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Abstract

Biomanufacturing exhibits inherent variability that can lead to variation in

performance attributes and batch failure. To help ensure process consistency and

product quality the development of predictive models and integrated control

strategies is a promising approach. In this study, a feedback controller was developed

to limit excessive lactate production, a widespread metabolic phenomenon that is

negatively associated with culture performance and product quality. The controller

was developed by applying machine learning strategies to historical process

development data, resulting in a forecast model that could identify whether a run

would result in lactate consumption or accumulation. In addition, this exercise

identified a correlation between increased amino acid consumption and low observed

lactate production leading to the mechanistic hypothesis that there is a deficiency in

the link between glycolysis and the tricarboxylic acid cycle. Using the correlative

process parameters to build mechanistic insight and applying this to predictive

models of lactate concentration, a dynamic model predictive controller (MPC) for

lactate was designed. This MPC was implemented experimentally on a process known

to exhibit high lactate accumulation and successfully drove the cell cultures towards a

lactate consuming state. In addition, an increase in specific titer productivity was

observed when compared with non‐MPC controlled reactors.
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1 | INTRODUCTION

Since approval of the first biotherapeutic produced using recombinant

DNA technology in 1982, biologics have grown significantly and

encompassed approximately 25% of the total pharmaceutical market

in 2016 (Haydon, 2017). Today it is estimated that biologics represent

30% of all major biopharmaceutical development pipelines (Lybecker,

2016). Though there are many clear benefits of expressing recombinant

proteins using living cells, the complexity of cell culture does present

challenges to upstream process control in a drug substance manufac-

ture campaign. To help address the inherent biological complexity,

analytics have evolved to allow measurement of more parameters that

are indicative of cell culture performance. With increased emphasis

on the development of in process analytics and the advancement in
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auto‐sampling capabilities, a modern bioreactor experiment can easily

generate hundreds of data points in both online and offline measure-

ments. Therefore, the tasks of data management and mining for

correlative relationships between process inputs and cell culture

performance have become increasingly daunting for process develop-

ment scientists. Various multivariate analysis techniques, such as

principal component analysis and partial least squares (PLS), were

applied to analyze bioprocess data to identify parameters that are

characteristic of highly productive cell culture processes (Charaniya

et al., 2010; Le et al., 2012; Rathore et al., 2015). After identifying these

key cell culture levers, computational models were built to predict

important culture performance attributes, including viable cell density,

viability, carbon source nutrient levels, and titer (Elif Seyma Bayrak,

Cinar & Undey, 2015; Sokolov et al., 2015). Moreover, the predictive

control approach was extended to protein attributes like glycosylation

and charge variants to dial in the desired product quality (Downey et al.,

2017; Jan Bechmann et al., 2015; Sommeregger et al., 2017; Zupke

et al., 2015).

In this study, we demonstrated the ability to forecast and control

cell culture process performance. The performance marker we used to

demonstrate this ability was lactate concentration, a key marker of

metabolic state and indicator of a favorable batch process. Prior work

demonstrated the impact cell metabolic state has on product titer and

product quality (Fan et al., 2015; Li, Wong, Vijayasankaran, Hudson, &

Amanullah, 2012; Toussaint, Henry, & Durocher, 2016). Amino acid and

glucose metabolism in fed‐batch Chinese hamster ovary (CHO) cell

culture affects antibody production and glycosylation (Fan et al., 2015).

In addition, accumulation of a major byproduct of amino acid and

glucose metabolism, lactate, can profoundly impair process perfor-

mance. Various bioprocess strategies, such as glucose limiting and

cofactor additives to the cell culture media, successfully suppressed

lactate accumulation (Gagnon et al., 2011; Qian et al., 2011; Yuk et al.,

2014). However, what differentiates the work presented here, is the

ability to fine‐tune processes to achieve desirable profiles. Lactate was

an ideal target to develop the proof of concept, as it is easily measured

and its metabolism is well understood. Here we sought to use historical

process data to develop (a) a forecasting model for lactate accumulation

behavior early in a run to determine the extent of the variability, (b) an

MPC to control the lactate variability.

To construct both the forecast model and MPC, historical process

time‐course data were compiled from approximately 128 runs from five

different CHO clonal lines. In this study, we demonstrated (a) process

data early in run can be used to predict ultimate lactate behavior for each

run, (b) process data can be used to construct an MPC to control lactate

production in the face of disturbances. Applying the predictive controller

in confirmation experiments, we were successful in suppressing lactate

accumulation in bioreactors and observed beneficial improvement in

specific productivity of the cell culture.

2 | MATERIALS AND METHODS

2.1 | Data compilation

Process data from 128 1‐liter fed‐batch runs were used for model

development. These runs consisted of five different clones originating

from the same parental CHO cell line. The same basal media and feeding

strategy were used for all runs. Offline process parameters were

measured daily using a Nova FLEX (Nova Biomedical, Waltham, MA).

Online parameters were measured continuously using a BioNet control

system (Broadley James, Irvine, CA). All time‐course process parameters

recorded for each run are summarized in the Appendix Table A1.

2.2 | Classification model development

The process data were used to develop a classification model capable

of predicting the percent probability that a bioreactor run would end

in a favorable or unfavorable lactate state. The model development

workflow is summarized in Figure 1 and detailed in the following

subsections.

2.3 | Data preprocessing

The collected experimental process data represent a cube of three

dimensions defined by: batch runs, attributes (process time‐course
measurements), and process time. Offline and online process data

recorded through Day 10 were interpolated or downsampled onto a

uniform daily grid to enforce measurement consistency within and

across batch runs. Missing attribute data for each run were linearly

F IGURE 1 Overview of the

classification model development workflow
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interpolated or extrapolated from nearby time‐course measure-

ments. Aligned batch process time‐course data were subsequently

batch‐unfolded into a design matrix, as in (Nomikos & MacGregor,

1995), for use in machine learning model development.

Process engineers manually evaluated the lactate profile of each

run to determine the lactate end state (favorable/unfavorable). These

manual classifications were used as the truth metric in the

development of a classification model to accurately predict end‐of‐
run lactate state. The lactate profiles of all runs and their associated

lactate behavior classification are illustrated in Figure 2.

2.4 | Development of training and validation data
sets

A split sample methodology was used in developing models and

evaluating their performance on unseen data (Bishop, 2006). Data

were split into a training and validation set, to identify model

overtraining and performance. To better ensure that the training and

validation data sets were comprised of similar run populations, a

cluster feature selection algorithm was used on the favorable and

unfavorable lactate runs separately to identify natural clusters of

runs based upon the associated process measurements (Dy &

Brodley, 2004). The validation data set was established by randomly

extracting 30% of the runs from each resulting cluster for both the

favorable and unfavorable lactate clustering results, with the

remaining runs comprising the training data set. By establishing

similar populations of runs in the training and validation data sets,

differences in model performance on these two sets are more

indicative of overtraining rather than differences between the

population samples present in each set.

2.5 | Attribute selection

Each daily metabolite concentration and process condition is a

potential attribute to employ for modeling purposes as a result of the

batch unfolding process. For modeling strategies requiring attribute

selection, a wrapper‐based forward feature selection algorithm was

used to determine the subset of attributes that produced a model

with the best capability of distinguishing between runs with

favorable and unfavorable lactate end states (Kohavi & John,

1997). As forward feature selection is known to overfit when applied

to the training set directly, 400 bootstrap replicates were con-

structed from the training data set and used in the attribute selection

process as a cross‐validation strategy (Efron & Tibshirani, 1997;

Hastie, Tibshirani, & Friedman, 2001). Oversampling of unfavorable

lactate runs was performed in the construction of each bootstrap

replicate to better ensure that the attributes selected could

distinguish between favorable and unfavorable lactate classes rather

than accurately identifying only the dominant class (favorable lactate;

Chawla, 2005). As our goal was to determine the expected type of

lactate profile as early as possible in each run, the feature selection

process was limited to select from attributes present within 3 to 5

days from the start of a run.

2.6 | Model development and evaluation

The attribute selection strategy determined the set of attributes with

the best classification performance for a particular modeling strategy

in order of their importance. The final number of attributes to employ

was identified as the number for which the difference between

training and validation performance began to increase. This attribute

set was subsequently used to create the final classification model

using the entire training data set.

Performance of each classification model was evaluated for each

data set via the confusion matrix (Davis & Goadrich, 2006). The

confusion matrix summarizes model performance by detailing the

number of favorable lactate (respectively, unfavorable lactate) runs

correctly predicted as favorable lactate (resp., unfavorable lactate) as

well as the number of runs incorrectly classified. Overall classifica-

tion accuracy is defined as the number of runs correctly predicted

divided by the total number of runs.

2.7 | Identification of critical process parameters

For final classification models comprised of a combination of models,

a permutation strategy was used to determine the importance of an

individual attribute to the classification prediction (Strobl, Boulesteix,

Zeileis, & Hothorn, 2007). Specifically, individual attribute impor-

tance to the classification result was evaluated by permuting the

values of the attribute in the validation data set 100 times. For an

attribute important to the classification result, randomly permuting

its value in the validation data set leads to an increase in the

classification error metric as compared with the same metric for the

nonpermuted data set. For each permutation of a particular attribute,

F IGURE 2 Lactate concentration profiles associated with the
bioreactor runs considered in this study. Manually classified (dashed:
unfavorable lactate end state, solid: favorable lactate end state)
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the difference between the cross‐entropy classification error on the

permuted and nonpermuted data sets was determined. Normalized

attribute importance was subsequently computed as the mean of

those differences divided by the standard deviation. Attributes with

normalized predictor importance greater than unity were retained as

important attributes.

2.8 | Process control

While classification models can provide an early indication of run end

state, they do not address how to prevent unfavorable end states via

run intervention. The second goal of this study was to develop a

proof of concept model predictive controller (MPC) from the

provided fed‐batch process data and evaluate its effectiveness in

driving runs to a favorable lactate state in both simulation and

experiment.

2.9 | Development of dynamic reduced‐order
model of lactate concentration

Model‐based control design requires developing a reduced‐order
model that adequately represents the input–output dynamics of the

system to be controlled. Constructing this model requires identifying

a set of manipulated variables that have a strong influence on the

output(s) of interest. The explicit assumption in model development

is that knowledge of the manipulated variable values, in conjunction

with knowledge of the prior output values, is sufficient to predict

future output behavior. The development of a linear multiple‐input,
single‐output reduced‐order model is motivated in this study both by

the ability of linear models to locally represent nonlinear system

dynamics and the effectiveness of linear control strategies in

controlling slowly time‐varying systems.

The provided process data were used to create a time‐varying
autoregressive exogenous (ARX) model that predicts future lactate

concentration values from the knowledge of prior lactate and

manipulated variable values (Zhu, 2001). The relationship between

inputs and outputs in a multi‐input, single‐output ARX formulation is

of the form:

∑ ∑ ∑( ) = − ( − ) + ( − − + )
= = =
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where y(t) is the output/controlled variable, uj(t) represents one of ni

manipulated variables, nk is the time delay, na is the number of poles,

nb is the number of zeros, and ai and bji are coefficients to be

determined via the identification process. In a time‐varying ARX

model, the coefficients representing the influence of each parameter

change with time (i.e., day), such that the model is time‐varying. The
ARX model as written in (1) is a one‐step‐ahead predictor; the value

for the output at day t is determined from prior values of the output

as well as current and prior values of the manipulated variables. This

model can be extended into a multistep ahead predictor by using the

output prediction from the prior day along with prescribed values for

the manipulated variables, such as would be determined by a control

strategy, to predict future output values.

Model parameters (na, nb, nk, ai, bji) were determined by

minimizing the multistep 0.632 bootstrap root mean square predic-

tion error across 50 bootstrap replicates drawn with replacement

from training data set runs. In these multistep simulations, recorded

process data were used for the manipulated values while predicted

output values from (1) were used for subsequent prediction days. For

each run, the residuals between recorded output lactate concentra-

tions and the predicted values were retained for computing the

multistep root mean square error. The combination of model

parameters with the minimum multistep 0.632 bootstrap root mean

square prediction error was retained.

2.10 | Development of a MPC

An MPC strategy was used to regulate lactate concentration using

a set of manipulated variables. As illustrated in Figure 3, an MPC

prescribes the values for the manipulated variables over a control

horizon from the knowledge of the desired lactate concentration

F IGURE 3 Overview of the model predictive control strategy
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and prior values of the recorded manipulated variables and lactate

concentration. The MPC employs the time‐varying ARX model

developed from historical process data to determine the values for

the manipulated variables that will result in the lactate concentra-

tion reaching the desired value in the future. Lactate predictions

are generated in a multistep fashion over the prediction horizon

from a sequence of values for the manipulated variables over the

control horizon. Optimal values for the manipulated variables are

determined over the control horizon to minimize an objective

function involving the deviation of the model output predictions

from the desired trajectory over the prediction horizon. Once the

optimal sequence of manipulated variable values is determined,

only the first of these values are used in the bioreactor. At the next

sampling instant, the lactate concentration is measured and the

process repeats. Because the recorded, rather than predicted,

lactate concentration is used in each subsequent optimization

cycle, the prediction errors that can accumulate in a multistep

ahead prediction are limited in their impact in controller

implementation.

The design of an MPC requires specifying the number of design

parameters to compute the objective function optimized during

controller operation

{ }∑= (ˆ ( + ) − ( + ))
=

J w y t i r t i ,
i

P

i
y

1

2 (2)

where P is the number of days in the prediction horizon; ŷ is the

predicted value of the lactate concentration from the reduced‐order
model; r is the value of the lactate concentration for the desired

reference trajectory; wi
y is the weighting to be applied to the

difference between the predicted output and the reference trajec-

tory for each day in the prediction horizon.

The objective function penalizes differences in the predicted

output from the reference trajectory. Different weightings can be

used across the days of the prediction horizon if concern exists

regarding multistep prediction accuracy of the reduced‐order model

far into the future. The optimal values for the manipulated variables

over the control horizon are achieved by minimizing the objective

function with respect to both bound and rate constraints on the

manipulated variables.

3 | EXPERIMENTAL EVALUATION OF
PROCESS CONTROL

3.1 | Cell lines and media

Clones derived from CHOK1SV® cells and stably expressing

recombinant proteins were routinely cultured in suspension using

commercially available CD‐CHO AGTTM. Inoculum trains were

maintained in shake flasks in Kuhner incubators at 37°C, 5% CO2,

with no humidity control. Cells were regularly passaged to maintain

exponential growth and expanded as needed to inoculate bench‐scale
bioreactors for experimentations described herein.

3.2 | Fed‐batch bioreactor operation

Two‐liter scale glass bioreactors (Broadley James) were used to

perform the fed‐batch experiments. Cells were inoculated into

Pfizer's proprietary production media formulation. Reactor cultures

were fed at predetermined rates using Pfizer's proprietary nutrient

feed. Bioreactor conditions such as pH, DO, and temperature set

points varied according to the experimental plan. Culture pH was

controlled using CO2 sparge and base titrant addition. Dissolved

oxygen was maintained at set points using oxygen sparge on demand.

Culture temperature was controlled using a heating jacket. Con-

centrated glucose stock solutions were added as needed to maintain

at least 0.5 g/L residual glucose concentration throughout the

production run. Reactor experiments were performed for a 12‐day
duration.

3.3 | Implementation of MPC in bioreactors

The performance of the MPC was tested by experimentally adjusting

the nutrient feed rate and pH set point values as prescribed by the

controller. The MPC was integrated into a spreadsheet (Microsoft

Excel) where the measured process inputs were entered, and the

controller‐prescribed action updated based on the newly entered

process measurements. Control actions prescribed by the MPC were

retrieved from the spreadsheet calculations and manually imple-

mented. Culture pH was maintained via a local PID controller with a

0.15 deadband; changes in the pH set point of the local controller

were implemented as prescribed by the MPC. The MPC‐prescribed
action was updated and implemented once every 24 hr, beginning

after 72 hr culture duration.

4 | RESULTS

4.1 | Classification models accurately predict
lactate end‐state from early‐run process data

Classification models were developed to predict the final lactate

state (favorable/unfavorable) from process data present through a

specified end day (days 3, 4, and 5). For each end day considered, the

following classification models were developed: linear discriminant

analysis (LDA), classification trees, LDA applied to partial least

squares scores (PLS‐LDA), support vector machines and logistic

regression. Each individual model was computed from the batch‐
unfolded process data present in the training data set using functions

(fitcdiscr, fitctree, plsregress, fitcsvm, fitglm) from the Matlab statistics

and machine learning toolbox (R2016b). A class threshold probability

of 0.5 (i.e., 50%) was used across classification models. Runs with a

predicted unfavorable lactate probability greater than or equal to the

0.5 threshold were classified as an unfavorable lactate state and

those below 0.5 classified as a favorable lactate state. Ensembles of

individual model results were also considered with the ensemble

unfavorable lactate probability determined as the median of the

unfavorable lactate probabilities arising from the individual models.
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No additional training was conducted to determine ensemble

performance; all possible ensemble combinations were evaluated

from previously constructed models and the ensemble with the

highest classification accuracy was retained.

Models consistently yielding good classification accuracy across

all end days included: PLS‐LDA, LDA, classification trees, and

ensembles of these models. Elements of the confusion matrices of

the best performing classification models are presented in Table 1. As

illustrated in Table 1, the classification models were able to

accurately classify favorable and unfavorable lactate runs with

validation accuracy ranging between 83% (Day 3) and 88% (Day 4

& 5). Though the Day 4 and 5 models achieved equivalent validation

classification accuracy in total, the Day 4 ensemble model produced

more consistent validation performance across clones. Identified

attributes that correlated with the lactate end state for each model

are presented in the Appendix in Table A2. Attributes commonly

appearing across models include metabolites (glutamate, glucose, and

glutamine) and attributes related to pH modulation (CO2 sparge

rate). Critically evaluating these attributes from a biological

perspective suggests that glutamate concentration, tricarboxylic acid

(TCA) cycle substrate supplementation and ammonium ion

concentration were associated with runs that ended in a favorable

lactate state.

4.2 | Reduced‐order dynamic models predict
lactate evolution as a function of pH and nutrient
feed volume

Considering their importance in achieving a favorable lactate end

state and the ease of implementation via local control loops, nutrient

feed volume, and pH set point were used as manipulated variables in

these initial experiments to control lactate accumulation. The

number of prior manipulated and output variable terms to employ

in the dynamic model relating these variables was determined using

bootstrapping of the runs in the training data set as a cross‐validation
strategy. The combination with the minimum bootstrap root mean

square error in multistep ahead prediction was retained. As detailed

further in the Appendix, the best model structure identified used

three prior lactate values, a single prior nutrient feed volume value,

and four prior values of the pH set point. The ARX model coefficients

of (1) associated with the best model structure are presented in the

Appendix in Table A3.

TABLE 1 Fed‐batch classification model performance on training and validation data sets

Day Model(s)
# True
negatives

# False
positives

# False
negatives

# True
positives

Percent
accuracy

3 PLS‐LDA(13 components) Training 63 1 7 17 91%

Validation 25 3 4 8 83%

4 Ensemble PLS‐LDA (12 components),

Classification tree, LDA (18 attributes)

Training 64 0 1 23 99%
Validation 26 2 3 9 88%

5 PLS‐LDA (6 components) Training 57 7 4 20 88%

Validation 25 3 2 10 88%

Abbreviation: PLS‐LDA: linear discriminant analysis applied to partial least squares scores.

F IGURE 4 Filled contour plots of root mean square error in prediction (left) and coefficient of determination (R2, right) for one‐step‐ahead
predictions (diagonal) and multistep ahead predictions (off‐diagonal values) across all runs present in the validation data set. Darker colors

indicate better performance in each plot
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ARX model performance was quantified by computing the one‐
step and multistep ahead root mean square error in prediction and

associated coefficient of determination from each run end day. In

each simulation, the experimental process data from the validation

data set were used to generate the one‐step and multistep ahead

predictions. The predicted values for each output prediction day

were used with the recorded lactate concentration values in

computing the root mean square error and coefficient of determina-

tion. ARX model performance for the validation data set is illustrated

in Figure 4, where values along the diagonal and off‐diagonal
represent one‐step ahead and multistep ahead prediction perfor-

mance, respectively.

One‐step and multistep ahead prediction performance is illu-

strated in Figure 5 for a simulation initiated from data present

through Day 3. As illustrated in Figures 4 and 5, one‐step‐ahead
predictions are more accurate than multistep ahead predictions over

the course of the run, as prediction errors in multistep simulations

cascade for predictions further into the future. Although prediction

errors accumulate in multistep simulations, trends in lactate

concentration variation often match quite well across the prediction

horizon. This, in conjunction with the model prediction accuracy

results in simulation, identified the time‐varying ARX model as the

most promising for use in an MPC strategy.

4.3 | Model predictive control strategy drives
cultures to a lactate consuming state

An MPC employing the time‐varying ARX model was built in Matlab,

with fmincon of the Matlab optimization toolbox (R2016b) used to

minimize the cost function of Equation (2). Controller design

parameters were initialized in simulation and tuned during pre-

liminary experimental runs. Specifically, the desired lactate reference

trajectory was set to zero for all days. The prediction and control

horizons used were 7 days and 1 day, respectively. The prediction

horizon was decreased after Day 3, as predictions were only required

through Day 10. Values for manipulated variables after Day 10 were

F IGURE 5 One‐step (left) and multistep (right) model simulations of lactate concentration (g/L) for a bioreactor run present in the validation
data set. Simulation initialized from experimental data provided through Day 3. Simulated and recorded values are represented by dashed and
solid lines, respectively

F IGURE 6 Lactate concentration

variation in response to changes in pH and
nutrient feed volume prescribed by the
MPC in the experiment. For MPC runs,

control was implemented from the end of
Day 3 onwards. Run conditions include:
basal (no applied control, circles), feed
supplemented with asparagine (no applied

control, squares), MPC at 1 L working
volume (triangles), MPC at 1.5 L working
volume (inverted triangles). MPC: model

predictive controller
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maintained at the last controller‐prescribed values. A long prediction

horizon served to ensure that the full effect of variations in the

manipulated variables through run end were considered, whereas, a

short control horizon ensured aggressive control action in the

manipulated variables. As prediction accuracy did not dramatically

degrade over longer prediction horizons, all prediction errors were

considered to contribute equally to the minimized cost function (i.e.,

all wi
y of equation (2) were set to unity). Nutrient feed volume was

constrained to remain between 1.8% and 3.6%, with maximum

variations between days limited to +/− 1.8% on days 3 to 6 and +/−

1.0% otherwise. Bound constraints on pH were established at 6.7 and

7.2, with the maximum variation in pH between days set to +/− 0.5.

The resulting MPC was used in a series of experimental

bioreactor runs to determine its efficacy in driving runs to a

favorable lactate end state. Cell cultures used in the experiment

were associated with a clone known to exhibit lactate accumulation

in prior process development. While it is expected that lactate

behavior under application of MPC would be similar for the other

four clones used in the development of the predictive model used by

the MPC, experimental verification of MPC performance for those

clones remains an avenue for future work. Experimental MPC runs

for the clone of interest were conducted alongside two control runs:

a basal run with known lactate accumulation behavior and a second

for which supplemental asparagine included in the feed had

previously been identified via prior process development history to

achieve a favorable lactate end state under normal operating

conditions. The performance of culture using this previously

identified strategy serves as a basis of comparison for MPC

performance in modifying lactate behavior. In this set of experiments,

MPC‐prescribed variations in pH set point and nutrient feed volume

were used at the original reactor working volume (1 L) as well as a

working volume of 1.5 L. As illustrated in Figure 6, both control runs

performed as expected, with the basal and asparagine‐supplemented

runs ending in unfavorable and favorable lactate states, respectively.

MPC runs, with controller‐prescribed changes in pH set point and

nutrient feed volume initiated at the end of Day 3, resulted in the cell

culture achieving a favorable lactate end state with substantially

lower lactate concentrations than the basal run.

Figure 7 illustrates other relevant cell culture measurements

recorded for the control and MPC runs. As illustrated, MPC runs had

a viable cell density less than the asparagine‐supplemented run, but

greater than the basal run. However, percent viability for both of the

MPC runs was greater than that of either control run. The increase in

nutrient feed volume prescribed by the MPC resulted not only in

increased glucose concentration and total glucose feed volume but

also in delayed depletion of glutamate as compared with the basal

run.

The second set of experiments evaluated the ability of MPC to

compensate for lactate‐inducing disturbances in pH and glucose

concentration. Elevated pH or glucose levels were used early in each

F IGURE 7 Supplementary ell culture measurements associated with control and MPC experiments. For MPC runs, control was implemented
from the end of Day 3 onwards. Run conditions include: basal (no applied control, circles), feed supplemented with asparagine (no applied
control, squares), MPC at 1 L working volume (triangles), MPC at 1.5 L working volume (inverted triangles). MPC, model predictive controller
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run to produce elevated lactate concentration levels. The asparagine‐
supplemented feed was used in all the runs of this experiment. Two

control runs were used: one with normal pH and glucose levels and a

second with elevated pH level (7.2 with 0.15 deadband). One MPC

run used the same elevated pH level through Day 3 as in the

corresponding control run while the second MPC run had an

increased initial glucose concentration. As illustrated in Figure 8,

while the elevated pH control run did not end in an unfavorable

lactate state, it did evidence increased end lactate concentration

compared with the control run with normal operating conditions. The

MPC runs rejected the initial disturbances in pH and glucose, with

both runs yielding lower end lactate concentrations than the

elevated pH control run. Variations in other measured cell culture

parameters followed similar trends to those evidenced in the initial

experiments, as illustrated in the Appendix in Figure A1. In contrast

to the prior runs, viable cell density for the MPC runs was similar to

that evidenced for the control run without elevated pH. Increased

nutrient feed volumes in the MPC runs resulted in increased

ammonium ion concentration and delayed depletion of glutamate.

The MPC developed in this study was constructed specifically to

reduce lactate accumulation, without regard to potential impacts on

other process performance attributes. MPC impacts on a particular

process performance attribute, cell productivity, were evaluated by

processing retains to determine product titer and cell‐specific
productivity (Qp). As illustrated in Figure 9, MPC runs for both

unperturbed and perturbed initial conditions increased titer, com-

pared to the control runs, by increasing cell‐specific production. The

observed difference in the Qp, a calculated parameter based on

volumetric titer and integral viable cell concentration, of the two

MPC runs, was most likely due to mass transfer differences between

the two bioreactor working volumes which led to different peak cell

densities as shown in Figure A1. But overall, the volumetric titers

were consistent between the two MPC runs.

5 | DISCUSSION

In this project, we demonstrated the ability to construct an MPC to

control lactate accumulation from historical process data commonly

collected in a cell culture process. The MPC controlled lactate by

forecasting its trajectory using metabolite and process data and then

using this forecast to determine how to manipulate amino acid

concentrations and pH, through the addition of nutrient feed and

modulating the pH set point. While others have shown examples of

using MPCs to control cell culture processes (Zupke et al., 2015), this

study demonstrates that these controllers can be developed

empirically using only commonly collected cell culture time‐course
data. In addition to enabling control of cell culture processes, this

empirical path of developing a predictive model highlighted under-

lying biological mechanisms that led to further hypothesis generation

and ultimately mechanistic understanding.

5.1 | Control of lactate in bioreactors is possible
using models developed solely from commonly
collected process data

One of the key obstacles to implementing MPC in cell culture processes

is the amount and type of data required to construct the dynamic

predictive model needed for the controller. Since lactate accumulation

fundamentally stems from an overflow of pyruvate in cell metabolism,

F IGURE 8 Lactate concentration variation in response to changes in pH and nutrient feed volume prescribed by the MPC in experiments

with elevated pH and glucose concentrations. All experiments used feed supplemented with asparagine. For MPC runs, control was
implemented from the end of Day 3 onwards. Run conditions include: elevated pH (no applied control, circles), only asparagine‐supplemented
(no applied control, squares), model predictive applied to culture with elevated initial pH level (triangles), MPC applied to culture with elevated

initial glucose concentration (inverted triangles). MPC: model predictive controller
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we hypothesize that a data set incorporating many of the key inputs and

outputs to cellular metabolism would be ideal for prediction. In fact,

other studies have attempted to understand the causal factors of

lactate accumulation through metabolic flux analysis (MFA; Chen,

Bennett, & Kontoravdi, 2014; Verónica S. Martínez, Gray, Nielsen, &

Quek, 2015; Wilkens, Altamirano, & Gerdtzen, 2011). Though useful for

generating process understanding, MFA requires data that are

expensive and time‐consuming to generate. To construct predictive

models, many cell culture data sets are required to ensure representa-

tion of the variability present in a given cell culture process. Due to a

large number of data sets required, only the most commonly measured

metabolites (i.e., those measured by a Nova bioanalyzer) are readily

available for analysis. In this project, we successfully developed a

forecasting model of lactate accumulation through the use of common,

routinely captured measurements from cell culture processes. In

addition, we identified a significant pattern associated with the

forecasting of lactate behavior, and this allowed us to successfully

control lactate in a model cell culture process. While having exhaustive

cell culture measurements is ideal for control, this study illustrates that

value can still be derived from commonly collected measurements

provided that they are collected frequently with sufficient variation in

process conditions to encompass the expected process variation of

routine operation.

5.2 | Fundamental interpretation of model
parameters and subsequent controller development
allows establishment of a causal relationship between
a manipulated variable and process output

We demonstrated the construction of an MPC using previously

collected time‐course data sets. Importantly, the predictions gener-

ated using this retrospective approach are purely correlations and do

not establish causality by themselves. To create a predictive model

that can be implemented in an MPC, the model must be sufficiently

accurate in forecasting the process behavior as a function of an

independently manipulated control handle. This assumes a causal

relationship exists between the independently manipulated control

handle and the process behavior. Therefore, an additional step is

required to convert a predictive model generated using this retro-

spective approach (the type that would be used in a process

monitoring application) into one that can be used in an MPC. In this

study, the causal link was established by first inspecting the

importance of the input variables contributing to the prediction,

generating hypotheses explaining this pattern based on cellular

metabolism, and then identifying potential process parameters that

could be manipulated in the cell culture process. The ability of the

predictive model to highlight patterns that contribute to a desired

process behavior allows quick identification of potential control

handles, which otherwise would require a great deal of experimenta-

tion, experience, and existing published knowledge to identify.

This retrospective approach represents one of two possible ways for

constructing an MPC. Building a predictive model using a retrospective

approach requires a large amount of data, ensuring the expected

process variability present in the ultimate control scenario is captured.

During the normal cell culture development process, enough data

covering this expected variability may not be collected, thus not

enabling the construction of an accurate predictive model. In contrast to

the retrospective approach, there are approaches to collect data in a

prospective manner, where the experimental data is collected in a

manner specifically designed with MPC development in mind. Construc-

tion of large enough design of experiments to cover a wide design space,

with sufficient replicates, may be able to generate the data necessary

for the construction of a predictive model. In addition to this approach,

a systems identification approach represents an accelerated means of

producing the data needed to construct an MPC (Downey et al., 2017).

A prospective approach also allows the experiment to be designed such

that a causal relationship between selected manipulated variables and

the process output is specifically identified. Furthermore, an initial

retrospective modeling exercise can be used to help identify the

manipulated variables for the prospective controller development

F IGURE 9 Product titer and Qp for
uncontrolled and controlled runs for
unperturbed (top row) and lactate‐inducing
perturbations (bottom row) in initial
conditions. Qp: cell‐specific productivity
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studies, and therefore increasing the success of identifying a causal

input/control handle.

5.3 | Model outputs and constructed control
strategy implicates amino acid consumption

Although the modeling outputs from this experiment helped identify the

control handles used to control lactate accumulation, they also highlight

important underlying biological mechanisms leading to lactate produc-

tion within these CHO cell lines. Under normal physiological conditions,

pyruvate derived from the breakdown of glucose is commonly shuttled

into the TCA cycle. Generally speaking, the conversion of pyruvate into

lactate is an energetically unfavorable process, and in mammalian

physiology is only carried out in the absence of oxygen (anaerobic) or

to recycle cytosolic NAD+/NADH pools (Muller et al., 2012). This

phenomenon of high lactate accumulation is observed in cancerous cells

and tumors and is referred to as the “Warburg effect”. The “Warburg

effect” is characterized by high consumption of glucose, high

productivity of lactate, and a high rate of cell growth and division

(Vander Heiden, Cantley, & Thompson, 2009). Indeed, the behavior of

these cells in the absence of our developed control strategy resembles

the behavior of a cell demonstrating the “Warburg effect”, and since

these CHO cells are immortalized cells it is not fully surprising for them

to exhibit a cancerous phenotype.

Through the attribute selection process, the pattern emerged

highlighting the role amino acid consumption has on lactate

accumulation. In particular, attribute selection highlighted increased

glutamate consumption and NH4
+ production as indicators of a

favorable lactate run. This suggests an important role of amino acid

feeding in bioprocessing, that besides increasing the building blocks

for protein synthesis, amino acids may also represent an important

fuel source for CHO cells. In addition, the attribute selection process

highlighted the ability for increased feeding of amino acids to reduce

glucose consumption and therefore lactate production. Indeed, our

ability to control lactate production by increasing the amount of

amino acids supplied during fermentation further supports the role of

amino acid consumption on lactate production.

5.4 | Biological implications of amino acid control
of lactate accumulation

Two potential hypotheses that help explain the observation of increased

amino acid consumption leading to decreased lactate production both

revolve around central metabolism and primarily the role of the TCA

cycle in converting amino acids into energy. One hypothesis suggests

that the TCA cycle in these CHO cells is truncated under the normal

feeding strategy, which causes the cells to rely on glycolysis and lactate

fermentation for quick energy generation. When these depleted amino

acids are replenished by feeding, as in our control strategy, cells can

redirect more pyruvate into the TCA cycle instead of converting them

to lactate and alanine (Duarte et al., 2014). A second hypothesis, though

not mutually exclusive to the first hypothesis, concerns the ability of

these cells to incorporate pyruvate produced in the cytosol as a product

of glycolysis into the TCA cycle. The mitochondrial pyruvate carrier is a

transporter responsible for moving lactate from the cytosol and into the

mitochondria (Herzig et al., 2012). The observation of high lactate

accumulation in the absence of increased amino acid feeding suggests

that the pyruvate produced through the breakdown of glucose during

glycolysis is not being utilized in the mitochondria, and therefore

converted to lactate. Future experimentation investigating the flux of

pyruvate into the TCA cycle may shed light on the high lactate

accumulating phenomena and potentially lead to a solution for the

metabolic issue (i.e., cell line engineering) in addition to the implementa-

tion of a process control strategy.

5.5 | Predictive modeling and control in
bioprocessing

In the age of “Big Data,” there is a push to ensure that industries are

leveraging as much value out of their data as they can. Throughout the

biomanufacturing industry, tremendous amounts of data are collected

along the biotherapeutic development pipeline. Though the work we

presented here focused on the construction of a control strategy for an

upstream process, the development of predictive models may help

enlighten other areas of the pipeline including cell line development,

media development, downstream optimization, and structural‐functional
studies (i.e., CQAs). Through identification of attributes and their

predictive power in process behavior, new hypotheses may be

generated and new avenues of process control may be revealed. The

biomanufacturing process is riddled with multivariate problem state-

ments that make it difficult to develop control strategies. Through the

use of MPC, solutions to complex manufacturing issues can be

developed without full comprehension of the mechanisms driving the

particular problem. This can yield hypotheses and unveil mechanisms

unknown to even the most knowledgeable of scientists. However,

challenges still exist regarding the implementation of MPC within a

validated GMP environment. As MPC prescribes changes to process

parameters in reaction to measurements quantifying culture behavior, it

represents a departure from the recipe‐based control strategies

historically used. Implementation of MPC in a validated environment

will require an appropriate definition of a design space for MPC

operation. This design space can be translated into hard constraints in

the objective function used by the MPC to prevent operation outside of

the design space.

In conclusion, as more and more industries drive towards

automation and complete process transparency, the need for

biomanufacturers to establish the framework for MPC construction

is clearer. The integration of MPCs in biomanufacturing will help to

fully realize the lower cost, lower risk, and more integrated

regulatory compliant processes of the future.
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