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Abstract: The article presents an application of microwave tomography (MWT) in an industrial
drying system to develop tomographic-based process control. The imaging modality is applied
to estimate moisture distribution in a polymer foam undergoing drying process. Our Leading
challenges are fast data acquisition from the MWT sensors and real-time image reconstruction of
the process. Thus, a limited number of sensors are chosen for the MWT and are placed only on top
of the polymer foam to enable fast data acquisition. For real-time estimation, we present a neural
network-based reconstruction scheme to estimate moisture distribution in a polymer foam. Training
data for the neural network is generated using a physics-based electromagnetic scattering model and
a parametric model for moisture sample generation. Numerical data for different moisture scenarios
are considered to validate and test the performance of the network. Further, the trained network
performance is evaluated with data from our developed prototype of the MWT sensor array. The
experimental results show that the network has good accuracy and generalization capabilities.

Keywords: microwave drying; moisture content distribution; microwave tomography; inverse
problems; neural networks

1. Introduction

Controlled/localised heating in industrial microwave oven [1,2] is paramount to
address hot-spot formation and thermal runaway issues [3]. As a consequence, system
efficiency and processed product quality may improve. Presently, we are working on a
type of microwave oven technology called HEPHAISTOS, as shown in Figure 1. The sys-
tem is characterized by hexagonal geometry [4] for the cavity that supports a very high
electromagnetic field homogeneity. Its principal areas of applications are in material pro-
cessing such as thermal curing of fiber composites and drying of porous foams. Specifically,
during drying of a porous polymer foam, thermal runaway and hot-spot formation may
occur [5,6]. Such situations may lead to low-quality processing and may even damage the
industrial unit in case a fire is kindled in the foam. Therefore, automatic online control
of power sources (magnetrons) to obtain a selective heating rate at each stage of the dry-
ing process is one option to eliminate these problems. To apply such precise control of
power sources, non-invasive in situ measurement of the unknown distribution of moisture,
especially dominant wet-spots, inside the material is required. The infrared temperature
sensors integrated with the microwave drying systems are capable of giving information
only on the surface of the material. That is not sufficient to provide efficient control of
microwave sources. Thus, integration of microwave tomography (MWT) imaging modality
operating in X-band range [7] (from 8 GHz to 12 GHz) with the drying system is proposed
(see number Tag 4 in Figure 1) to estimate the moisture content distribution in a polymer
foam. Based on the MWT tomographic output, an intelligent control strategy for power
sources can be derived. Preliminary work in this direction is reported in [8] by the authors.
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Industrial process tomography based on microwave sensors for various applications are
reported in [9,10]. The specific use-case of microwave sensor technology for moisture
measurements in a sample are given in [11–17]; but they are limited in providing moisture
information on the surface or in a small sample size but not the volumetric information as
required for our purpose.

Figure 1. Left: view of the HEPHAISTOS microwave oven system. Right: schematic showing the main modules of the
oven which are represented by numbers tag 1, 2, 3, and 4. Tag 1 is high power microwave waveguide antenna, Tag 2 is
the conveyor belt, and Tag 3 is the metal plate. MWT setup with waveguide antenna is represented by Tag 4. The foam is
shown as dark gray matter and placed on the conveyor belt.

For MWT, real-time image reconstruction is critical to provide a fast input response
for the control system. In addition, the inverse scattering problem that we are solving is
severely ill-posed due to the large object size and inhomogeneous profile. Thus, applying
iterative optimization-based methods like Levenberg–Marquardt [18], contrast source in-
version, and subspace-based optimization methods [19] are time-consuming. An attractive
approach to fulfill the real-time estimation requirement is to use neural networks [20,21].
The first implementation of neural networks, to the best of our knowledge, in solving an
inverse problem in electromagnetics where material properties of multilayered media is
estimated was presented in [22]. In [23,24], artificial neural network is employed for de-
termining the moisture content in wheat and moisture content of commercially important
biomass, respectively.

Recent developments in the use of neural networks for solving general microwave
imaging problem are detailed in [25–30]. In [31], a connection between the optimization
framework and neural network is established and tested to solve nonlinear inverse scatter-
ing problems. However, they are limited to sparse target recovery with full-angle sensor
configuration and a large number of measurements. In this work, an MWT configuration
with antennas located only on top is chosen as a setup to support fast data acquisition.
Secondly, our network is trained using the smoothness parameter model to represent
possible moisture distribution scenarios and is capable of even generalizing sparse targets
as shall be demonstrated by the experimental results. Using ideas from our preliminary
studies [32–35], we build a comprehensive synthetic dataset consisting of different mois-
ture content distribution scenarios and the corresponding scattered electric field responses
using two-dimensional (2-D) method-of-moment formulation. Once the selected network
architecture is trained using this dataset, it is applied to recover the moisture content distri-
bution (in terms of dielectric constant) in real-time. The performance of trained network is
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validated with the numerical MWT data for different moisture scenarios. Further, the net-
work is tested on the experimental data from the MWT setup integrated with the drying
unit. Results presented shows that neural network approach can successfully estimate the
moisture content in real-time.

The paper is organized as follows: The forward model for MWT problem and its
formulation is detailed in Section 2. Furthermore, Section 2 also details the parametric
model for generation of moisture distribution. Section 3 details the neural network based
approach in the MWT and numerical results are presented. The experimental setup of the
MWT is detailed in Section 4 and performance of the neural network with the experimental
data is tested. Discussion and concluding remarks are given in Section 5.

2. Problem Formulation

To generate the numerical dataset for the neural network, we begin our discussion
by first unveiling the scattering model of the problem. With reference to the MWT mea-
surement schematic shown in Figure 1, we chose to illustrate the scattering model in the
context of its 2-D configuration. The 2-D configuration is chosen instead of 3-D model as to
decrease the overall computational load for generating the dataset.

2.1. Forward Model

The 2-D cross-section of the MWT setup is shown in Figure 2 with multistatic measure-
ment configuration. In the figure, we consider a two-dimensional foam domain Ωfoam =
[−15, 15] × [0, 7.6] cm with inhomogenous relative dielectric constant εr = ε′r − jε′′r .
The foam is placed on the metal plate (as shown in Tag 4 in Figure 1) which is modeled
here as perfect electric conductor (PEC) plane and surrounded by background domain Ω
consisting of air with εr = 1− j0. For this 2-D numerical study, the waveguide antennas
are modeled as a z-oriented electric line source [36]; 7 such line sources are placed in a
transceiver mode at a distance of 5 cm from the top surface of the foam.

metal plate

7.6 cm

5 cm

30 cm

y

xz

εr(x, y)Ωfoam

1 2 3 4 5 6 7

Figure 2. 2-D schematic of the MWT setup with waveguide antennas denoted by number from 1, 2, . . . 7.

In general, the scattered electric field under the illumination of time-harmonic (time
convention e−jωt with angular frequency ω is used and suppressed) transverse magnetic
(TM) z-polarized incident field is governed by the following coupled scalar volume integral
Equations (VIEs) [37–41]

Esct(r) = k2
∫

Ωfoam

G(r, r′)
(
εr(r′)− 1

)
E(r′)dr′,

∀r ∈ Ω, r′ ∈ Ωfoam.
(1)
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The term Esct is the scattered electric field. The wavenumber of the background
medium is denoted by k. The term G(r, r′) is the free-space Green’s function. The source
and the observation points are denoted by the position vectors r 7→ (x, y) and r′ 7→ (x′, y′),
respectively. The term E is the total electric field inside the scattering object and is given as

E(r) = Einc(r) + k2
∫

Ωfoam

G(r, r′)
(
εr(r′)− 1

)
E(r′)dr′,

∀r, r′ ∈ Ωfoam,
(2)

where Einc is the incident electric field from the line-source. The effects of the conducting
plane are included in the 2-D free-space Green’s function of the VIEs by the use of half-
space Green’s function [42]. It is defined using image theory principle [43] where an image
source is introduced to account for the reflections from the surface of the conducting plane
and thus the conducting plane can be removed. The image source point (denoted here
as xim and yim) must have the same magnitude as the actual source, its phase must be
180 degree out of phase from the actual source and it must be placed below the conducting
plane at a depth yim = −y. Such a system configuration does lead to zero tangential
electric field [44] along the x-direction. The half-space Green’s function includes both the
primary contribution GT(r, r′), which is the free-space Green’s function, and the secondary
contribution GR(r, r′im) due to the image source and denoted as

G(r, r′) = GT(r, r′) + GR(rim, r′). (3)

Therefore, the scattered electric field above the conducting plane (i.e., upper half-space
y > 0) is equal to

Esct(r) = k2
∫

Ωfoam

GT(r, r′)
(
εr(r′)− 1

)
E(r′)dr′

+ k2
∫

Ωfoam

GR(rim, r′)
(
εr(r′)− 1

)
E(r′)dr′. (4)

Given the integral equation for the scattered electric field and total electric field, we
resorted to discrete dipole approximation with pulse basis and point matching technique,
i.e., method-of-moments (MoM) [45] for its numerical solution. In doing so, the foam
domain is discretized into n cells with dimensions denoted as ∆, so that the dielectric
constant and the total electric field are essentially constant over each cell. The unknown
total electric field inside the domain can be represented using sub-domain pulse-basis
function with unknown weight w as

E(r) =
n

∑
l=1

wlEl(r). (5)

Here, the discretized electric field El is defined as

El(r) =
{

1 ∀(x, y) ∈ cell l
0 otherwise

(6)

Then, Equation (2) is written as

n

∑
l=1

wlEl(r) = Einc(r)−
jk2

4

n

∑
l=1

(εrl − 1)wlEl(r)
∫∫

∆l

H2
0(r, r′)dr′+

jk2

4

n

∑
l=1

(εrl − 1)wlEl(r)
∫∫

∆l

H2
0(rim, r′)dr′, (7)
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where H2
0 is Hankel function of second kind and zero order. Further, after dot product,

denoted by the operator 〈·〉, of Equation (7) with the test function Em(r), we obtain

n

∑
l=1

wl〈Em(r), El(r)〉 = 〈Em(r), Einc(r)〉 −
jk2

4

n

∑
l=1

(εrl − 1)wl〈Em(r), El(r)〉
∫∫

∆l

H2
0(r, r′)dr′

+
jk2

4

n

∑
l=1

(εrl − 1)wl〈Em(r), El(r)〉
∫∫

∆l

H2
0(rim, r′)dr′. (8)

Applying point collocation, i.e., choosing the test function as Em(r) = δm(r) where δ
is the delta function, we obtain the following matrix equation of the form

n

∑
l=1

Zmlwl = Eincm = 〈δm(r), Einc(r)〉, (9)

where

Zml = 〈δm(r), El(r)〉+
jk2

4
(εrl − 1)〈δm(r), El(r)〉

∫∫

∆l

H2
0(r, r′)dr′

− jk2

4
(εrl − 1)〈δm(r), El(r)〉

∫∫

∆l

H2
0(rim, r′)dr′.

The approximate solution of the surface integral in Equation (8), following [46] become

jk2

4

∫∫

∆l

H2
0(r, r′)dr′ =

{ j
2
[
πkaH2

1(ka)− 2j
]
, ∀ m = l

jπka
2 J1(ka)H2

0

(
k
√
(xm − xl)2 + (ym − yl)2

)
, ∀ m 6= l

where H2
1 is the Hankel function of second kind and first order, a is the radius of equivalent

circular region having same area of the discretized cell, and J1 is the Bessel function of
first kind. To solve for the system of linear equations in Equation (9), generalized minimal
residual method (GMRES) [47] is employed. Upon calculation of the unknown weights,
the scattered electric field is evaluated at the transceiver points as

Esct(r) = −j
πk
2

n

∑
l=1

(εrl − 1)wlal J1(kal)

[
H2

0

(
k
√
(x− xl)2 + (y− yl)2

)
−

H2
0

(
k
√
(xim − xl)2 + (yim − yl)2

)]
.

(10)

Note that in Equation (7), the term Einc contains both the transmitted signal and the
reflected signal from the PEC in the absence of the foam.

2.2. Parametric Model for Moisture Distribution

The dielectric values used to represent moisture variations are generated numerically,
based on the dielectric characterization of the polymer foam in laboratory environment.
In the characterization, cavity perturbation method was used for dry sample and measure-
ment at different moisture levels were performed with samples that cover all the cross
section of a WR340 waveguide and using transmission reflection method [48]. The moisture
content is calculated based on the wet-basis, i.e.,

M =
Wm −Wd

Wm
× 100, (11)
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where M is the moisture percentage, Wm is the weight of the foam sample after adding the
water, and Wd is the weight of the dry sample. At the first step, we obtained the dielectric
constant associated with the 0% moisture level. Then, a certain amount of water is added
manually and the dielectric constant is recorded in each level. Thus, a relationship between
the wet-basis moisture content Mmeas and its corresponding real part and the imaginary
part of the dielectric value is obtained and given as

θ = āθ exp (b̄θ Mmeas), (12)

where θ = {ε′r, ε′′r } denotes the material parameters. Numerical values for āθ and b̄θ are
given in Table 1 where the error bounds for the fitted coefficients are defined by δaθ

and δbθ
.

Based on (12), the real part of relative dielectric constant vary in the range of 1.164–3.255
and imaginary part vary between 0.017–0.276 for wet-basis moisture content from 0% to
90%, respectively.

Table 1. Material model parameters.

āθ δaθ b̄θ δbθ

ε′r 1.085 0.01591 0.01256 0.00062
ε′′r 0.03021 0.0025 0.02249 0.0009

Further, we assume that the moisture field variation M in the foam is smooth. To gen-
erate such a random field, we utilise an anisotropic covariance structure C with its elements
calculated as [49]

Cij = exp

{
−1

2

(∥∥xi − xj
∥∥2

l2
x

+

∥∥yi − yj
∥∥2

l2
y

)}
. (13)

Here, i, j = 1, . . . , Nn and lx, ly are the characteristic length components. Nn denotes
the number of pixels. In practice, the characteristic lengths affect the moisture distribution
in x, and y directions. To generate simulated moisture samples, the uncertainties in the
dielectric characterization is also considered, and hence Equation (12) is replaced by

θ = aθ exp (bθ M), (14)

where aθ , bθ are random variables such that aθ ∼ U (āθ − δaθ
, āθ + δaθ

) and bθ ∼ U (b̄θ − δbθ
,

b̄θ + δbθ
), where U denotes the uniform distribution. Numerical values for δaθ

and δbθ
are

given in Table 1. The moisture content distribution in each sample M can be expressed as

M = M∗1+ δMLZ, (15)

where 1 is an all-ones vector, L is the lower triangular matrix of the Cholesky factorization
of the covariance C, Z is a standard normal random vector, M∗ and δM are the mean
and standard deviation of the moisture content field, respectively. A pseudo-code for
generating a sample is given below.

In Algorithm 1, the terms xmin = 2 cm, xmax = 30 cm, ymin = 2 cm, and ymax = 7.6 cm
denote the chosen minimum and maximum dimensions in the x and y directions of the
foam domain, respectively. U denotes the uniform distribution. Four randomized draws of
moisture distribution are shown in Figure 3.
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Algorithm 1 Pseudocode for generating the moisture distribution. Note that a small
diagonal component is added in matrix C to ensure the positive definiteness.

1: M∗ ∼ U (0, 50) %, δM ∼ U (2, 20) %
2: cx ∼ U (xmin, xmax), cy ∼ U (ymin, ymax)

3: C = AnisotropicCovariance(cx, cy, x, y)
4: L = Cholesky(C)
5: M = M∗ ones(Nn) + δML randn(Nn)
6: Calculate ε′r, ε′′r using Equation (14)

−15.0 −7.5 0.0 7.5 15.0
x(cm)

0.0

3.8

7.6

y
(c

m
)

−15.0 −7.5 0.0 7.5 15.0
x(cm)

0.0

3.8

7.6

y
(c

m
)

1.5

2.0

ε′r

1.5

2.0

ε′r

−15.0 −7.5 0.0 7.5 15.0
x(cm)

0.0

3.8

7.6

y
(c

m
)

−15.0 −7.5 0.0 7.5 15.0
x(cm)

0.0

3.8

7.6

y
(c

m
)

1.4

1.6

ε′r

1.52

1.53

1.54

ε′r

Figure 3. Four realisation of the moisture distribution with different correlation lengths, and mean and standard deviation
parameters. In the top right figure the characteristic parameter are lx = 3 cm and ly = 7 cm, and for the top left figure
characteristic parameter are lx = 18 cm and ly = 4 cm. Wet-spots (lx = 3 cm, and ly = 3 cm) and nearly homogeneous
moisture distribution (lx = 30 cm, ly = 7 cm, and δM = 2%) are shown in bottom left and right figures, respectively.

3. Inverse Problem: Convolutional Neural Network

In this study, a convolutional neural networks (CNN) is applied to estimate the mois-
ture distribution of porous foam from scattered electric field data. The CNN Hw,b(Esct)
is trained to map from an input space Esct ∈ R7×7×2 to Θ ∈ R300×1 (vectorized moisture
content distribution in terms of real part of the dielectric constant ε′r). The network archi-
tecture used in this work comprises two convolution layers and two fully connected layers.
The network architecture is shown pictorially in Figure 4. The input layer consists of two
channels where the real part (channel 1) and imaginary part (channel 2) of the complex
valued scattered electric data, i.e., Esct are given as an input. The convolutional layers
L = 1 and L = 2 have 20 and 30 channels with non-linear Rectified Linear Unit (ReLU)
activation function and spatial filter of size 3× 3 is chosen for both the layers. The fully
connected layer L = 3 has an output of size 340× 1. As for the estimation of ε′r(x, y),
an adequate resolution of the moisture distribution field of around x× y = 1 cm× 0.76 cm
is chosen. Thus, the output layer has a size of 300× 1. Note here that, moisture distribution
is estimated in terms of real part of the dielectric constant only. Including the imaginary
part of the dielectric constant is straightforward but it will increase the computational load.
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Input
layer

Convolutional
layer
L = 1

Convolutional
layer
L = 2

Fully connected
layer
L = 3

Regression
layer

ε′r(x, y)

R(Esct)

I(Esct)

Figure 4. The architecture of the convolutional neural network used in this study.

The convolutional neural network (CNN) is trained using a dataset comprising of
moisture content distribution {Θm} and corresponding scattered electric field parameters
{Esctm}, m = 1, . . . , Nm. Nm denotes the number of samples in the dataset. The generation
of such a dataset is described below. In the training phase, the goal is to find biases b and
weights w that minimize the discrepancy between {Θ`} and the values estimated by the
network {Hw,b(X`)}. In this work, we minimize the quadratic loss function

f (w, b; {Esct}m) =
1

Nm

Nm

∑
m=1

∥∥Hw,b(Esct)−Θm
∥∥2, (16)

to obtain the network parameters, biases, and weights of the network. For the network train-
ing process, the Adaptive moment estimation (Adam) optimizer [50] is chosen, with the
batch size of 150 samples and epoch setting as 2000. The learning rates are set to 1e-4
through out the training. All the computations were performed in a Python library Ten-
sorFlow [51] on a local computer with the configuration of 32 GB access memory, Intel
Core(TM) i7-7820HQ central processing unit, and Nvidia Quadro M2200 graphic unit.
The training of the network takes about 5 h.

3.1. Training, validation, and test datasets

An initial dataset of Nm = 10, 000 samples containing complex scattered electric field
response and corresponding moisture distribution is built. Here, the scattered electric field
data is generated using 2-D MoM with pulse basis and point matching techniques at 8.3
GHz frequency and by discretizing the foam into 100× 30 pixels. Note that the lower
frequency point is chosen from X-band as it offers to simulate the 2-D full-wave electromag-
netic simulations with less computational load and low degree of non-linearity [52][53].
The physical parameters ε′r and ε′′r for each sample were drawn using the framework dis-
cussed earlier. Furthermore, five copies of the dataset are created by adding noise between
1% to 3% to the scattering data. The noise is added (following [54]) to each response of the
complex electric field of the dataset as

Esctnoise = Esct + max(Esct)
β√
2
(δ1 + jδ2), (17)

Figure 4. The architecture of the convolutional neural network used in this study.

The convolutional neural network (CNN) is trained using a dataset comprising of
moisture content distribution {Θm} and corresponding scattered electric field parameters
{Esctm}, m = 1, . . . , Nm. Nm denotes the number of samples in the dataset. The generation
of such a dataset is described below. In the training phase, the goal is to find biases b and
weights w that minimize the discrepancy between {Θ`} and the values estimated by the
network {Hw,b(X`)}. In this work, we minimize the quadratic loss function

f (w, b; {Esct}m) =
1

Nm

Nm

∑
m=1

∥∥Hw,b(Esct)−Θm
∥∥2, (16)

to obtain the network parameters, biases, and weights of the network. For the network train-
ing process, the Adaptive moment estimation (Adam) optimizer [50] is chosen, with the
batch size of 150 samples and epoch setting as 2000. The learning rates are set to 1× 10−4

through out the training. All the computations were performed in a Python library Ten-
sorFlow [51] on a local computer with the configuration of 32 GB access memory, Intel
Core(TM) i7-7820HQ central processing unit, and Nvidia Quadro M2200 graphic unit.
The training of the network takes about 5 h.

3.1. Training, Validation, and Test Datasets

An initial dataset of Nm = 10,000 samples containing complex scattered electric field
response and corresponding moisture distribution is built. Here, the scattered electric
field data is generated using 2-D MoM with pulse basis and point matching techniques at
8.3 GHz frequency and by discretizing the foam into 100× 30 pixels. Note that the lower
frequency point is chosen from X-band as it offers to simulate the 2-D full-wave electro-
magnetic simulations with less computational load and low degree of non-linearity [52,53].
The physical parameters ε′r and ε′′r for each sample were drawn using the framework dis-
cussed earlier. Furthermore, five copies of the dataset are created by adding noise between
1% to 3% to the scattering data. The noise is added (following [54]) to each response of the
complex electric field of the dataset as

Esctnoise = Esct + max(Esct)
β√
2
(δ1 + jδ2), (17)
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where max(Esct) is the maximum value of the scattered electric field, the coefficient
δ1 ∼ U (−1, 1) and δ2 ∼ U (−1, 1) are two real vectors whose elements are sampled from
uniform distribution. The term β denotes the noise levels and sampled as β ∼ U (0.01, 0.03).
Thus, leading to the total number of samples in the training dataset set to Nm = 60,000
where the complex electric field values are vectorised in real and imaginary parts. In addi-
tion, 2000 samples are generated following the same procedures as a validation dataset.
The noise is added to validation dataset similarly as for the training samples.

Furthermore, a test dataset with 1000 samples was generated using denser discretiza-
tion in MoM computation. A different discretization was chosen to ignore “inverse crime”,
i.e., the use of the same computational model or same grid settings to generate both train-
ing and test datasets. Otherwise, the same grid setting or the computational model may
potentially lead to a situation where severe modelling errors are ignored and hence giving
false impression on the accuracy of the estimates [55].

3.2. Reconstruction Results

This section gives results to evaluate the performance of the proposed neural network
based estimation scheme. We applied the trained neural network to estimate the moisture
field of the test datasets. The results are shown for four cases with low and moderate
moisture levels, and high and nearly homogeneous moisture case.

3.2.1. Sample with Low, and Moderate Moisture Content

Two test samples with low (0–25%), and moderate (25–50%) wet-basis moisture
contents are chosen as a first test case. As per the dielectric characterization, the real part of
the dielectric constant value in the low moisture case varies approximately between 1.16
and 1.52 and for the moderate moisture case between 1.52 and 2.1. The corresponding
scattered electric fields are measured and given as an input to the trained CNN. The noise
level is set to β = 0.03, see Equation (17). The true test samples and estimated outputs
from the CNN for the low moisture and for the moderate moisture are shown in Figure 5
(left column) and Figure 5 (right column), respectively. Further, to assess the closeness of
the estimates, pixel values on data line z = 2.25 cm for low moisture case and pixel values
on data line z = 3.8 cm for moderate moisture are visualized and shown in the bottom
of Figure 5. In both cases, the CNN estimated output closely matches the ground truth.
Estimation accuracy is evaluated by comparing the profile similarity index, denoted here
as κ, which is evaluated as

κ =

∫∫

Ωfoam

ε′rCNN
ε′rTrue

dxdy
√∫∫

Ωfoam

(ε′rCNN
)2dxdy

√∫∫

Ωfoam

(ε′rTrue
)2dxdy

. (18)

The term ε′rCNN
= ε′rCNN

−
〈
ε′rCNN

〉
, and ε′rTrue

= ε′rTrue
−
〈
ε′rTrue

〉
. The operator 〈·〉 is

the mean operator. For the κ, its values vary between 0 and 1. As it gets closer to 1,
the estimated profile is closer to the ground truth. The performance metrics values for low
and moderate moisture cases are shown in Table 2.

Table 2. κ for low and moderate moisture case.

Low Moisture Moderate Moisture

κ 0.9558 0.9361
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Figure 5. Low moisture case (left column): top figure shows the true profile and middle figure is the estimate from the CNN.
Bottom figure compares the pixel values for the true and estimated profile at y = 2.25 cm data line. Moderate moisture case
(right column): same caption of the low moisture case except for the bottom figure where pixel values are compared for
data line y = 3.8 cm.

For both cases, κ values indicate that estimated profiles are similar to the ground truth.
Note that we interpolated the number of pixels in the true profile to correspond with the
pixels in the estimated profile to calculate κ.

3.2.2. Sample with High Moisture Distribution

In the actual drying process, it is very likely that the moisture variation at the inlet has
high moisture levels. Considering this scenario, two special cases of moisture distribution
are considered. In the first case, we consider the moisture levels with variation between
50% to 70% with corresponding real part of dielectric constant between 2.1–2.95. For the
second case, the moisture levels are high but minor variations in the moisture, between 52%
to 55%, is assumed (nearly homogeneous). The corresponding scattered electric fields are
measured and given as an input to the trained CNN. The noise level is set to β = 0.03.
The true test samples and estimated outputs from the CNN for the high moisture case with
high variations and nearly homogeneous are shown in Figure 6 (left column) and Figure 6
(right column), respectively. Pixel values, as similar in the last section, are compared against
the true case and shown in bottom for respective cases. For both cases, the estimated output
is close to the ground truth. The profile similarity index, κ, values as shown in Table 3
indicate that estimated output is fairly close to the ground truth.

Table 3. κ for high moisture case.

High Variation Homogeneous

κ 0.923 0.883
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Figure 6. High moisture case with high variation (left column): top figure shows the true profile and middle figure is the
estimate from the CNN. Bottom figure compares the pixel values for the true and estimated profile at y = 3.8 cm data line.
Nearly homogeneous case (right column): same caption except for the bottom figure where pixel values are compared for
data line y = 5 cm.

3.2.3. Error Statistics

In the test dataset, for each sample the noise is added and its level is chosen from
β ∼ U (0.01, 0.03). Estimates of the ε′r for the whole test data are shown pixel-wise in
Figure 7 (top left). Aside, the profile similarity index for each sample is compared against
the respective true case and shown in Figure 7 (top right). The figure also includes a
relative estimation error histogram. Uncertainties in the estimations can be seen mainly
due to uncertainties in dielectric’s characterization (see Table 1) and higher noise levels.
Specifically, with uncertainties in dielectric characterization, samples with same moisture
levels are not unique in dielectric values. Nonetheless, the overall estimation success of the
trained CNN on the test dataset for most samples are fairly good.
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Figure 7. Top left: estimated pixel values of the ε′r(x, y) for the test dataset with 1000 samples. Top right: histogram of
factor κ. Bottom: difference between the estimated and true values (relative estimation error) of the real part of the dielectric
constant for the total number of test samples.

4. Experimental Setup and Result

In this section, the trained CNN performance is tested on the data from our developed
MWT experimental prototype. The MWT experimental prototype consist of 7 WR90 open-
ended waveguide antennas and placed over the foam of width = 50 cm, height = 7.6 cm,
and length = 75 cm, respectively. The distance of the antenna to the top surface of the
polymer foam is 5 cm, and the center to center distance between two adjacent antennas
is 5 cm. Antennas are fixed and placed in free-space from −15 cm to 15 cm along the x-
axis. For data acquisition, antennas are connected to the Agilent N5224A vector network
analyzer (VNA) via a P9164C 2× 16 USB Solid state switch matrix. Phase stable cables (with
phase stability of 3◦ at maximum frequency) are used for the connection. Communication
between the VNA, switch, and the controlling computer is accomplished through the
Ethernet cable. The block diagram of the data acquisition scheme and the S11 (return-
loss) response of a WR-90 waveguide antenna are shown in Figure 8 top left and top
right, respectively. The data acquisition process and image reconstruction process (<1 s) is
entirely automated using MATLAB. The measured scattered electric field data, in terms
of scattering parameter, is acquired at 8.3 GHz frequency at cross-section of z = 0 cm
and takes around 20 s. Since the CNN network is trained on electric field data instead of
scattering parameter, calibration scheme in [56] is employed for its conversion.

Figure 7. Cont.
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4. Experimental Setup and Result

In this section, the trained CNN performance is tested on the data from our developed
MWT experimental prototype. The MWT experimental prototype consist of 7 WR90 open-
ended waveguide antennas and placed over the foam of width = 50 cm, height = 7.6 cm,
and length = 75 cm, respectively. The distance of the antenna to the top surface of the
polymer foam is 5 cm, and the center to center distance between two adjacent antennas
is 5 cm. Antennas are fixed and placed in free-space from −15 cm to 15 cm along the x-
axis. For data acquisition, antennas are connected to the Agilent N5224A vector network
analyzer (VNA) via a P9164C 2× 16 USB Solid state switch matrix. Phase stable cables (with
phase stability of 3◦ at maximum frequency) are used for the connection. Communication
between the VNA, switch, and the controlling computer is accomplished through the
Ethernet cable. The block diagram of the data acquisition scheme and the S11 (return-
loss) response of a WR-90 waveguide antenna are shown in Figure 8 top left and top
right, respectively. The data acquisition process and image reconstruction process (<1 s) is
entirely automated using MATLAB. The measured scattered electric field data, in terms
of scattering parameter, is acquired at 8.3 GHz frequency at cross-section of z = 0 cm
and takes around 20 s. Since the CNN network is trained on electric field data instead of
scattering parameter, calibration scheme in [56] is employed for its conversion.
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4. Experimental Setup and Result

In this section, the trained CNN performance is tested on the data from our developed
MWT experimental prototype. The MWT experimental prototype consist of 7 WR90 open-
ended waveguide antennas and placed over the foam of width = 50 cm, height = 7.6 cm,
and length = 75 cm, respectively. The distance of the antenna to the top surface of the
polymer foam is 5 cm, and the center to center distance between two adjacent antennas
is 5 cm. Antennas are fixed and placed in free-space from −15 cm to 15 cm along the x-
axis. For data acquisition, antennas are connected to the Agilent N5224A vector network
analyzer (VNA) via a P9164C 2× 16 USB Solid state switch matrix. Phase stable cables (with
phase stability of 3◦ at maximum frequency) are used for the connection. Communication
between the VNA, switch, and the controlling computer is accomplished through the
Ethernet cable. The block diagram of the data acquisition scheme and the S11 (return-
loss) response of a WR-90 waveguide antenna are shown in Figure 8 top left and top
right, respectively. The data acquisition process and image reconstruction process (<1 s) is
entirely automated using MATLAB. The measured scattered electric field data, in terms
of scattering parameter, is acquired at 8.3 GHz frequency at cross-section of z = 0 cm
and takes around 20 s. Since the CNN network is trained on electric field data instead of
scattering parameter, calibration scheme in [56] is employed for its conversion.

As a first example, we have considered a PTFE Teflon (ε′r ≈ 2.1) material with cylin-
drical shape (diameter of 2.25 cm) and placed inside the foam through an incision on the
top surface. The reason for choosing this target is twofold. First, it will act as a benchmark
target to test if the estimated dielectric values by the CNN are correct as the true value is
well in the range of our interest. An approximate location of the target inside the foam is
centered at (−4.5 cm, 3.8 cm, 0 cm). Second, to test the overall generalization capabilities of
the trained architecture for identifying targets not seen as a ground truth while its training.
The estimated output from the CNN is shown in Figure 9. Estimated result shows that the
target is satisfactorily estimated by the network but it is slightly overestimated in the shape.
The overestimation of the shape is predominately due to the smoothness model used in the
training. However, note that the aim of our work is not accurate shape reconstruction and
finding the locations of dominant of wet-spots is sufficient to design control strategies.
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Figure 8. Top left: data acquisition scheme for the MWT measurement from the sensor array with X-band open waveguide
antennas. Top right: the S11 response of the WR-90 waveguide antenna. Bottom: prototype of MWT sensor array used
in this study to generate measurement data. This system is developed at KIT, Germany and has been integrated with the
HEPHASITOS technology.
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Figure 9. CNN estimation of cylindrical Teflon resin placed inside the foam. The true location of the
target is marked by red-dash circle.

In the second example, we have considered a moisture wet-spot inside the foam.
To create the wet-spot moisture target, a spherical foam of diameter 2.5 and with 43%
wet-basis moisture level (εr ≈ 1.81 − j0.079) is chosen. An approximate location of the
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target inside the foam is centered at (−3.25 cm, 1.85 cm, 0 cm). The estimated output from
the CNN is shown in Figure 10. Estimated result shows that the network can satisfactorily
locate the wet-spot which is placed around the bottom of the foam. The estimated real
part of the dielectric constant corresponds between 37% and 39% of moisture level in
the wet-spot.
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Figure 10. CNN estimation of one dominant wet-spot with 43% moisture inside the foam.

5. Conclusions

In this paper, a neural network based method for the microwave tomography is
developed for real-time moisture estimation in a polymer foam. The neural network is
trained with synthetic data generated using two-dimensional scattering model based on
method of moment formulation. Furthermore, in the scattering model, a parametric model
based on the dielectric characterization of the foam is utilized to generate moisture samples.
The network performance is tested with numerical data and experimental data from the
constructed MWT prototype. Results shows the capability of the present method to be
used in real-time moisture estimation. Here, the studied microwave imaging modality is
applied to recover moisture content distribution inside a porous foam but the framework is
applicable to investigate other material types together with different physical parameters.
In the final stage, the estimated moisture information will be utilized in feed-forward loop
of the intelligent control block of the industrial drying system.

It was observed in the experimental results that the real part of the dielectric constant
in the estimation are slightly underestimated which are caused due to modeling errors, i.e.,
3D measurements and 2D forward model and small uncertainties in the dielectric charac-
terization of the foam, respectively. Henceforth, for our work the scope for improvement
lies in the uncertainty quantification (UQ). In general, UQ in deep neural networks is a very
active research topic and several approaches have been proposed and studied, see, e.g., re-
cent reviews [57,58]. Furthermore, we also observe that in the estimates the background
information, i.e., the dry part is not well distinguishable. This mainly due to the Gaussian
based covariance structure used for generating moisture distribution. One solution is to
use covariance structure models with a scaling factor such as Matérn class [49].
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