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Abstract

Breaches in the skin barrier initiate an inflammatory immune response that is critical for 

successful wound healing. Innate lymphoid cells (ILCs) are a recently identified population of 

immune cells that reside at epithelial barrier surfaces such as the skin, lung and gut and promote 

pro-inflammatory or epithelial repair functions following exposure to allergens, pathogens or 

chemical irritants. However, the potential role of ILCs in regulating cutaneous wound healing 

remains undefined. Here, we demonstrate that cutaneous injury promotes an IL-33-dependent 

group 2 ILC (ILC2) response and that abrogation of this response impairs re-epithelialization and 

efficient wound closure. Additionally, we provide evidence suggesting that an analogous ILC2 

response is operational in acute wounds of human skin. Together, these results indicate that IL-33-

responsive ILC2s are an important link between the cutaneous epithelium and the immune system, 

acting to promote the restoration of skin integrity following injury.
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Introduction

A major function of the skin is to provide a physical defense against external challenges to 

the body. Upon skin injury, secretion of alarmins promotes the recruitment and activation of 

immune cells that participate in the initial inflammatory response of wound repair 

(Dardenne et al., 2013; Lai et al., 2012; Taverna et al., 2015). This early influx of 

leukocytes contributes directly to wound healing through antimicrobial activity and clearing 

of damaged tissue and debris. In addition, inflammatory cells modulate activities of 

reparative cells that participate in formation of the neoepidermis and dermis in the 

subsequent proliferative and remodeling phases of wound repair via the production of 

growth factors and cytokines (Eming et al., 2009; Greaves et al., 2013). As such, 

inadequate, excessive or sustained inflammatory responses post-wounding have been 

attributed to the formation of non-healing (chronic) wounds and pathologic scars 

(hypertrophic scar or keloids) (Goldberg and Diegelmann, 2010; Shih et al., 2010; Shih et 

al., 2012; Wilgus, 2008). Both extremes in outcome following cutaneous injury remain 

formidable clinical challenges that are associated with significant morbidity and healthcare 

expenditure. Thus, understanding the cellular and molecular mechanisms that control critical 

inflammatory responses during cutaneous wound healing will provide strategies to improve 

outcomes in millions of patients who suffer from pathologic wounds worldwide (Sen et al., 

2009).

Innate lymphoid cells (ILCs) are a recently described group of immune cells that contribute 

to immunity, inflammation and tissue homeostasis (Artis and Spits, 2015; Spits and Cupedo, 

2012). Three subsets of ILCs, designated group 1, 2, and 3, arise from a common lymphoid 

progenitor but differ in transcription factor expression and effector function (Artis and Spits, 

2015; Bjorkstrom et al., 2013; Klose et al., 2014; Spits et al., 2013). ILCs do not express 

cell lineage markers associated with T, B, NK or myeloid cells, although each subset 

expresses transcription factors and effector cytokines analogous to adaptive T helper type 1, 

type 2, or type 17 cells (Spits et al., 2013). For example, group 2 ILCs (ILC2s) express the 

transcription factor GATA3 and produce type 2-associated cytokines IL-4, IL-5, IL-9 and 

IL-13 (Walker and McKenzie, 2013). ILC2s respond to the predominantly epithelial cell-

derived alarmin cytokines IL-25, IL-33, and TSLP (Bjorkstrom et al., 2013) and play 

important roles in immunity to extracellular parasites, allergic inflammation and restoration 

of lung epithelial barrier integrity following viral infection (Chang et al., 2011; Mjosberg et 

al., 2011; Monticelli et al., 2011; Moro et al., 2010; Neill et al., 2010; Price et al., 2010).

We and others recently identified that ILC2s are present in healthy human and murine skin 

and that their numbers are elevated in the context of cutaneous inflammation (Kim et al., 

2013; Roediger et al., 2013; Salimi et al., 2013). These and subsequent studies determined 

that, like ILC2s in other tissues, skin ILC2s are responsive to IL-25, IL-33, and TSLP and 

express the type 2-associated cytokines IL-5 and IL-13. Notably, local accumulation of these 

cells was associated with development or progression of chronic skin inflammation in 

mouse models of atopic dermatitis (AD) (Imai et al., 2013; Kim et al., 2013; Salimi et al., 

2013). Chronic inflammation is commonly thought of as a dysregulated wound healing 

response, and multiple cellular and molecular mechanisms are active in both protective acute 
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and pathological chronic phases of an immune response (Allen and Wynn, 2011; Gause et 

al., 2013). Thus, while ILC2s have been demonstrated to play a pathological role in the 

context of chronic dermal inflammation, it remains possible that these cells may play a host-

protective tissue reparative role in restoring cutaneous barrier function following acute 

injury. Supporting this hypothesis, recent studies employing an excisional cutaneous 

wounding model demonstrated that expression of the ILC2-promoting alarmin IL-33 is 

rapidly increased following wounding and promotes the healing response (Yin et al., 2013a; 

Yin et al., 2013b), although the immunological networks downstream of IL-33 remain ill-

defined in this setting.

In this study, we directly tested the role of IL-33-dependent ILC2 responses in cutaneous 

wound healing following full thickness dermal injury that, similar to human skin, relies on 

re-epithelialization to heal the wound (Galiano et al., 2004). We demonstrate that IL-33 

expression and ILC2 responses are elevated following cutaneous wounding in mice and 

humans and that depletion of murine ILCs resulted in inefficient wound closure and 

impaired re-epithelialization. In the absence of IL-33, ILC2 responses were significantly 

diminished and wound healing was significantly impaired while delivery of exogenous 

IL-33 enhanced ILC2 responses and promoted re-epithelialization and wound closure. 

Together, these data demonstrate a previously unrecognized role for an IL-33/ILC2 axis in 

regulating epithelial-immune cell interactions required for restoration of the cutaneous 

barrier following injury.

Results

Elicitation of an ILC2 response following cutaneous wounding

We and others have previously identified that ILC2s constitutively populate human and 

murine skin, that ILC2 cell numbers and effector cytokine production are elevated in the 

context of human atopic dermatitis and that ILC2s can promote cutaneous inflammation in a 

murine model of AD-like inflammation (Kim et al., 2013; Kim et al., 2014; Roediger et al., 

2013; Salimi et al., 2013). In this study, we sought to examine whether IL-33 and ILC2 

responses were elicited following cutaneous wounding and whether this response is required 

for efficient wound closure. We utilized a well-characterized splinted excisional wound 

model where healing is primarily mediated by granulation tissue formation and re-

epithelialization, a process similar to that occurring in humans (Galiano et al., 2004). 

Consistent with a previous report in non-splinted wounds (Yin et al., 2013a), expression of 

Il33 mRNA was significantly increased in wounds compared to non-wounded skin within 72 

hours and peaked on day 5 post-wounding (Figure 1a). As IL-33 is known to elicit an ILC2 

response in multiple tissues (Imai et al., 2013; Salimi et al., 2013), wounds were evaluated 

for the induction of ILC2 responses using flow cytometry. In normal (non-wounded) murine 

skin, we identified a small population of ILC2s that were marked as lineage negative (Lin−) 

cells that lacked surface markers for myeloid cells and T, B, and NK cells but were positive 

for expression of CD90.2 and the IL-33 receptor (T1/ST2) (Figure 1b). Consistent with 

ILC2s in other tissues, ILC2s in the skin were positive for CD25 and GATA3 expression 

(Figure 1c). Notably, we observed a significant increase in the frequency (Figure 1b) and 

absolute number (Figure 1d) of ILC2s in the skin at day 5 post-wounding. Temporal analysis 
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revealed that the total number of ILC2s in the wound began to increase within 24 hours, 

peaked at day 3 and remained elevated in healing tissue through day 5 post-wounding 

(Figure 1d). In addition, the frequency and total cell number of ILC2s expressing the 

effector cytokines IL-5 and IL-13 was significantly increased following wounding (Figure 

1e, f).

ILC2s were previously identified in normal human skin and are enriched under 

inflammatory conditions (Kim et al., 2013; Kim et al., 2014; Roediger et al., 2013; Salimi et 

al., 2013). Human ILC2s, similar to murine ILC2s, express the IL-33 receptor ST2, and 

previous work has demonstrated that a proportion of ST2+ cells in human skin are ILC2s 

(Kim et al., 2014). We sought to determine if induction of ILC2s could be found within 

acute human wounds similar to that identified in murine wounds. To do this, we obtained 

normal skin biopsy samples and follow-up biopsies of these acute wounds 10 days after 

initial sampling from the same individual and evaluated the frequency of ST2+ cells by 

immunofluorescence. In tissue sections prepared from biopsies obtained from normal skin, 

ST2+ cells with a lymphoid morphology (‘ILC2-like’ cells) were found in low numbers 

(Figure 1g, top panels). However, in healing wounds, ST2+ ILC2-like cells were found 

predominantly at the wound margin within the papillary dermis but could also be found 

within the granulation tissue bed (Figure 1g, lower panels). Collectively, these data indicate 

that accumulation of ILC2s is a conserved feature of acute cutaneous wounds in both 

humans and mice.

Deletion of IL-33 results in diminished ILC2 responses and delayed cutaneous wound 
healing

Given that cutaneous injury resulted in increased IL-33 expression and a concomitant 

induction of activated ILC2s (Figure 1), we evaluated whether wound-induced ILC2 

responses and healing were IL-33-dependent. Compared to control mice, wounds of mice 

genetically deficient in IL-33 (Il33−/−) exhibited significantly lower frequencies of activated 

ILC2s as assessed by intracellular expression of IL-5 and IL-13 at day 6 post-wounding 

(Figure 2a). Although a small increase in the total number of IL-5+ ILC2s was seen 

following wounding in Il33−/− mice, the robust accumulation of IL-5+ and IL-13+ ILC2s 

seen in wounds of wild-type controls was significantly diminished in IL-33-deficient mice 

(Figure 2b), indicating that IL-33 is essential for the optimal induction of cytokine-

producing ILC2s in healing wounds.

To assess the requirement for IL-33 in acute wound healing, we quantified open wound area 

over time in control and IL-33-deficient mice. Consistent with a role for IL-33 signaling 

playing a critical role in wound healing, wound closure was significantly delayed in Il33−/− 

mice compared to wild-type mice (Figure 2c) with significant delays between days 4-6 post-

wounding (Figure 2d), coinciding with the up-regulation of Il33 in wounded skin at similar 

time points (Figure 1d). We performed histological evaluation of splinted skin wounds and 

assessed neo-dermal and -epidermal formation (granulation tissue area and % re-

epithelialization, respectively). At this time, wounds harvested from IL-33-deficient mice 

revealed no difference in granulation tissue formation compared to IL-33-sufficient controls 

(data not shown). Consistent with our finding of impaired wound closure (Figure 2d), there 
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was a trend toward attenuated re-epithelialization following wounding in IL-33-deficient 

mice on histologic evaluation, although this difference did not reach statistical significance 

(Figure 2f). Together, these data indicate that induction of IL-33 following injury plays a 

critical role in local ILC2 activation and optimal wound closure.

Exogenous IL-33 enhances ILC2 responses and promotes cutaneous wound healing

Based on our observations that IL-33 is necessary for ILC2 induction following wound 

healing and efficient wound closure, we assessed the potential therapeutic value of IL-33 

treatment in cutaneous wound healing. To do this, we administered recombinant murine 

(rm) IL-33 daily and evaluated ILC2 accumulation and activation, epithelialization and 

wound closure through day 5 post-wounding, a time period which corresponds to the peak of 

endogenous Il33 expression following acute cutaneous wounding (Figure 1a). Notably, 

rmIL-33 treatment resulted in a significant increase in the frequency of IL-13+ ILC2s at day 

5 (Figure 3a). However, despite consistent trends toward increased frequencies of IL-5+ 

ILCs (Figure 3a) and absolute numbers of wound-associated IL-5 and IL-13 expressing 

ILC2s (greater than 2.5-fold; Figure 3b), these changes did not reach statistical significance. 

Nevertheless, rmIL-33-elicited effects on local ILC2s correlated with accelerated healing, as 

assessed by measuring the rate of wound closure (Figure 3c, d). Histological analysis of the 

wounds demonstrated a significant increase in re-epithelialization at day 5 post-injury in 

rmIL-33 treated mice (Figure 3e, f). In contrast, in complementary loss- and gain-of-

function studies using IL-33-deficient mice and exogenous rmIL-33 treatment, neo-dermal 

formation (granulation tissue area) was not significantly different compared to control 

groups at the time points assessed (data not shown). Collectively, these results support a role 

for IL-33-dependent ILC2s in promoting wound closure through improved early epithelial 

repair during healing of acute cutaneous wounds.

Depletion of ILCs is associated with delayed wound healing

Previous studies have demonstrated that ILC depletion using anti-CD90 monoclonal 

antibodies (mAbs) in immunodeficient Rag1−/− mice resulted in impaired epithelial 

regeneration in the context of viral lung infection and improved clinical outcomes in a 

murine model of chronic skin inflammation (Kim et al., 2013; Monticelli et al., 2011). Thus, 

to test the hypothesis that ILCs play a critical role in orchestrating an acute wound healing 

response in the cutaneous epithelium, we depleted ILCs in Rag1−/− mice using 

administration of anti-CD90.2 mAbs. Flow cytometric analysis of CD45+ Lin− CD25+ 

CD127+ cells in the skin draining lymph node (a method routinely used to assess the 

depletion of ILCs in epithelial tissues (Kim et al., 2013; Monticelli et al., 2011)) confirmed 

significant depletion of ILCs in anti-CD90.2 mAb treated mice compared to controls (Figure 

4a). Notably, the wounds of ILC-depleted mice exhibited delayed closure compared to 

wounds of IgG treated mice (Figure 4b, c), indicating a critical role for ILCs in efficient 

healing of skin wounds following injury.

To gain further insight into the role of ILCs in promoting cutaneous wound healing, we 

performed histological evaluation of granulation tissue area and re-epithelialization. 

Although depletion of ILCs in mice did not result in a significant difference in the area of 

granulation tissue formed (Figure 4d, e), re-epithelialization was significantly impaired in 

Rak et al. Page 5

J Invest Dermatol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ILC-depleted mice (Figure 4d, f), consistent with delayed gross wound closure. Thus, in the 

absence of an appropriate ILC response, cutaneous wounds demonstrated impaired healing 

characterized by diminished epithelial regeneration, a result consistent with previous studies 

demonstrating that ILC2s can contribute to epithelial homeostasis and repair in other tissues 

(Li et al., 2014; Monticelli et al., 2011).

Discussion

In healthy individuals, minor cutaneous trauma typically resolves efficiently and without 

major complication (Eming et al., 2014). In contrast, aberrant wound healing responses 

associated with genetic predisposition, aging, infection, or disease can result in a non-

healing (chronic) wound or in pathologic scar (hypertrophic scar or keloid) formation (Sen 

et al., 2009; Shih et al., 2012). Despite the fact that both chronic wounds and scarring are 

associated with abnormal inflammatory responses, the network of innate and adaptive 

immune cells that control efficient wound healing remain incompletely understood. In this 

study, we utilized a murine splinted wound healing model that limits wound contraction and 

relies on re-epithelialization for wound closure in a manner similar to humans to 

demonstrate that ILC2s, an innate immune population, are induced during wound healing in 

an IL-33-dependent manner and promote epithelial closure of cutaneous wounds.

Efficiency and quality of cutaneous wound repair is dependent on a finely-tuned 

inflammatory response, regulated at least in part by signals released by the damaged 

epithelium (Dardenne et al., 2013; Lai et al., 2012; Taverna et al., 2015). Here, coincident 

with the induction of IL-33 expression, we found significant increases in the frequency, 

number and effector cytokine production of ILC2s. Supporting a role for an IL-33/ILC2 axis 

in cutaneous wound healing, mice deficient in IL-33 displayed diminished ILC2 responses 

and delayed wound healing characterized by impaired wound closure while exogenous 

rmIL-33 promoted ILC2 responses that were associated with enhanced wound closure and 

re-epithelialization. Further, depletion of ILCs resulted in a marked delay in wound closure 

and impaired re-epithelialization while the production of granulation tissue remained 

unimpaired, suggesting that distinct mechanisms of immune-epithelial cross-talk may 

regulate dermal and epidermal repair following skin injury. Given that the defining feature 

of a healed wound is complete epithelialization, these findings have important clinical 

implications. Notably, the localization of ST2+ ILC2-like cells in the wound bed and dermal 

wound margin of healing wounds in human biopsies support the hypothesis that epithelial-

derived alarmins such as IL-33 may result in selective recruitment, proliferation or 

activation of tissue-reparative ILC2s. Although the identity of the ST2+ cells that 

accumulate in human wounds remains incompletely defined, these data collectively indicate 

that activation of an IL-33/ILC2 axis is a conserved response following cutaneous injury.

Wound healing is an immunologically dynamic process and multiple immune cell types 

have been implicated in orchestrating both the efficiency and quality of wound repair, 

including mast cells, eosinophils and macrophages (Chen et al., 2014b; Dovi et al., 2003; 

Koh and DiPietro, 2011; Leitch et al., 2009; Lucas et al., 2010; Mirza et al., 2009; Peters et 

al., 2005; Wulff et al., 2012; Yang et al., 1997). Macrophage polarization plays an important 

role in wound healing (Mantovani et al., 2013; Novak and Koh, 2013; Sindrilaru et al., 
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2011). In early stages, pro-inflammatory M1 macrophages limit microbial colonization and 

remove cellular debris, but the switch toward an alternatively-activated M2 phenotype is 

thought to be critical in the resolution of inflammation. Consistent with their role in healing, 

M2 macrophages have been demonstrated to promote angiogenesis in wounds and support 

efficient wound closure (Lucas et al., 2010). As the ILC2-derived effector cytokine IL-13 

has been demonstrated to support the polarization of macrophages to an M2 phenotype in 

adipose tissue (Miller et al., 2010; Molofsky et al., 2013), these findings may suggest that 

IL-33 elicited ILC2s promote wound healing at least partially through supporting M2 

macrophage function. Indeed, it has been demonstrated that systemic administration of 

rmIL-33 is associated with M2 macrophage polarization and improved healing of excisional 

(non-splinted) wounds (Yin et al., 2013a). Furthermore, deletion of ST2 is associated with 

increased inflammatory macrophages and impaired epithelial closure of non-splinted 

wounds (Lee et al., 2015). Our data complements and importantly extends these findings by 

defining a key role for IL-33 in cutaneous wound healing through its ability, at least in part, 

to regulate an ILC2 response. ILC2-derived IL-5 may also promote local induction of 

eosinophils (Molofsky et al., 2013; Nussbaum et al., 2013), although the role of eosinophils 

in wound healing is presently unclear (Leitch et al., 2009; Todd et al., 1991). Together, 

these data suggest that an IL-33/ILC2-dependent axis may act upstream of cell types, 

including M2 macrophages, that play important roles in wound healing.

In support of the hypothesis that IL-33 responsive ILC2s play a critical role in acute 

cutaneous healing, our data demonstrates that depletion of ILCs via α-CD90 treatment of 

Rag1−/− mice significantly delays wound closure. Further, our ILC-depletion studies may 

inform interpretation of previous studies demonstrating that total depletion of T cells using 

anti-CD90.2 mAbs before injury significantly impaired wound healing but depletion using 

anti-CD4 or anti-CD8 mAbs did not (Chen et al., 2014a). In addition to ILC2s, it is possible 

that α-CD90-treatment may also target other cell populations in this setting (Koumas et al., 

2003; Lee et al., 2013; Nakamura et al., 2006; Schmidt et al., 2015). Indeed, developing 

ILC2-specific genetic mouse models is an active area of investigation. Moreover, as 

mentioned above, it is likely that IL-33 has effects on cutaneous wound healing through 

effects beyond ILC2s.

Dysregulation of the immunological network underlying wound repair can result in 

pathologic chronic inflammation and fibrosis (scarring). Indeed, components of the IL-33/

ILC2 axis described here have been associated with pathologic fibrotic responses in multiple 

tissues, including the liver (Marvie et al., 2010; McHedlidze et al., 2013), lung (Luzina et 

al., 2013) and skin (Kuroiwa et al., 2001; Manetti et al., 2010; Rankin et al., 2010; Yanaba 

et al., 2011). Eosinophils, which can be recruited to tissue sites by ILC2-derived IL-5 

(Molofsky et al., 2013; Nussbaum et al., 2013; Roediger et al., 2013), have been shown to 

contribute to pathologic airway remodeling (Humbles et al., 2004), although whether the 

associated collagen deposition in the lung translates to cutaneous wound healing is not 

known. In addition, ILC2s are an innate source of IL-13 (Price et al., 2010) which has been 

shown to drive pro-fibrotic responses during pathologic tissue remodeling of skin and other 

tissues (Oriente et al., 2000; Rankin et al., 2010; Wynn, 2003, 2011; Zheng et al., 2009). 

Despite these data suggesting that IL-33 and downstream type 2-associated cytokines may 
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promote scar formation following cutaneous injury, recent data revealed only a modest and 

unsustained increase in collagen deposition in cutaneous wounds treated with topical IL-33 

(Yin et al., 2013a). In fact, loss of ST2 was associated with increased deposition of scar-

associated type 1 collagen at a relatively early time point (day 14) in a non-splinted wound 

model (Lee et al., 2015). In our studies examining healing of splinted wounds, modulation 

of the IL-33/ILC axis did not influence granulation tissue area at early time points, although 

later time points in wound remodeling were not examined and it is possible that the use of 

splints in this model may alter stress dynamics and deposition of collagen. Thus, while our 

data indicate that the IL-33/ILC2 axis is critical for efficient healing of wounds, further 

investigation into their role in modulating scar formation in the skin following injury is 

warranted.

Our studies demonstrate that ILC2s are active during cutaneous wound healing in an IL-33 

dependent manner and promote healing in an acute setting through re-epithelialization. 

Recently published data documenting the ability of IL-33 to promote healing of 

Staphylococcus aureus-infected wounds suggest that targeting the IL-33/ILC2 axis may also 

have important implications for the prevention and/or treatment of chronic wounds (Yin et 

al., 2013b). Given that ILC2s produce factors that influence other immune cells as well as 

epithelial cells, the precise mechanisms by which ILC2s influence cutaneous wound healing 

will require further exploration. Determining whether ILC2-derived tissue-reparative 

effector mechanisms can be targeted to promote efficiency and quality of healing in a 

therapeutic setting has significant implications for wound repair at this and other barrier 

surfaces.

Materials and Methods

Mice

C57BL/6 mice were purchased from The Jackson Laboratory (Bar Harbor, Maine) or 

Taconic (Germantown, NY). Rag1−/− mice were purchased from The Jackson Laboratory 

and bred in house. Il33−/− mice were provided by Amgen (Seattle, WA). Mice were 

maintained and/or bred in specific pathogen-free facilities at the University of Pennsylvania. 

Experiments were performed with age- and sex-matched mice within each experiment. All 

protocols were approved by the University of Pennsylvania Institutional Animal Care and 

Use Committee (IACUC), and all experiments were performed according to the guidelines 

of the University of Pennsylvania IACUC.

Wounding

Wounding was performed similarly to that previously described (Galiano et al., 2004). 

Briefly, mice were anesthetized via isoflurane inhalation and received buprenorphine 

(0.1mg/kg, Reckitt Benckiser Pharmaceuticals, Richmond, VA) subcutaneously for pre-

emptive and post-operative analgesia. The dorsum of each mouse was shaved with electric 

clippers and a depilatory agent (Nair, Church and Dwight, Ewing, NJ) was applied to 

remove residual hair. Dorsal surfaces were aseptically prepared for wounding with a 

chlorhexidine scrub. Silicone splints (Grace Bio-Laboratories, Bend, OR) that were 0.5 mm 

thick with an 8 mm-in-diameter, centered hole were adhered to the dorsum using GLUture 
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(Abbott, Abbott Park, IL) topical adhesive. Each splint was secured with 8 interrupted, non-

absorbable polypropylene sutures (5-0 Prolene; Ethicon, Somerville, NJ). A 6 mm biopsy 

punch (Miltex, Plainsboro, NJ) was used to generate wounds within the centers of splints. 

Wounds were covered with a sterile non-adhesive pad (Curad, Medline Industries, 

Mundelein, IL) and an overlying adhesive dressing (Tegaderm; 3M, St. Paul, MN). Wound 

analysis was performed in a blinded fashion with respect to genotype or treatment group of 

the animal.

Human wound samples

Histologic sections were utilized from a previously performed acute wound healing study 

involving multiple sequential excisional biopsy wounds (5 mm) of the upper inner arm of 

healthy human volunteers (Caucasian, aged between 18-30 years, equal gender ratios, n=20) 

(Sebastian et al., 2015). This study had received ethical approval from the local research 

committee (England, UK), and all subjects gave full written, informed consent. Acute 

wound biopsy samples were stored in formalin prior to processing for 

immunohistochemistry.

Cytokine and antibody treatments

For exogenous IL-33 treatments, 400 ng rmIL-33 (carrier-free) (R&D Systems, 

Minneapolis, MN) or phosphate-buffered saline was injected intraperitoneally daily 

beginning on the day of wounding. For ILC depletion experiments, 300 μg anti-CD90.2 

(clone 30-H12, Bio X Cell, West Lebanon, NH) or rat IgG were injected intraperitoneally 

(ip) every two days beginning two days prior to wounding.

Isolation and quantification of cells from tissue

Wounds or normal skin were harvested with an 8 mm biopsy punch and digested in 0.25 

mg/mL Liberase TL (Roche Applied Science, Indianapolis, IN) in DMEM media (GIBCO, 

Grand Island, NY) for 90 minutes at 37°C. Samples were mechanically disrupted through 70 

μm cell strainers and washed with DMEM media supplemented with 2% FBS and 1% 

Penicillin/Streptomycin (GIBCO). Cells were then immediately stained for flow cytometry 

or stimulated prior to staining.

Skin-draining lymph nodes of the dorsal thorax were gently disrupted through 70 μm cell 

strainers, washed with supplemented DMEM media, and isolated cells immediately stained 

for flow cytometry. ILC2s and ILC2 cytokine production were quantified in two ways. We 

report the frequency of CD90+ T1/ST2+ ILC2s found within the population of CD45+ 

Lineage− CD127+ lymphocytes or the frequency of cytokine-producing ILC2s, and these are 

quantified on flow plots. In addition, the total numbers of cells of interest recovered from the 

wound area (normalized to tissue weight) are graphed.

Flow cytometry

Single cell suspensions were stained with combinations of the following fluorescently 

conjugated monoclonal antibodies: biotin conjugated anti-T1/ST2 (DJ8; MD Bioproducts, 

St. Paul, MN); phycoerythrin (PE)-conjugated anti-CD127 (A7R34), peridinin chlorophyll 

protein complex: Cy5.5 (PerCP-Cy5.5)-conjugated anti-CD3 (17A2), anti-CD5 (53-73), 
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anti-NK1.1 (PK136), anti-CD11b (MI/70), anti-CD11c (N418), anti-CD19 (eBio1D3); PE-

Cy7-conjugated anti-CD25 (PC61.5), anti-CD3 (17A2), anti-CD5 (53-73), anti-CD8 

(53-6.7) , anti-CD11b (MI/70), anti-Ly6G (RB6-8C5), APC-eFluor-780-conjugated anti-

B220 (RA3-6B2), anti-CD11c (N418); eFluor-605NC-conjugated anti-CD45 (30-F11); 

AlexaFluor 700-conjugated anti-CD90.2 (30-H12; Biolegend, San Diego, CA), fluorescein 

isothiocyanate (FITC)-conjugated anti-FcεRIα (MAR-1); FITC-conjugated anti-NKp46 

(29A1.4); PE-Texas Red-conjugated anti-CD11b (M1/70.15; Invitrogen, Grand Island, NY). 

All antibodies were purchased from eBioscience unless specified otherwise.

For measurement of transcription factor expression, cells were surface-stained with a 

combination of antibodies listed above, fixed and permeabilized with a commercially 

available kit (eBioscience, San Diego, CA) and stained with PE-conjugated anti-GATA3 

(TWAJ).

For measurement of intracellular cytokine expression, isolated cells were stimulated with 

phorbol 12-myristate 13-acetate (PMA) (50 ng/mL, Sigma, St. Louis, MO) and ionomycin 

(500 ng/mL, Sigma) in the presence of Brefeldin A (3 μg/mL, Sigma) and GolgiStop (BD 

Biosciences, San Jose, CA) at 37°C for 4 hours. Cells were surface-stained with a 

combination of antibodies listed above, fixed and permeabilized with a commercially 

available kit (BD Biosciences), and stained with Alexa Fluor 488-conjugated anti-IL-13 

(eBio13A, eBioscience) and PE-conjugated anti-IL-5 (TRFK5; BD Biosciences). Sample 

data were acquired on a LSRII flow cytometer (BD, Franklin Lakes, NJ) and analyzed using 

FlowJo software (vX.0.7, Tree Star, Ashland, OR).

Wound Assessment

Murine wounds were photographed with an in-frame ruler at indicated times. Wound area 

was calculated using ImageJ software (NIH, Bethesda, MD) and plotted as a function of 

time (Volk et al., 2011). Gross wound closure data represent averages based on independent 

evaluations by two investigators (G.R. and S.W.V.). At the time of wound harvest, wounds 

and surrounding tissue were fixed with splints intact in Prefer fixative (Anatech Ltd., Battle 

Creek, MI) and processed as described previously (Volk et al., 2007). Briefly, splints were 

removed and the bisected wounds embedded in paraffin. Sequential 5 μm sections were 

stained with hematoxylin and eosin and imaged on a Nikon Ti-E microscope (Melville, NY) 

and total wound length was measured for each section using Nikon Elements software. The 

section with the greatest length, representing the center, was further analyzed. Healing 

parameters were measured as described previously (Volk et al., 2011).

Normal human skin and wounds were obtained via punch biopsy from volunteers as 

described (Sebastian et al., 2015). Samples were processed and stained for ST2L (MD 

Bioproducts, biotin-conjugated mouse IgG1) as described previously (Kim et al., 2014). 

Images were obtained using a Nikon Ti-E microscope (Melville, NY).

RNA isolation and real-time quantitative PCR

Normal skin or portions of wounds were placed into RNAlater (QIAGEN, Valencia, CA) 

and stored at −20°C prior to RNA isolation. Tissue was homogenized in RLT buffer and 
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isolated using the RNeasy Fibrous Tissue mini kit (QIAGEN) according to manufacturer’s 

instructions. cDNA was generated using Superscript II Reverse Transcriptase (Invitrogen) 

according to manufacturer’s instructions. Subsequent real-time quantitative PCR was 

performed using Power SYBR Green Master Mix (Applied Biosystems, Grand Island, NY) 

and commercially available primer sets for IL-33 and GAPDH (QIAGEN). Relative 

quantification was achieved using the comparative CT method with GAPDH as the 

reference gene.

Statistics

Results are shown as means ± SEM. Statistical significance was determined with Prism 5 

software (GraphPad, La Jolla, CA) using 2-tailed, unpaired Student’s t test unless otherwise 

stated. A one-way ANOVA with Tukey’s post-test was performed to determine significant 

differences over time in IL-33 expression (Figure 1a) and # of ILC/g of tissue (Figure 1d) 

post-wounding. Data depicted in Figures 2b and d, 3d and 4c were analyzed using a two-

way ANOVA using repeated measures and Bonferroni post testing. Statistical significance 

was noted as *P<0.05, **P<0.01, ***P≤0.001, and **** P≤0.0001.
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Figure 1. Elicitation of an ILC2 response following cutaneous wounding
(a) Il33 mRNA expression was assessed by RT-PCR at the indicated time points post-

wounding. Dashed line represents expression level in non-wounded skin (n=4 for non-

wounded skin, n=1 for day 1, n=3 for days 3 and 5, n=2 for day 7). (b) Frequencies of Lin− 

CD127+ CD90.2+ T1/ST2+ ILC2s harvested from control and day 5 wounded skin (n=4/

group). (c) Representative flow cytometric histograms of CD25 and GATA3 expression 

within skin ILC populations (day 3 wound shown); gray shaded histograms indicate 

expression levels from live, CD45− cells. (d) Enumeration of skin ILC2s following 

wounding (n=14 for normal skin, n=2 for day 1, n=4 for days 3 and 5, n=3 for day 7). (e, f) 
Frequencies and total cell numbers of ILCs expressing IL-5 and IL-13 harvested from 

normal (N) and wounded (W; day 5) skin (n=4/group). (g) Representative images showing 

an increase in IL-33R+ (ST2+) ILC2-like cells in healing human wounds. Non-wounded skin 

(initial biopsy) or day 10 wound biopsies were stained for IL-33R (ST2) (red, arrowheads); 

dotted line (grey) indicates dermal-epidermal junction; autofluorescence (green) shown for 

orientation. Right panels show increased magnification of area boxed from corresponding 

left panels. Scale bar = 100 μm (left panels); 50 μm (right panels). Data are representative of 

1-3 experiments. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001.
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Figure 2. Deletion of IL-33 results in diminished ILC2 responses and delayed cutaneous wound 
healing
(a, b) Frequencies and total cell numbers of IL-5 and IL-13 expressing ILC2s harvested 

from splinted 6 mm excisional wounds made in WT and IL-33 deficient (Il33−/−) mice at 

day 6 post-biopsy (n=4-5/group). (c) Representative images of wounds and (d) 
quantification of wound closure, expressed as percent of original wound size in WT and 

Il33−/− mice at indicated times, (n=4/group). (e) Representative images of H&E stained 

wounds (day 6); scale bars = 500 μm and 100 μm (inset); site of excision and end of 

neoepithelium are indicated by red and blue arrowheads, respectively. (f) Percent of wound 

that has re-epithelialized, determined from histological sections (n=4-5/group). Data are 

representative of 2 or more independent experiments. * P ≤ 0.05, ** P ≤ 0.01, **** P ≤ 

0.0001.
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Figure 3. Exogenous IL-33 enhances ILC2 responses and promotes cutaneous wound healing
(a, b) Frequencies and total cell numbers of IL-5 and IL-13 expressing ILCs in day 5 

wounds of control (PBS) and rmIL-33 treated mice (n=4/group). (c) Representative images 

of wounds at indicated times. (d) Quantification of wound healing, expressed as percent of 

original wound size (n=7 (PBS) and 8 (rmIL-33)/group). (e) Representative images of H&E 

stained wounds (day 5). Scale bars = 500 μm and 100 μm for low and high magnification 

images, respectively; red arrowheads indicate site of excision; blue arrowheads indicate end 

of neoepithelium. (f) Percent of wound that has re-epithelialized, determined from 

histological sections (n=3-4/group). * P ≤ 0.05, ** P ≤ 0.01.
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Figure 4. Depletion of ILCs is associated with delayed wound healing
Rag1−/− mice were treated with IgG or ILC-depleting α-CD90.2 mAbs. (a) Frequencies of 

ILCs in the draining lymph nodes. Populations depicted are gated on live, CD45+ Lin− 

lymphocytes (n=4/group). (b) Representative images of wounds at indicated times. (c) 
Quantification of wound healing, expressed as percent of original wound size. (d) 
Representative images of H&E stained wounds (day 8). Scale bars = 500 μm and 100 μm for 

low and high magnification images, respectively; red arrowheads indicate site of excision; 

blue arrowheads indicate end of neoepithelium. (e) Area of granulation tissue and (f) 
percentage re-epithelialization, determined from histological sections. Data are 

representative of 3 independent experiments (n=4/group for c, e, f). ** P ≤ 0.01, *** P ≤ 

0.001.
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