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ABSTRACT We isolated Thermus thermophilus strains HB5002 and HB5008 from
Mine Hot Spring in Japan. Whole-genome sequencing revealed that they showed
;100% average nucleotide identity to each other, $98.53% to the T. thermophilus
strains originating from the same spot but #97.64% to the T. thermophilus strains
from geographically different places in Japan.

T hermus thermophilus was first isolated from Mine Hot Spring in Japan in 1968 (1).
Since then, many T. thermophilus strains have been isolated from various thermal

areas worldwide (2–6). The thermophile is aerobic and grows optimally at around 70°C,
with a doubling time of ;1 h; basic genetic engineering techniques were developed in
the mid-1980s (7). These favorable properties pushed the species as a model thermo-
philic organism, and researchers have intensively studied T. thermophilus biochemically
(8, 9), structurally (10, 11), and genetically (12–14). As a 50th anniversary project, we ini-
tiated an ecological investigation of the thermophile—how T. thermophilus strains
thrive/survive in Mine Hot Spring. In 2018, we collected a water sample from exactly
the same fountain geyser at Mine Hot Spring from which the representative strains
HB8 and HB27 were isolated (1). Dozens of T. thermophilus strains were isolated (6, 15)
and preliminarily classified into several groups based on appearance—color, colony
morphology, growth rate, and so on. In this study, we conducted whole-genome analy-
ses of strains HB5002 and HB5008 by combining Oxford Nanopore Technologies (ONT)
and Illumina technologies.

Cells were grown at 70°C in Lennox LB medium, and genomic DNA was purified
using a blood and cell culture DNA midikit (Qiagen). For long-read sequencing,
unsheared genomic DNA was pretreated with a short-read eliminator kit (Circulomics)
to remove ,10-kbp fragments, and a library was constructed using a ligation sequenc-
ing kit (ONT). Sequencing was performed with a GridION X5 system on a FLO-MIN106
R9.41 flow cell (ONT). Base calling was conducted using Guppy v.4.0.11 to generate
156,751 reads with an average length of 7,040 bases (total, 1.10 Gb) for HB5002 and
28,202 reads with an average length of 11,561 bases (total, 326Mb) for HB5008. For all
software, default parameters were used unless otherwise noted. The raw sequencing
data were filtered (Q, 10; length, ,1,000 bases) using NanoFilt v.2.3.0 (16), yielding
122,280 reads (longest read, 241,328 bases; N50, 15,542 bases; total, 977Mb) for HB5002
and 21,082 reads (longest read, 149,286 bases; N50, 23,988 bases; total, 276Mb) for
HB5008. For short-read sequencing, a Nextera DNA Flex library prep kit (Illumina) was
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used to generate libraries with an ;700-bp insert. Sequencing was performed on a
MiSeq instrument (Illumina), yielding 1,746,904 (HB5002) and 945,019 (HB5008) paired-
end reads (2� 256 bases). The raw sequencing data were filtered (Q, 30; length,
,10 bases) using fastp v.0.20.1 (17), yielding 1,407,029 paired-end reads (average
length, 225 bases; total, 634Mb) for HB5002 and 724,958 paired-end reads (average
length, 224 bases; total 325Mb) for HB5008.

The trimmed long- and short-read data were assembled using Unicycler v.0.4.8 (18) and
polished using Pilon v.1.23 (19), generating a single circular chromosome and three circular
plasmids for HB5002 and a single circular chromosome and two circular plasmids for
HB5008. Rotation and circularity were confirmed via Unicycler. Automatic annotation was
conducted using DFAST v.1.2.4 (20), and the genomic features are summarized in Table 1.
FastANI analysis (21) indicated that the genome sequences of HB5002 and HB5008 showed
;100% average nucleotide identity (ANI) to each other,$98.53% ANI to those of the strains
originating from Mine Hot Spring (HB8, GenBank accession number NC_006461.1; HB27,
NC_005835.1 [22]; HB5018, NZ_AP024270 [15]; HC11; NZ_AP019801 [6]) but #97.64% ANI
to those of the strains originating in Arima Hot Spring (AA2-20, NZ_AP019792.1; AA2-29,
NZ_AP019794.1) (5). The results mirrored habitat-specific genomic conservation.

Data availability. The complete genome sequences of T. thermophilus HB5002 and
HB5008 are available from DDBJ/EMBL/GenBank under the accession numbers sum-
marized in Table 1. The raw sequencing data were deposited in the SRA database
under the accession numbers DRA011332 (HB5002) and DRA011333 (HB5008).
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