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Abstract
Purpose  Vitamin K may inhibit vascular calcification, a common attribute of atherosclerotic vascular diseases (ASVDs). We 
examined associations between dietary vitamin K1 intakes and both subclinical atherosclerosis and ASVD events, including 
hospitalisations and mortality, in older women.
Methods  1,436 community-dwelling women (mean ± SD age 75.1 ± 2.7 years) were included. Vitamin K1 intakes were 
calculated from a validated food frequency questionnaire at baseline (1998), utilising a region-matched vitamin K food data-
base. Common carotid artery intima–media thickness (CCA-IMT), a measure of subclinical atherosclerosis, was measured in 
2001 (n = 1,090). Differences in CCA-IMT by quartiles (Q) of vitamin K1 intake were examined using multivariate analysis 
of variance. Associations between vitamin K1 intakes and ASVD outcomes (hospitalisations and/or deaths), obtained from 
linked health records over 14.5 years, were analysed using restricted cubic splines within multivariable-adjusted Cox-pro-
portional hazard models.
Results  Women with higher vitamin K1 intakes had a 5.6% lower mean CCA-IMT (Q4 [median 119 µg/day] compared 
to Q1 [median 49 µg/day], p < 0.001). Over 14.5 years, 620 (43.1%), 497 (34.6%) and 301 (20.9%) ASVD events, hospi-
talisations, and deaths were recorded, respectively. In multivariable-adjusted models, the highest vitamin K1 intakes (Q4, 
compared to Q1), were associated with lower relative hazards for ASVD events (HR 0.71 95%CI 0.55–0.92) and ASVD 
mortality (HR 0.57 95%CI 0.40–0.83), but not ASVD hospitalisations (HR 0.83 95%CI 0.63–1.11).
Conclusion  Vitamin K1 intakes of ~ 120 µg/day appear to be beneficial in lowering risk for subclinical and clinical ASVD in 
older women. These quantities can be attained by consuming vitamin K1 rich foods, such as leafy green vegetables.

Keywords  Phylloquinone · Vascular calcification · Nutrition · Coronary heart disease · Stroke

Received: 17 October 2024 / Accepted: 11 April 2025 / Published online: 3 May 2025
© The Author(s) 2025

Higher vitamin K1 intakes are associated with lower subclinical 
atherosclerosis and lower risk for atherosclerotic vascular disease-
related outcomes in older women

Montana Dupuy1 · Liezhou Zhong1 · Simone Radavelli-Bagatini1 · Jack Dalla Via1,2 · Kun Zhu3,4 ·  
Lauren C. Blekkenhorst1,3,5 · James Webster6 · Nicola P. Bondonno1,7 · Allan Linneberg8 · Carl Schultz3,9 · Wai Lim1,3,10 · 
Richard L. Prince1,3 · Jonathan M. Hodgson1,3,5 · Joshua R. Lewis1,3,5 · Marc Sim1,3,5

1 3

https://doi.org/10.1007/s00394-025-03686-x
http://orcid.org/0000-0001-5166-0605
http://crossmark.crossref.org/dialog/?doi=10.1007/s00394-025-03686-x&domain=pdf&date_stamp=2025-4-29


European Journal of Nutrition (2025) 64:171

Introduction

Cardiovascular diseases (CVDs) account for approximately 
1 in 3 deaths globally [1]. Two of the top three global lead-
ing causes of death belong to a subgroup of CVDs known 
as atherosclerotic vascular diseases (ASVDs) [1, 2]. These 
ASVDs are ischemic heart disease (IHD), and ischemic 
cerebrovascular disease [1–3]. Whilst ASVDs are more 
prevalent in men, ageing women experience a greater bur-
den, particularly of stroke [4–6]. Although, older women 
present with a unique risk profile for ASVDs [4–6], they are 
often underrepresented in research [4].

Lifestyle factors, such as healthy dietary patterns rich in 
vegetables, are known to reduce ASVD risk [7, 8]. Specific 
vegetable types may provide additional benefit. For exam-
ple, higher cruciferous (e.g. broccoli and cabbage) and leafy 
green (e.g. spinach and kale) vegetable consumption has 
been associated with lower risk of subclinical atheroscle-
rosis and ASVD mortality [7, 9–11]. This association may 
be attributed to common nutrients found within these veg-
etables, such as vitamin K1.

Vitamin K is a lipid soluble vitamin that exists in two 
main isoforms: phylloquinone (PK, vitamin K1) and mena-
quinone (MK, vitamin K2) [12]. Vitamin K1, the primary 
dietary form of vitamin K [12], is found predominantly in 
plant oils (e.g. canola and olive oil) and in cruciferous and 
leafy green vegetables [12, 13]. Vitamin K is an essential 
cofactor for the y-carboxylation of vitamin K dependent pro-
teins (VKDPs) [12], including matrix GLA protein (MGP), 
which in its active form is reported to inhibit vascular cal-
cification [14, 15]. Vitamin K insufficiency can increase 
levels of undercarboxylated, inactive forms of MGP, which 
is reported to increase mineral deposition in blood vessels, 
including coronary artery calcification [14, 16]. Indeed, 
higher dietary vitamin K1 intake has been linked to a lower 
risk for ASVD-related hospitalisations [17], and all-cause 
and CVD mortality [18, 19]. However, ambiguity remains 
with other work demonstrating no relationship [20]. Alter-
natively, vitamin K2, as opposed to vitamin K1, may offer 
cardioprotective health benefits [20, 21]. Yet, limited com-
prehensive vitamin K2 food databases makes investigating 
this form difficult. As a result, the European and Nordic 
dietary recommendations are currently set for vitamin K1 
only [22, 23]. Large variation in the vitamin K content of 
foods, depending on the region of produce, have also been 
reported [13]. Consequently, where possible, region-specific 
vitamin K food databases should be adopted.

To this end, we examined the association between dietary 
vitamin K1 intakes, calculated using a region-specific food 
database, and subclinical atherosclerosis (common carotid 
artery intima–media thickness [CCA-IMT]) and long-term 

ASVD events (hospitalisations and/or mortality) in a cohort 
of community-dwelling older Australian women.

Methods

Study population

A total of 1,500 community dwelling, older Australian 
women (aged ≥ 70 years), from the Perth Longitudinal 
Study of Ageing Women (PLSAW) were considered for 
this study. Women were recruited in 1998 (baseline) for the 
Calcium Intake Fracture Outcome Study (CAIFOS), which 
was a five-year, double-blind, randomised controlled trial 
designed to assess daily calcium supplementation for frac-
ture prevention [24]. A third trial arm of both vitamin D and 
calcium supplementation was included in CAIFOS for a 
randomised subset of women (n = 40) [24]. Upon comple-
tion of CAIFOS, women were subsequently enrolled into 
two successive, five-year observational studies (2003 to 
2013). The entirety of this study is known as the PLSAW, 
which was approved by the University of Western Austra-
lia’s Human Research Ethics Committee (PLSAW trial reg-
istration number #ACTRN12617000640303) and complied 
with the Declaration of Helsinki. Human ethics approval for 
use of data linkage was provided by the Western Austra-
lian Department of Health Human Research Ethics Com-
mittee (project #2009/24). The present study complied with 
STROBE guidelines [25].

Of the 1500 women, those who did not complete the 
baseline food frequency questionnaire (FFQ) were excluded 
(n = 15). An additional 17 women deemed to have an implau-
sible energy intake (< 2,100 kJ or > 14,700 kJ per day) were 
also excluded. As warfarin is a vitamin K antagonist [26], 
women reported to be taking warfarin were also excluded 
(n = 8). Additional exclusions were made for women with 
missing covariate data, including physical activity (n = 2), 
smoking status (n = 8), and residential postcode (n = 11). 
Due to ongoing coronial inquiry at the time of data extrac-
tion, cause of death was not able to be ascertained for some 
cases, therefore these women were excluded (n = < 5). Fol-
lowing exclusions, 1,436 women were included in the pres-
ent study (Supplementary Fig. 1).

Baseline demographic and clinical assessment

Participant demographics and clinical assessments were 
completed at baseline. Age at recruitment was determined 
from the participants date of birth to the date of their base-
line visit. Height was measured to the nearest 0.1 cm using 
a wall-mounted stadiometer and body weight was mea-
sured to the nearest 0.1 kg using digital scales, both while 
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participants were wearing light clothing without shoes. 
Body mass index (BMI, kg/m2) was calculated from height 
and weight measurements. Participation in sport, recreation 
and/or regular physical activity was measured using a ques-
tionnaire to obtain participant physical activity levels in the 
three months preceding the baseline visit. Physical activ-
ity was quantified in kcal/day by accounting for primary 
activity undertaken, as described previously [27]. Socioeco-
nomic status (SES) was calculated using the socio-economic 
indexes for areas, which was developed by the Australian 
Bureau of Statistics [28]. Participants residential postcodes 
were ranked by socioeconomic advantage and disadvantage 
into six groups, ranking from top 10% most highly-disad-
vantaged, to top 10% least-disadvantaged [28]. Smoking 
status was obtained via questionnaire and was coded as 
non-smoker or former/current smoker (defined as smok-
ing > 1 cigarette per day for greater than three months over 
the lifespan). Alcohol intake was calculated from the NUT-
TAB 95 food composition database [29], and quantified in 
grams per day (g/day). A list of prescription medications, 
including use of statins, warfarin, anti-hypertensives, and 
low-dose aspirin, were obtained from participants. Medica-
tion use was coded using the International Classification of 
Primary Care (ICPC) PLUS method to assess diabetes prev-
alence (ICPC-2 PLUS medication codes T89001–T90009) 
[30]. Medical histories and medication use were verified 
by the participants’ general practitioners, where possible. 
Prevalent ASVD was obtained from the principal hospi-
tal discharge diagnoses from the Western Australian Data 
Linkage System, and the Western Australian Hospital Mor-
bidity Data Collection. Diagnosis codes were recorded for 
study participants over the 18-year period prior to baseline 
(1980–1998). Disease coding was based on the International 
Statistical Classification of Diseases, Injuries and Causes of 
Death, 9th revision (ICD-9) [31], and the Australian version 
of the International Classification of Diseases, 9th Revision, 
Clinical Modification (ICD-9-CM) [32]. Prevalent ASVD 
was diagnosed using codes; ischemic heart disease (ICD-9/
ICD-9-CM codes 410–414); heart failure (ICD-9/ICD-
9-CM code 428); cerebrovascular disease, excluding haem-
orrhage (ICD-9/ICD-9-CM codes 433–438); and peripheral 
arterial disease (ICD-9/ICD-9-CM codes 440–444) [31, 32]. 
The Chronic Kidney Disease Epidemiology Collaboration 
(CKD-EPI) creatinine-derived equation was used to esti-
mate glomerular filtration rate (eGFR) in 1297 women with 
available data [33].

Dietary intake and vitamin K1 assessment

Dietary intake was determined via a 74-question, self-
administered, semiquantitative FFQ at baseline (1998). The 
FFQ was developed and validated by the Cancer Council of 

Victoria, and has been designed to assess habitual dietary 
intake over the prior 12-month period [34, 35]. Energy (kJ/
day) and nutrient (g/day) intakes were calculated based on 
the NUTTAB 95 food composition database [29]. Partici-
pants were provided with food charts, models, measuring 
cups and spoons, to aid accuracy of reported consumption, 
and were supervised by a research assistant while complet-
ing the FFQ. Dietary vitamin K1 intake was calculated from 
all the listed food items in the FFQ (n = 101), by multiply-
ing the food item consumed (g/day) by its mean vitamin K1 
value (µg/g), then totalled. The vitamin K1 content of all 
food items was obtained from two published databases [13, 
36], as described previously [19]. To obtain an even dis-
tribution of vitamin K1 intakes in this cohort, participants 
were categorised into quartiles based on their dietary intake.

Common carotid artery intima–media thickness

Ultrasound imaging was used in 2001 to assess common 
carotid artery intima–media thickness (CCA-IMT) in a sub-
set of 1,090 women. A standard image acquisition proto-
col was used, utilising an 8.0-mHz linear array transducer 
attached to an Acuson Sequoia 512 ultrasound machine 
(Mountain View, CA, USA) [37], by a single sonographer. 
To account for asymmetrical thickening of the arterial wall, 
images of the distal 2 cm segments of both the left and the 
right common carotid arteries were obtained from three 
angles; anterolateral, lateral, and posterolateral. Mean and 
maximum CCA-IMT values (mm) from each of the six 
images (three images on each side) were averaged to obtain 
overall mean CCA-IMT and maximum CCA-IMT values. 
Offline analyses on the end-diastolic images were con-
ducted by the same technician, utilising a semi-automated 
edge-detection software program. Short-term precision 
assessment was conducted, which produced a coefficient of 
variation of 5.98%, as described previously [38].

Atherosclerotic vascular disease hospitalisations 
and deaths

The primary outcome of this study was any ASVD events, 
comprising ASVD hospitalisations and/or deaths, where the 
underlying (principal) or associated (contributing) causes 
were related to ASVD. ASVD hospitalisation and ASVD 
mortality were also considered as separate outcomes. 
Linked hospitalisation and mortality data from Western 
Australia Data Linkage System (Western Australia Depart-
ment of Health, East Perth, Australia) was utilised to obtain 
hospitalisation and multiple cause of death data, for each 
study participant over the 14.5-year follow up (1998–
2013). ASVD hospitalisation data from Hospital Morbidity 
Data Collection provided the principal diagnosis codes at 
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Austria) and Stata MP, version 18.0 (StataCorp LLC, Texas, 
USA).

Additional analyses

Ischemic heart disease, ischemic cerebrovascular disease 
and heart failure mortalities

As the relationship between vitamin K1 and ASVD events 
appeared to be primarily driven by ASVD mortality, sub-
types of ASVD mortality attributed to IHD, ischemic cere-
brovascular disease and heart failure were assessed for 
their associations with dietary vitamin K1 intake. Due to a 
low number of cases (n = 22) for peripheral arterial disease 
related deaths, this subtype was not explored further.

Relative vitamin K1 intakes (µg/kg of body mass)

The European Food Safety Authority (EFSA) Panel on 
Dietetic Products, Nutrition and Allergies, as well as the 
2023 Nordic Nutrition Recommendations both promote 
vitamin K1 intakes expressed by body mass (µg/kg/day) [22, 
23]. Consequently, we examined the associations between 
vitamin K1 intakes, quantified per kilogram of body mass, 
with ASVD mortality.

Diet quality

Vegetables are an abundant source of dietary vitamin K1, 
thus, higher vitamin K1 intakes may represent a healthier 
diet. As such, the Dietary Guideline Index (DGI) [42], an 
adherence measure to the 2013 Australian Dietary Guide-
lines [43], was included as an additional confounder to the 
analysis considering ASVD mortality, and the subtypes 
where associations with vitamin K1 intakes were uncovered.

Prevalent atherosclerotic vascular disease

As prevalent ASVD is a risk factor for future events, the 
relationships between vitamin K1 intakes and ASVD mor-
tality (including its subtypes where associations with vita-
min K1 intakes were uncovered) were re-examined, with 
the exclusion of women with prevalent ASVD (n = 168).

Kidney function

Chronic kidney disease (CKD) is associated with increased 
vascular calcification and mortality [44]. Consequently, 
women were stratified based on whether they presented with 
(eGFR < 60 mL/min/1.73 m2, n = 408) or without impaired 
kidney function (eGFR ≥ 60 mL/min/1.73 m2, n = 889). We 

discharge. Multiple causes of death data were obtained from 
the coded death certificate, using information in parts 1 and 
2 of the death certificate, or all diagnosis text fields from the 
death certificate when coded deaths were not yet available. 
ASVD outcomes were defined using the diagnosis codes 
from the ICD-9-CM [32], and the International Statistical 
Classification of Diseases and Related Health Problems, 
10th Revision, Australian Modification (ICD-10-AM) [39]. 
Diagnosis codes included those related to; IHD (ICD-9‐CM 
codes 410–414 and ICD‐10‐AM codes I20–I25); heart fail-
ure (ICD‐9‐CM code 428 and ICD‐10‐AM code I50); cere-
brovascular disease, excluding haemorrhage (ICD‐9‐CM 
codes 433–438 and ICD‐10‐AM codes I63‐I69, G45.9); and 
peripheral arterial disease (ICD‐9‐CM codes 440–444 and 
ICD‐10‐AM codes I70–I74).

Statistical analysis

The relationship between vitamin K1 intake (µg/day) and 
both mean and maximum CCA-IMT were initially inves-
tigated using Spearman’s rank-order correlation (ρ). Multi-
variate analysis of variance (MANOVA) was used to explore 
differences in mean and maximum CCA-IMT across vitamin 
K1 intake quartiles (n = 1,090). Cox proportional hazards 
models were utilised to analyse the relationships between 
vitamin K1 intakes and any ASVD events, hospitalisations 
and deaths. Restricted cubic splines were adopted to explore 
potential non-linear associations, using the ‘rms’ R pack-
age [40]. The associations were presented graphically using 
the ‘effects’ R package [41]. The median vitamin K1 intake 
of participants with the lowest intake (Quartile 1 [Q1]) was 
used as a reference value. The hazard ratio (HR) estimates 
are relative to this reference value and were plotted for each 
outcome with 95% confidence bands provided. P-values 
were obtained using Wald tests and, for visual simplicity, 
the x-axis was truncated at 3 SD above the mean. Schoen-
feld residuals indicated that the assumptions of proportional 
hazards were not violated for all analyses (all p = > 0.05), 
except for ASVD events (p = 0.030). We subsequently trun-
cated ASVD event follow-up to 14 years, with no further 
violations detected (p = 0.064). Three models of adjustment 
were adopted: Model 1: Adjusted for age, treatment group 
(calcium vs. placebo vs. calcium + vitamin D) and BMI; 
Model 2: Model 1 + physical activity, energy intake, alco-
hol intake, smoking history, statin use, anti-hypertensive 
medication use, low-dose aspirin use and SES; and Model 
3: Model 2 + prevalent ASVD and prevalent diabetes. These 
potential confounding factors were selected a priori because 
of the potential to influence ASVD. All statistical analyses 
were performed using IBM SPSS Statistics, version 29.0 
(IBM Corporation, Armonk, New York), R software, ver-
sion 3.4.2 (R Foundation for Statistical Computing, Vienna, 
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Vitamin K1 intakes with subclinical atherosclerosis

Weak, inverse correlations were observed between vitamin 
K1 intakes (µg/day) with both mean (ρ = -0.091, p = 0.003) 
and maximum (ρ = -0.089, p = 0.003) CCA-IMT. Esti-
mated marginal means and 95%CI for mean and maximum 
CCA-IMT are displayed in Table 2. Women with higher K1 
intakes had significantly lower mean (Q4; 5.6% [p < 0.001], 
Q3; 4.1% [p = 0.004], Q2; 3.1% [p = 0.025]) and maximum 
(Q4; 5.4% [p < 0.001], Q3; 4.3% [p = 0.003], Q2; 3.0% 
[p = 0.028]) CCA-IMT, compared to the lowest intake (Q1) 
(Model 3, Table 2).

Vitamin K1 intake with any atherosclerotic vascular 
disease events, hospitalisations or deaths

Over 14.5 years of follow-up, 43.1% (n = 620) of women 
experienced an ASVD event (mean ± SD; 10.6 ± 4.3 [15,252 
person-years]), 34.6% (n = 497) of women experienced an 
ASVD hospitalisation and 20.9% (n = 301) of women died 
from ASVD-related causes (mean ± SD; 12.5 ± 3.3 years 
[17,957 person-years]). Compared to the lowest intakes 
(Q1), higher vitamin K1 intakes were associated with a 
significantly lower relative hazards for any ASVD-related 

then assessed the associations between vitamin K1 intakes 
and ASVD mortality.

Competing risks analysis for non-atherosclerotic vascular 
disease mortality

Due to the advanced age of our cohort, competing risks 
analyses (Fine and Gray’s proportional sub hazards model 
[45]) was undertaken when considering the relationship 
between vitamin K1 and ASVD mortality, whilst account-
ing for the competing risk of non-ASVD related mortality.

Results

Baseline demographics, medication use, and vitamin K1 
intakes, for the 1,436 women are presented in Table  1. 
Mean ± SD age was 75.1 ± 2.7 years and median (IQR) vita-
min K1 intake was 78.7 (38.1) µg/day. Compared to women 
in the lowest vitamin K1 intake quartile (Q1), those with 
the highest vitamin K1 intakes (Q4) tended to have greater 
energy intakes, be more physically active, have a lower pro-
portion of smokers/previous smokers, and have higher DGI 
scores (Table 1).

Table 1  Baseline characteristics of all participants, and by quartiles of vitamin K1 intake
Vitamin K1
Participant characteristics All participants

n = 1,436
Quartile 1
(< 61.1 µg/d)

Quartile 2
(61.1 to < 78.7 µg/d)

Quartile 3
(78.7 to < 99.1 µg/d)

Quartile 4
(≥ 99.1 µg/d)

Age, y 75.1 ± 2.7 75.2 ± 2.8 74.9 ± 2.7 75.2 ± 2.7 75.3 ± 2.7
Treatment, n (%)
  Calcium n (%) 697 (48.7) 163 (45.4) 169 (47.1) 182 (50.7) 183 (51.0)
  Calcium & vitamin D, n (%) 39 (2.7) 11 (3.1) 8 (2.2) 12 (3.3) 8 (2.2)
BMI, kg/m2 27.2 ± 4.7 27.2 ± 4.8 26.9 ± 4.5 27.4 ± 4.9 27.2 ± 4.7
Physical activity, kcal/d 111.2 (180.9) 93.2 (202.3) 112.7 (156.6) 102.6 (169.3) 118.1 (156.6)
Alcohol intake, g/d 1.8 (9.6) 1.6 (9.8) 2.1 (10.0) 1.7 (9.0) 1.6 (9.2)
Energy intake, kJ/d 7,102 ± 2,083 5,614 ± 1,351 6,706 ± 1,607 7,363 ± 1,804 8,725 ± 2,156
DGI score 34.9 ± 8.8 32.7 ± 8.5 33.5 ± 9.1 35.4 ± 8.2 37.8 ± 8.4
Cruciferous and leafy green vegetable intake, g/day 44.9 ± 24.7 24.3 ± 13.4 36.8 ± 15.4 49.2 ± 18.5 69.3 ± 24.2
Smoking history, n (%) 535 (37.3) 148 (41.2) 136 (37.9) 129 (35.9) 122 (34.0)
Socioeconomic status, n (%)
  Top 10% most highly disadvantaged 62 (4.3) 18 (5.0) 12 (3.3) 17 (4.7) 15 (4.2)
  Highly disadvantaged 172 (12.0) 41 (11.4) 44 (12.3) 40 (11.1) 47 (13.1)
  Moderate - highly disadvantaged 234 (16.3) 51 (14.2) 60 (16.7) 51 (14.2) 72 (20.1)
  Low - moderately disadvantaged 219 (15.3) 62 (17.3) 41 (11.4) 61 (17.0) 55 (15.3)
  Low disadvantaged 304 (21.2) 75 (20.9) 77 (21.4) 78 (21.7) 74 (20.6)
  Top 10% least disadvantaged 445 (31.0) 112 (31.2) 125 (34.8) 112 (31.2) 96 (26.7)
Statin use, n (%) 265 (18.5) 60 (16.7) 65 (18.1) 67 (18.7) 73 (20.3)
Low-dose aspirin use, n (%) 298 (20.8) 79 (22.0) 77 (21.4) 75 (20.9) 67 (18.7)
Anti-hypertensive medication use, n (%) 618 (43.0) 144 (40.1) 164 (45.7) 147 (40.9) 163 (45.4)
eGFR, mL/min/1.73 m2 * 66.8 ± 13.2 66.5 ± 13.7 66.8 ± 13.2 67.2 ± 13.1 66.6 ± 13.0
Prevalent ASVD, n (%) 168 (11.7) 38 (10.6) 44 (12.3) 42 (11.7) 44 (12.3)
Prevalent diabetes, n (%) 87 (6.1) 20 (5.6) 24 (6.7) 21 (5.8) 22 (6.1)
Data is expressed as mean ± SD, median (IQR), or n (%). Abbreviations: body mass index (BMI), dietary guideline index (DGI), estimated 
glomerular filtration rate (eGFR), atherosclerotic vascular diseases (ASVD). *eGFR data was available for n = 1,297 women
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Additional analyses

Vitamin K1 intake, ischemic heart disease, ischemic 
cerebrovascular disease and heart failure mortality

Over 14.5 years, 11.9% (n = 172), 8.5% (n = 123), and 5.5% 
(n = 79) of women died due to IHD, ischemic cerebrovas-
cular disease or heart failure, respectively. Women with 
higher vitamin K1 intakes (Q2 [HR 0.62 95%CI 0.47–0.81], 
Q3 [HR 0.59 95%CI 0.39–0.90] and Q4 [HR 0.55 95%CI 
0.31–0.97]) had up to 45% lower relative hazard for isch-
emic cerebrovascular disease mortality (Model 3, Supple-
mentary Table 2, Supplementary Fig. 2). When considering 
IHD mortality, women in Q3 (HR 0.65 95%CI 0.45–0.93) 
and Q4 (HR 0.54 95%CI 0.33–0.87) had lower relative haz-
ards of 35% and 46%, respectively (Model 3, Supplemen-
tary Table 2, Supplementary Fig. 2). No associations were 
observed for heart failure mortality.

event (Fig. 1) with the lowest relative hazards seen for Q4 
(HR 0.71 95%CI 0.55–0.92; Model 3, Table 3). However, 
due to violation of the proportional hazards assumption, the 
follow-up period was truncated to 14 years (Supplementary 
Material). In the truncated multivariable-adjusted analysis 
(Model 3), only women with the highest vitamin K1 intakes 
(Q4) had lower relative hazards for any ASVD event (HR 
0.74 95%CI 0.57–0.96), compared to women in Q1 (Sup-
plementary Table 1). For ASVD mortality, compared to 
the lowest intakes, higher vitamin K1 intakes were associ-
ated with lower relative hazards (Fig. 1), with the lowest 
relative hazards seen for Q4 (HR 0.57 95%CI 0.40–0.83 
[Model 3, Table 3]). No statistically significant associations 
were observed for ASVD-related hospitalisations, although 
a similar trend of a lower hazards with higher intakes was 
observed (Table 3; Fig. 1).

Table 2  Estimated marginal means (95% CI) for mean and maximum common carotid artery intima-media thickness (mm) at year 3, by quartiles 
of vitamin K1 intake (n = 1,090)

Quartiles for vitamin K1 intake
Quartile 1
< 62.3 µg/d

Quartile 2
62.3 to < 79.1 µg/d

Quartile 3
79.1 to < 98.8 µg/d

Quartile 4
≥ 98.8 µg/d

Mean CCA-IMT Model 1 0.802 (0.787–0.817) ‡ § 0.781 (0.766–0.796) 0.771 (0.756–0.786)* 0.761 (0.746–0.776)*

Model 2 0.805 (0.788–0.821) †‡ § 0.780 (0.765–0.795)* 0.772 (0.757–0.787)* 0.759 (0.743–0.776)*

Model 3 0.805 (0.788–0.821) †‡ § 0.780 (0.765–0.795)* 0.772 (0.757–0.787)* 0.760 (0.743–0.776)*

Maximum CCA-IMT Model 1 0.950 (0.932–0.968) ‡ § 0.926 (0.908–0.943) 0.911 (0.894–0.929)* 0.904 (0.887–0.922)*

Model 2 0.953 (0.934–0.973) †‡ § 0.925 (0.907–0.942)* 0.912 (0.894–0.930)* 0.902 (0.883–0.921)*

Model 3 0.953 (0.934–0.973) †‡ § 0.925 (0.907–0.942)* 0.912 (0.894–0.930)* 0.902 (0.883–0.922)*

Estimated marginal means and 95% CI from multivariate analysis of variance. Median vitamin K1 intake for Q1, Q2, Q3 and Q4 was 49.9, 70.6, 
87.7 and 118.4 µg/d, respectively. Model 1: Adjusted for age, treatment, and body mass index. Model 2: Model 1 plus smoking history, energy 
intake, alcohol intake, physical activity, statin use, low-dose aspirin use, anti-hypertensive medication use and socioeconomic status. Model 
3: Model 2 plus prevalent atherosclerotic vascular disease and prevalent diabetes. *Significantly different (p < 0.05) to Quartile 1, †significantly 
different (p < 0.05) to Quartile 2, ‡significantly different (p < 0.05) to Quartile 3, §significantly different (p < 0.05) to Quartile 4. Abbreviations: 
common carotid artery intima–media thickness (CCA-IMT)

Fig. 1  Multivariable-adjusted hazard ratios for the relationships 
between vitamin K1 intake with (a) any atherosclerotic vascular dis-
ease events (b) any atherosclerotic vascular disease hospitalisations, 
and (c) any atherosclerotic vascular disease mortality, over 14.5 years. 
Model adjusted for age, treatment, body mass index, smoking history, 
energy intake, alcohol intake, socioeconomic status, statin use, low-

dose aspirin use, anti-hypertensive medication use, physical activ-
ity, prevalent atherosclerotic vascular disease and prevalent diabetes 
(Model 3). Solid lines are the estimated hazard ratio, and shaded areas 
represent the 95% confidence intervals. The rug plot along the x-axis 
represents each individual
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and ischemic cerebrovascular disease subtypes remained 
consistent (Supplementary Table 5, Supplementary Fig. 4).

Kidney function

For women with normal kidney function (eGFR ≥ 60 mL/
min/1.73 m2), lower hazards for any ASVD mortality were 
observed for women in Q2 (HR 0.75 95%CI 0.59–0.96) and 
Q4 (HR 0.61 95%CI 0.37–0.99), but not Q3, compared to 
Q1 (Supplementary Tables 6 and Supplementary Fig.  5). 
For women with impaired kidney function (eGFR < 60 mL/
min/1.73 m2), those with highest vitamin K1 intakes (Q4, 
compared to Q1; HR 0.52 95%CI 0.27–0.99) had a 48% 
lower hazard of any ASVD mortality (Supplementary Table 
6, Supplementary Fig. 5).

Competing risks analysis for non-atherosclerotic vascular 
disease mortality

In the multivariable-adjusted (Model 3) analysis accounting 
for the competing risk for non-ASVD mortality, compared 
to women with the lowest intakes (Q1), only women with 
the highest vitamin K1 intake (Q4) had a lower sub-distribu-
tion hazard (sHR 0.61 95%CI 0.42–0.90) for ASVD mortal-
ity (Supplementary Table 7).

Relative vitamin K1 intakes (µg/kg of body mass)

When vitamin K1 intake was expressed per kilogram of 
body mass, comparable results to the primary analysis were 
observed. Specifically, women with higher vitamin K1 
intakes (Q2, Q3 and Q4, compared to Q1) had lower rela-
tive hazards for ASVD mortality (Model 3, Supplementary 
Table 3, Supplementary Fig. 3), with the lowest relative haz-
ard observed in Q4 (HR 0.58 95%CI 0.41–0.82). Similar 
results were recorded when considering subtypes of ASVD 
mortality, including IHD and ischemic cerebrovascular 
disease (Model 3, Supplementary Table 3, Supplementary 
Fig.  3). For heart failure mortality, lower relative hazards 
were only recorded for women only in Q2 (HR 0.61 95%CI 
0.44–0.84) and Q3 (HR 0.57 95%CI 0.35–0.92), compared 
to Q1, of vitamin K1 intake (Model 3, Supplementary Tables 
3, and Supplementary Fig. 3).

Diet quality

The inclusion of DGI to the multivariable-adjusted analy-
sis (Model 3) did not alter the associations observed in the 
primary analysis (Table 3) between vitamin K1 and ASVD 
mortality, including IHD and ischemic cerebrovascular dis-
ease subtypes (Supplementary Table 4).

Prevalent atherosclerotic vascular disease

When women with prevalent ASVD were excluded, the 
multivariable-adjusted associations (Model 3) between vita-
min K1 intakes with any ASVD mortality, including IHD 

Table 3  Hazard ratio (95% CI) for any atherosclerotic vascular disease events, hospitalisations and mortality, over 14.5 years, by quartiles of 
vitamin K1 intake

Quartiles for vitamin K1 intake
Quartile 1
< 61.1 µg/d

Quartile 2
61.1 to < 78.7 µg/d

Quartile 3
78.7 to < 99.1 µg/d

Quartile 4
≥ 99.1 µg/d

Any ASVD Events Events, n (%) 168 (46.8) 152 (42.3) 166 (46.2) 134 (37.3)
Model 1 Ref. 0.87 (0.76–0.99)* 0.85 (0.72–1.01) 0.76 (0.61–0.93)*
Model 2 Ref. 0.88 (0.77-1.00) 0.86 (0.71–1.04) 0.77 (0.59–0.99)*
Model 3 Ref. 0.86 (0.75–0.99)* 0.81 (0.67–0.98)* 0.71 (0.55–0.92)*

Any ASVD Hospitalisations Events, n (%) 127 (35.4) 119 (33.1) 134 (37.3) 117 (32.6)
Model 1 Ref. 0.90 (0.78–1.05) 0.91 (0.75–1.11) 0.88 (0.70–1.11)
Model 2 Ref. 0.91 (0.78–1.07) 0.93 (0.75–1.15) 0.90 (0.68–1.19)
Model 3 Ref. 0.90 (0.77–1.05) 0.88 (0.71–1.08) 0.83 (0.63–1.11)

Any ASVD Mortality Events, n (%) 90 (25.0) 75 (20.9) 76 (21.1) 60 (16.7)
Model 1 Ref. 0.77 (0.65–0.92)* 0.71 (0.55–0.90)* 0.61 (0.45–0.82)*
Model 2 Ref. 0.77 (0.64–0.93)* 0.71 (0.54–0.93)* 0.60 (0.41–0.87)*
Model 3 Ref. 0.75 (0.62–0.90)* 0.67 (0.51–0.88)* 0.57 (0.40–0.83)*

Estimated hazards ratio and 95% CI from Cox proportional hazards analysis, comparing the median vitamin K1 intake from each quartile (Q) 
compared to Q1. Median vitamin K1 intake for Q1, Q2, Q3 and Q4 was 49.1, 69.8, 87.5 and 119.3 µg/d, respectively. * Indicates p < 0.05 com-
pared to Q1. Model 1: Adjusted for age, treatment, and body mass index. Model 2: Model 1 plus smoking history, energy intake, alcohol intake, 
physical activity, statin use, low-dose aspirin use, anti-hypertensive medication use and socioeconomic status. Model 3: Model 2 plus prevalent 
atherosclerotic vascular disease and prevalent diabetes. Abbreviations: atherosclerotic vascular disease (ASVD)
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In our study, associations were reported for ASVD-related 
mortality, but not hospitalisations. Albeit uncertain, it is pos-
sible that non-fatal ASVD manifestations in this cohort may 
be dominated by less severe, symptomatic events leading to 
hospitalisation. ASVD manifestations are often dominated 
by stenotic ASVD events (e.g., angina and peripheral arte-
rial disease), whilst fatal ASVD likely have a higher propor-
tion due to plaque rupture (e.g., myocardial infarction and 
ischemic stroke). This may, in part, be explained by vitamin 
K playing a greater role in plaque stability [52], as opposed 
to vascular stenosis. Alternatively given that vitamin K can 
also affect multiple physiological systems [53], its rela-
tionship with mortality might reflect not only its impact on 
cardiovascular health alone, but also its broader influence 
on overall health status. This is relevant in an older cohort 
where multimorbidity is present. In contrast to our find-
ings, a Danish study undertaken in a much younger cohort 
(n = 53,372, 53.5% female, aged 52–60 years), reported a 
21% lower risk of ASCVD hospitalisations for participants 
with the highest (quintile 5, median 192 µg/day) compared 
to the lowest vitamin K1 intake (quintile 1, median 57 µg/
day) [17]. However, no sex or age specific analysis was 
undertaken. In-line with these findings, it is notable that the 
direction of the association we observed in the current study 
between vitamin K1 intakes and ASVD hospitalisations was 
comparable, albeit not statistically significant. Future work 
should explore whether the relationship between vitamin 
K1 and ASVD is influenced by age and sex.

The specific mechanisms underpinning the potential role 
of vitamin K1 in relation to cardiovascular health, particu-
larly ASVDs, are yet to be completely understood. Vascular 
calcification is a common attribute of atherosclerosis and 
an independent risk factor for ASVDs, which may occur in 
both the intimal and medial layers of the arterial wall [14, 
54]. Intima-calcification is characterised by lipid deposition 
and atherosclerotic plaque development [14, 54]. Within the 
medial layer, structural changes of vascular smooth muscle 
cells toward an osteoblastic phenotype results in increased 
arterial stiffness, and hydroxyapatite mineral deposition 
within the arterial wall [14, 54]. In the present study, higher 
vitamin K1 intakes were associated with lower mean (5.6%) 
and maximum (5.4%) CCA-IMT. This is important as CCA-
IMT is a well-regarded indication of subclinical atheroscle-
rosis and may predict ASVD events [55, 56]. In a post-hoc 
analysis of the ViKCoVaC trial (n = 149 patients with dia-
betes, mean ± SD age 65.5 ± 6.8 years, 66.4% male), vita-
min K1 supplementation (10 mg/day for 3 months) reduced 
the likelihood of the formation of newly-calcifying lesions 
(assessed via 18 F-NaF PET imaging) in the aorta (OR 0.27 
95%CI 0.08–0.94) and coronary arteries (OR 0.35 95%CI 
0.16–0.78) [57]. These findings suggest that vitamin K1 may 
play an important role in vascular calcification inhibition. 

Discussion

In the present study, higher vitamin K1 intakes were asso-
ciated with lower relative hazards for ASVD events and 
ASVD mortality, including IHD and ischemic cerebro-
vascular disease subtypes, in community-dwelling older 
Australian women. These findings were supported by a 
well-regarded subclinical atherosclerosis measure, where 
higher vitamin K1 intakes were also associated with lower 
mean and maximum CCA-IMT.

Few studies have investigated the relationships between 
vitamin K1 intakes and ASVD mortality. Yet, various stud-
ies have explored total CVD mortality [18, 19, 46, 47], 
and CHD mortality [20, 46, 48, 49] outcomes, with mixed 
findings. For example, a systematic review and meta-anal-
ysis from 2019, found no associations between vitamin K1 
intakes with total CVD mortality (pooled HR 0.93 95%CI 
0.60–1.45, 706 cases from two studies) nor CHD mortal-
ity (pooled HR 0.89 95%CI 0.77–1.02; 1,503 cases from 
four studies) [50]. Yet two subsequent studies in Danish 
(n = 56,048, 52.4% female, median [IQR] age 65 [52–60]) 
[18], and Australian cohorts (n = 1,436, 100% female, 
mean ± SD age 75.2 ± 2.7 years) [19], reported lower risks of 
total CVD mortality with higher vitamin K1 intakes (quin-
tile 5 [median 192 µg/day] vs. quintile 1 [median 57 µg/
day]: HR 0.74 95%CI 0.68–0.81, and quartile 4 [median 
119.3 µg/day] vs. quartile 1 [median 49.1 µg/day] HR 0.61 
95%CI 0.41–0.92, respectively) [18]. Interestingly, the 
studies included in the aforementioned meta-analysis [50] 
reported considerably higher vitamin K1 intakes in the ref-
erence categories (reference medians; 84–170.5  µg/day) 
[20, 46–49]. Such high intakes in the reference group may 
limit the potential to detect any benefits. In comparison, 
vitamin K1 intakes within the reference group in the present 
study are considerably lower (Q1 median intakes; 49.1 µg/
day). We report independent associations between moder-
ate to high (~ 120 µg/day) vitamin K1 intakes and ASVD 
mortality, including IHD and ischemic cerebrovascular dis-
ease subtypes. In the context of global dietary vitamin K1 
intake recommendations (1 µg/kg/day or ~ 70 µg/day for a 
reference adult) [22, 23], we report that vitamin K1 intakes 
that met (Q2) and exceeded these recommendations (Q3 
and Q4) appear to be beneficial for cardiovascular health. 
The difference between the lowest and highest vitamin K1 
intakes (~ 70  µg/day) could be attained via consuming 1 
serve (~ 0.5-1cup) of leafy green and cruciferous vegetables 
(e.g. lettuce, spinach, cabbage, broccoli and/or cauliflower), 
a simple, yet potentially effective, public health message. 
Our findings are particularly meaningful as fatal CHD and 
strokes contribute 73.8% and 86.5% of the total burden of 
these diseases, respectively, in Australian females [51].
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causality cannot be established. Self-reported FFQ’s were 
used to calculate vitamin K1 intakes, which may be 
impacted by reporting and recall bias. To minimise error, 
participants were provided with food charts, measuring 
utensils, and were supported by a research assistant while 
completing the FFQ. Limited data exists for the content of 
vitamin K2 in foods (MK4 through MK13), therefore intake 
of vitamin K2 was not considered. Furthermore, intestinal 
bacteria are involved in the synthesis of MKs and hence 
estimating intake and availability of vitamin K2 is difficult 
to determine. Due to this and other factors, such as dietary 
bioavailability and genetics, overall vitamin K status is hard 
to measure [62–64]. The assessment of vitamin K biomark-
ers related to vascular calcification, such as MGP, may be 
used yet were unavailable. We have previously validated 
dietary vitamin K1 intakes in this cohort by demonstrating a 
correlation with another vitamin K status biomarker largely 
specific to bone health [65], fraction of undercarboxylated 
osteocalcin.

Despite these limitations, this study possesses several 
strengths, including the 14.5-year follow-up period with 
linked health records. A measure of subclinical athero-
sclerosis (CCA-IMT) was also considered, supporting our 
findings and indicating a potential mechanism to guide 
future research directions. This study also adopts a popu-
lation-based cohort of community-dwelling older women, 
a demographic known to be of greater risk of ASVDs [66, 
67]. Numerous established lifestyle and CVD risk factors 
were also considered as part of multivariable-adjusted 
models to limit residual confounding. We also undertook 
additional analysis accounting for overall diet quality and 
prevalent disease (e.g. ASVD, CKD). Finally, we utilised a 
recently developed Australian vitamin K1 food composition 
database, which is regionally matched to the cohort, a rare 
strength for studies estimating vitamin K intakes [13].

Conclusion

Moderate to high (~ 120 µg/day) vitamin K1 intakes were 
associated with lower risk of ASVD deaths, specifically of 
IHD and ischemic cerebrovascular disease subtypes. These 
findings were supported by an inverse relationship between 
vitamin K1 intakes and a measure of subclinical atheroscle-
rosis (CCA-IMT). Consequently, the role of dietary vitamin 
K1 in limiting vascular calcification and preventing ASVD 
clearly warrants further investigation. From a public health 
perspective, increasing leafy green or cruciferous vegetable 
intake by 1 serve (~ 0.5-1 cup) a day, to achieve adequate 
vitamin K1 intakes, may be a low-risk and effective strategy 
to improve cardiovascular health.

Specifically, it has been suggested that the cardiovascu-
lar health benefits of vitamin K may relate to the calcium 
binding affinity of extra hepatic VKDPs, specifically MGP 
[14, 16, 58]. For example, MGP deficient mice develop 
extensive arterial calcification [59] and comparable results 
have also been reported in-vitro in human vascular smooth 
muscle cells [60]. While MGP is recognised as a calcifica-
tion inhibitor, the specific mechanism remains unknown. 
Several hypothesis include; (i) binding to excess calcium 
ions and/or crystals, and clearing them to the circulation, 
(ii) inhibition of vascular smooth muscle cell differentiation 
to an osteogenic phenotype, (iii) binding to extracellular 
matrix components such as elastin that may be involved in 
calcium crystal formation, and (iv) potentially acting as an 
anti-apoptotic factor [58, 61]. Collectively, such findings 
may explain the lower CCA-IMT observed in women with 
higher vitamin K1 intakes. However, as the exact mecha-
nism remains unclear, the potential role of vitamin K in 
preventing vascular calcification in humans, especially per-
taining the role of MGP, warrants further investigation.

The current global dietary recommendations for vitamin 
K are set as adequate intakes, to prevent deficiency and pro-
vide sufficient vitamin K1 for blood coagulation processes, 
via the functioning of hepatic VKDPs (e.g. coagulation fac-
tors II, VII, IX, and X) [12, 15, 23]. The Nordic and Euro-
pean guidelines acknowledge the relation of body size with 
vitamin K1 stores, and therefore dietary requirements, rec-
ommending an adequate intake of 1  µg/kg of body mass 
daily [22, 23]. The optimal quantity of vitamin K1 for ASVD 
outcomes remains unclear, yet in the present study, relative 
vitamin K1 intakes that met and exceeded these adequate 
intakes were generally found to be associated with lower 
risk of ASVD mortality, including those attributed to IHD, 
ischemic cerebrovascular disease and heart failure. How-
ever, it is interesting to highlight that, while the shape of 
association was similar, when expressed in absolute terms 
(µg/day), vitamin K1 intake was not associated with heart 
failure mortality. Collectively, dietary vitamin K1 intakes 
meeting the current recommendations (1 µg/kg/day) appear 
beneficial, however, our data also suggests a slightly higher 
intake (1.3–1.8 µg/kg/day) may be preferential when con-
sidering fatal ASVD. At a population level, whether vitamin 
K1 intake guidelines should be expressed by body mass, or 
as absolute values warrants further investigation, especially 
in relation to other aspects of health.

While this study presents important findings, we must 
acknowledge that there are limitations to this work. The 
PLSAW consists of older, mostly Caucasian women resid-
ing in Western Australia, thus the generalisability of the 
findings may be specific only to this population, and not 
to younger individuals, men and different ethnic groups. 
Additionally, this study is observational in nature, therefore 
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