works in Valente et al. [3]; social, ecological, and neural networks in Batool & Niazi [10]; and

terrorist and viral networks in Ghazzali & Ouellet [13]), our results show significant positive

correlations between several centrality measures (e.g., between the eccentricity and closeness

centralities, between the geodesic k-path centrality and betweenness index, and between the

closeness centrality and eigenvector prestige score). Concerning the centrality dimensions that

emerge in friendship student networks, our results show the existence of six latent constructs,

namely, (1) a student’s ability to reach friends and transfer information to them, (2) a student’s

ability to be reached by her/his friends and receive information from them, (3) a student’s sig-

nificance for the network structure and her/his control over the information flow, (4) a stu-

dent’s importance through the number of connections with prestigious students that are her/

his friends, (5) the degree of cross-connectivity, and (6) the student’s position as a confluent

node. First, these results indicate that a centrality measure that is computed for incoming links

seems to differ from the same centrality measure computed for outgoing links as regards its

meaning and impacts on nodes. Our results show that the eccentricity, closeness, residual

closeness, and geodesic k-path centralities that are computed for the outgoing ties saturate on

a different latent construct than the eccentricity and closeness centralities that are computed

for the incoming links. For friendship student networks, this result implies that it is not

because a student is close to the other nodes of the network through her/his outgoing ties that

s�he is automatically close to the other nodes of the network through her/his incoming connec-

tions. This also demonstrates that in friendship student networks, access to information might

differ depending on a node’s incoming and outgoing ties. Then, according to the nature of the

ties (i.e., in- versus out-), the residual closeness and geodesic k-path centralities are also divided

into two categories or dimensions. In other words, the number of friends that a student can

reach—the student being located on (local) geodesic paths—might differ from the number of

friends that can reach the student, also through (local) geodesic paths. Moreover, the fact that

the residual closeness and geodesic k-path centralities are divided into two dimensions shows

Table 8. Average contributions of the centralities to the factorial plan.

Average contribution to the factorial plan (Pct.)

Bottleneck (in-) 8.50

Bottleneck (out-) 7.97

Eccentricity (in-) 7.95

Closeness (in-) 6.77

MNC (out-) 6.38

MNC (in-) 5.80

Kleinberg’s authority scores 5.67

Eigenvector prestige score 5.64

Betweenness 5.53

Kleinberg’s hub scores 4.94

Closeness (out-) 4.76

Eccentricity (out-) 4.63

Geodesic k-path (in-) 4.63

Page rank 4.22

Residual closeness (in-) 4.21

Cross-clique connectivity 4.11

Residual closeness (out-) 3.89

Geodesic k-path (out-) 3.69

https://doi.org/10.1371/journal.pone.0244377.t008
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that the outgoing links seem important for information access, while the incoming ties appear

relevant for information control. In conclusion, a node might be highlighted as significant

when centralities are computed on its incoming (outgoing) links, but not shown as central

when its outgoing (incoming) ties are used in the computations. Second, PCA shows that Page

rank saturates on the same factorial axis as the geodesic k-path (in-), residual closeness (in-),

and betweenness centralities. As far as friendship student networks are concerned, these

results suggest that students who are highlighted as central because they are cited by many

other friends with high Page ranks might also be significant through the high number of neigh-

bors that can reach them (i.e., those neighbors being located at maximum k steps towards

them).From this we might infer that students with high Page rank scores are geographically

close (on the graph) to the friend(s) who nominate them and belong to the same neighborhood

as these students’ closest friend(s). Finally, as stated before, the bottleneck measure seems to

cover a particular centrality type that differs from those of the other indices that are related to

location on geodesic paths within the network. According to the definitions of the centrality

measures concerned (see S4 Appendix), this might be due to the fact that while the between-

ness, geodesic k-path, and residual closeness centralities refer to the number of times a node is

located on shortest paths between other nodes, a bottleneck provides the only connection

between different parts of a network [56]. Consequently, for the betweenness, geodesic k-path,

and residual closeness centralities, several students may be important by being located on

shortest paths between other students, while students who are bottlenecks serve as the only
bridges between several parts of the network, and therefore might be not only important but

essential for the network. Future studies should be dedicated to a deeper understanding of the

non-correlation between bottlenecks and other centrality measures that concern the locations

of nodes on geodesic paths within student networks.

We matched the theoretical categories and the reality in order to verify whether the theoret-

ical model could be validated.Except for the direction of the ties and/or for few indices, the five

proposed categories of the theoretical classification correspond to the latent dimensions

highlighted by the PCA:

1. The first theoretical category of the taxonomy is validated by the emergence of a first

dimension, but for the centrality measures computed on the outgoing ties only.

2. Two centrality measures computed on incoming links that were proposed as belonging to

the first theoretical category saturates on a second different dimension than the one that

was expected.

3. Except for three indices, which saturate on two other dimensions than those that were

expected, a third latent factor matches with the second theoretical category of the

taxonomy.

4. Three indices that were theoretically proposed as belonging to two theoretical categories

have the highest loading on a fourth unique dimension.

5. The last theoretical category of centrality measures is validated by the emergence of a

unique dimension.

The results show that the integrated methodology applied to real data improved the taxon-

omy by adding some granularity. For instance, they highlighted that the direction of the ties

should be considered in a theoretical classification of centrality measures. Then, regarding the

four criteria (i.e., sound, complete, lucid, and laconic) that enable validating taxonomies, the

methodology, when tested on real data, showed the following:
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1. The proposed taxonomy seems to be sound (i.e., does not contain useless constructs), since

each proposed theoretical category of indices matches with one latent dimension of central-

ity within the real network.

2. In order to be complete (i.e., to cover each aspect of the centrality notion within a friendship

student network), an additional category within the theoretical taxonomy should be pro-

posed for the bottleneck centrality.

3. In order to be to be lucid (i.e., contain categories that map to (at most) a single aspect of

centrality), as explained above, categories that take the direction of the ties into account

should be added to the taxonomy.

4. In order to be laconic (i.e., with no construct redundancy), the two categories “Connectivity-
based” (Category 3 in Table 1) and “Prestige of Neighborhood” (Category 4 in Table 1)

should be merged into a single construct, since they do not seem to relate to different

aspects of centrality; that is, since the indices proposed for both categories—the eigenvector

prestige score and Kleinberg’s authority centrality scores—saturate on only one latent

dimension. The page rank score would also needs to be reinterpreted for the taxonomy to

be laconic, since this centrality measure was proposed as belonging to two theoretical cate-

gories, whilst being part of only one dimension in reality.

As stated before, applying our integrated methodology to real data could also be useful for

comparing our verified theoretical classification with categories of centrality indices suggested

by other authors. For the categories proposed by researchers from which we took inspiration

to build our own taxonomy, we find several concordances, even if the classifications do not

exactly match:

1. For Song et al. [12] we found a concordance with the distance and path-based categories for

the closeness & betweenness centralities.

2. For Lü et al. [15] we found a concordance with their “iterative refinement centralities” cate-

gory, which contains the eigenvector score and HITS (i.e., the Kleinberg’s authority & hub

centralities) algorithm.

3. For Ghazzali & Ouellet [13] we found a concordance with the closeness centrality, which is

also included in a distance-based category; with the betweenness and geodesic k-path cen-

tralities, which are also part of a path-based category; and with the eigenvector score, which

also belongs to a connectivity category.

4. For Ashtiani et al. [14] we found a concordance with the closeness, eccentricity, and resid-

ual closeness (but only out-) centralities that they proposed within a distance-based cate-

gory; with the Kleinberg’s authority & hub centralities included within a connectivity

category; and with the maximum neighborhood component, which is also part of a neigh-

borhood-based category.

Concerning the centrality measures that should be chosen to describe and represent friend-

ship students within their network, as in Batool & Niazi [10] and in Ashtiani et al. [14], our

results show centrality indices that contribute the most to the construction of the factorial plan

and best reflect the variability of centrality within friendship student networks. For instance,

future studies could use these seven measures that are rarely or not yet used in the literature on

friendship student networks: (1) the two bottleneck indices, (2) the eccentricity in- centrality,

(3) the two maximum neighborhood component measures, (4) Kleinberg’s authority score,

and (5) the eigenvector centrality measure. Using these indices could allow capturing and
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investigating different dimensions of student centrality (i.e., its degree of confluence, ability to

be reached and to receive information, degree of cross-connectivity, and centrality through

prestigious connections), while making sure to select the best centrality candidates (reflecting

a maximum of variability between students).

Four limitations of this research must be pointed out. First, the third and fourth steps of the

sequence that allows choosing the centrality indices (in Fig 4) might be subjective. For the

third step (the analysis of measures whose formulas are highly similar), measures that look

alike regarding their formulas might—in some cases—behave differently from an empirical

and/or mathematical point of view. For the fourth step, choosing not to perform further analy-

ses on centrality measures that figured in very few documents on Google Scholar may be prob-

lematic, since it will contribute to circular reasoning: new measures might never get the chance

to be tested. However, for this particular issue, the second step of the process provides the

opportunity for choosing measures that were (very) rarely referenced in the literature (in our

case: the residual closeness, bottleneck, and geodesic k-path centralities and the cross-clique

connectivity).We proposed the idea of a sequence leading to a reasonable list of centrality indi-

ces, but future studies should continue investigating other measures (e.g., those whose formu-

las are similar to some extent or those that have rarely been referenced in the literature)

according to the nature of their graph. Second, concerning PCA, each variable met the require-

ment of 50% of the information preserved in the factorial plan. But compared with the other

centrality measures (for which the representation was greater than or equal to 78%), the Page

rank score and bottleneck indices contained lower percentages of information, i.e., a maxi-

mum of 63%. If a variable is not well represented in the factorial plan, its correlation with

another variable or other variables may be misinterpreted, i.e., variables might be considered

close whereas that is not the case [102]. Therefore, the proximity of the Page rank score with

the geodesic k-path centrality (in-), residual closeness centrality (in-) and betweenness should

be considered with caution. The considered proximity between the two bottlenecks’ scores

should also be validated by subsequent studies. The third limitation relates to the high propor-

tion (34%) of missing actors or non-respondents. Several authors [112, 113] have shown that

high levels of survey non-response impact the structural properties of social networks and

might cause underestimation of the computed coefficients [114]. Therefore, we chose the

ERGM imputation technique (see S5 Appendix for the justification), in order to limit biases in

the further analyses as much as possible. The comparison between the two PCA results (i.e.,

the results from the PCA performed on the respondents network and those from the PCA per-

formed on the augmented network) show that choosing the ERGM imputation technique, and

therefore the non-deletion of the nominations made towards the non-respondents, allowed

our method to respect the three necessary conditions for the PCA to be robust (which was not

the case when we performed the PCA on the 574 respondents, since betweenness did not meet

the criterion of 50% of information conserved within the factorial plan), and increased the

granularity of the PCA results by highlighting six instead of five dimensions. The fourth and

final limitation relates to the distribution of the eighteen centrality measures, which are not

normal distributions: Kolmogorov-Smirnov tests conducted on each eighteen centrality mea-

sures have rejected the normality of the distributions, the p-values being equal to 0.000 for

each of the eighteen tests. Table 1 of S7 Appendix shows that some variables (e.g., the eigenvec-

tor, hub and authority scores) have a positively skewed and/or leptokurtic distribution, i.e., a

high degree of positive skewness and/or of kurtosis. However, the Spearman correlations

matrix (where the coefficient correlation are computed on the variables’ ranks instead of the

raw data) between the eighteen centrality measures shows that the pattern of correlations is

similar than the one observed in Table 3, i.e., when using the Pearson’s formula: Table 2 in S7

Appendix shows, on the one hand, significant correlations between most of the centrality
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measures, and, on the other hand, the fact that the two bottleneck indices do not seem to be

linked to the other centrality measures. Moreover, the total percentage of positive and signifi-

cant correlations between all centrality measures except the two bottleneck indices is equal to

90.83% when using the Pearson’s formula, and equal to 87.50% when using correlation on the

ranks. Having used the raw data instead of their rank when we computed the correlations and

performed the PCA seems therefore robust.

Finally, we see three prospects for future research.

1. First, the theoretical taxonomy could be tested on other student networks, but also in con-

texts other than academic settings, that is, on other network types (organizational, biologi-

cal, etc.), in order to verify its validity (completeness, soundness, lucidity, and laconicity)

and generalize its results. Also, to ensure its completeness by including centrality measures

that have not been observed yet, other measures than those chosen in this paper and that

can be computed in other libraries or web-based services (e.g., Hubba: hub objects analyzer

from Lin et al. [46]; Centiserver from Jalili et al. [11]; Centilib from Gräßler et al. [85])

should be tested.

2. Second, our study should be replicated on other friendship student networks or other tie

types within student networks, e.g., on strategic links, in order to validate the highlighted

dimensions of centrality within student networks, but also to identify the best centrality

measures when we investigate such graphs, since we worked on only one particular net-

work. Batool & Niazi [10] have emphasized the need to pursue research that identifies the

best centrality measures for a given network type (including the measures usually employed

but also less traditional indices). Moreover, as stated by Landherr et al. [9], Batool & Niazi

[10] and Ghazzali & Ouellet [13], more studies that compare and formalize centrality mea-

sures in different contexts are necessary. Centrality measures considered appropriate for a

given network may not be able to identify central nodes correctly in other graph typologies

[14]. For instance, it might be interesting to replicate this study on strategic ties within a

student network, i.e., “the people student would seek advice or assistance from and ask ques-
tions about their studies” [53, 115], in order to investigate if the same dimensions of central-

ity and most representative centrality measures emerge. Moreover, we studied the

centrality of students within a friendship network to get insights into the mechanisms

occurring within those specific networks but also to orientate future studies that investigate

the relationships between centrality and education outcomes such as student performance.

As previous studies have found, centrality computed on different link types correlate differ-

ently with academic achievement (see, for instance, [4, 70]). Even if both network types

(i.e., friendship and strategic links) are essential for education outcomes [115], this might

be due to the fact that centrality within friendship versus strategic links procures different

advantages for learning and performance [70], but also because different centrality types

might be more or less representative and/or important according to the tie type considered.

3. The third perspective concerns frameworks or methodologies that could be used to verify

the appropriateness of node centralities for different network types. Jalili et al. [11] identi-

fied 113 centrality measures; it would be very difficult, even impossible, to include all those

measures in only one study. Along with Ashtiani et al. [14], we argue that the choice and

identification of the best centrality candidates should be the first step when investigating

networks to identify their key players. The integrated methodology that we propose might

therefore be useful for future studies related to networks and node centralities (i.e., to test

any set of centrality indices on any network and/or tie types).
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7. Conclusion

In this research, we have proposed an integrated methodology that consists of: choosing—by

means of thorough definitions and descriptions—a set of centrality indices, building a theoret-

ical taxonomy of those centrality measures, highlighting latent centrality dimensions that exist

within some network of interest, verifying the proposed taxonomy on real data by means of a

robust statistical analysis (PCA), and pointing out which centrality measures should be used

when investigating a network of interest. We applied our methodology to a friendship student

network and we selected- in regards to our network of interest and to the centrality measures

definition—relevant indices computed in the CINNA library (i.e., we investigated the research
question one). First, the results demonstrate that for friendship student networks, the direction

of the ties (incoming versus outgoing links) should be considered in the centrality computa-

tions, since they provide more information about a student’s centrality within her/his peer net-

work. Second, our results suggest that in the case of friendship student networks, six latent

dimensions of centrality emerge for our eighteen indices, namely, the ability to reach friends

and to transfer information; the ability to be reached and to receive information; the signifi-

cance of a student for her/his network’s structure, together with her/his control over the infor-

mation flow; the student’s importance through the number of connections with prestigious

friends; the student’s degree of cross-connectivity; and the student’s position as a confluent

node. Related to research question three, those six different latent dimensions should be inte-

grated in future studies since they cover different aspects of centrality. Third, concerning the

research question four, our results encourage using other indices, e.g., bottlenecks, eccentricity

computed on the incoming links, the MNC measures, the Kleinberg’s authority score, and the

eigenvector measure, than those usually employed (e.g., betweenness centrality) when investi-

gating friendship student networks. Fourth, in relation with the research questions two and
three, the six latent dimensions that emerged from the PCA and the four criteria that make it

possible to evaluate a theoretical classification, i.e., its soundness, completeness, lucidity, and

laconicity, enabled us first to validate—for the most part—our taxonomy and, second, to com-

pare our classification and find some similarities with categories of centrality proposed by

other authors on other network types. Finally, the exploratory research methodology that we

propose may constitute a first step when investigating some network(s) of interest, since it can

be applied to other centrality indices (e.g., found in other libraries), other network types, and

several tie types within graphs.
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85. Gräßler J., Koschützki D., & Schreiber F. (2012). CentiLib: comprehensive analysis and exploration of

network centralities. Bioinformatics, 28(8), 1178–1179. https://doi.org/10.1093/bioinformatics/bts106

PMID: 22390940

86. Freeman L. C. (1979). Centrality in social networks conceptual clarification. Social networks, 1(3),

215–239.

87. Mersch D. P. (2016). The social mirror for division of labor: what network topology and dynamics can

teach us about organization of work in insect societies. Behavioral ecology and sociobiology, 70(7),

1087–1099.

88. Ghali N., Panda M., Hassanien A. E., Abraham A., & Snasel V. (2012). Social networks analysis:

Tools, measures and visualization. In Computational social networks (pp. 3–23). Springer, London.

89. Xu Li X., Yin J., Tang J., Li Y., Yang Q., Xiao Z., et al. (2018). Determining the balance between drug

efficacy and safety by the network and biological system profile of its therapeutic target. Frontiers in

pharmacology, 9.

90. Pfeffer, J., & Carley, K. M. (2012, April). k-centralities: Local approximations of global measures based

on shortest paths. In Proceedings of the 21st International Conference on World Wide Web (pp. 1043–

1050). ACM.

91. Borgatti S. P., & Everett M. G. (2006). A graph-theoretic perspective on centrality. Social networks, 28

(4), 466–484.
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