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Abstract 

Background: Acer pseudosieboldianum is a kind of excellent color‑leafed plants, and well known for its red leaves in 
autumn. At the same time, A. pseudosieboldianum is one of the native tree species in the northeast of China, and it 
plays an important role in improving the lack of color‑leafed plants in the north. In previous study, we found a mutant 
of the A. pseudosieboldianum that leaves intersect red and green in spring and summer. However, it is unclear which 
genes cause the color change of mutant leaves.

Results: In order to study the molecular mechanism of leaf color formation, we analyzed the leaves of the mutant 
group and the control group from A. pseudosieboldianum by RNA deep sequencing in this study. Using an Illumina 
sequencing platform, we obtained approximately 276,071,634 clean reads. After the sequences were filtered and 
assembled, the transcriptome data generated a total of 70,014 transcripts and 54,776 unigenes, of which 34,486 
(62.96%) were successfully annotated in seven public databases. There were 8,609 significant DEGs identified between 
the control and mutant groups, including 4,897 upregulated and 3,712 downregulated genes. We identified 13 genes 
of DEGs for leaf color synthesis that was involved in the flavonoid pathway, 26 genes that encoded transcription fac‑
tors, and eight genes associated with flavonoid transport.

Conclusion: Our results provided comprehensive gene expression information about A. pseudosieboldianum tran‑
scriptome, and directed the further study of accumulation of anthocyanin in A. pseudosieboldianum, aiming to provide 
insights into leaf coloring of it through transcriptome sequencing and analysis.
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Background
As living standards rise, the use of monotonous colors 
in urban greening has been insufficient to meet land-
scape development needs. To provide relief from color 
monotony, plants with brightly colored leaves and aes-
thetic characteristics are highly desirable. Such plants are 
widely used in landscaping, and color is used to attract 

the attention of people to the cultivation of new plant 
varieties. Plants with colored leaves are plants with non-
green leaves that have colors other than green in all or 
part of their leaves throughout the growing season or at 
a certain stage thereof [1]. The pigment content of leaves 
is the key factor that affects colored leaves in plants. 
Accordingly, chlorophyll, carotenoid, and anthocyanin 
are the three most important pigments affecting color 
in leaves. Flavonoid anthocyanins are the determining 
pigments for the formation of red leaves, and anthocya-
nin plays a leading role in the formation of red leaves. 
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The colors of the plant organs are mainly attributed to 
the accumulation of anthocyanins, a class of plant fla-
vonoid metabolites [2–4]. The anthocyanin biosynthetic 
pathway has been well studied in plants. Anthocyanin 
biosynthetic pathway is a branch of phenylalanine bio-
synthetic pathway [3]. The structural genes in anthocya-
nin synthesis pathway can be divided into upstream and 
downstream gene groups. In fact, the synthesis of antho-
cyanins shares the same upstream pathways with proan-
thocyanidins and flavonol derivatives [5]. Phenylalanine 
is the precursor of flavonoid, which is used as substrate, 
phenylalanine ammonia lyase (PAL), cinnamate-4-hy-
droxylase (C4H) and 4-coumaroyl-CoA synthase (4CL) 
catalyze a series of reactions to produce 4-coumaroyl-
CoA. The catalysis of chalcone synthase (CHS) can 
catalyze the synthesis of chalcones. Subsequently, after 
the action of chalcone isomerase (CHI), the basic three 
rings of the general C6-C3-C6 flavonoid skeleton is pro-
duced. The B ring of the naringenin flavanone can be 
further hydroxylated by flavonoid-3’-hydroxylase(F3’H) 
or flavonoid-3′5’-hydroxylase (F3′5’H) to form eriodic-
tyol or pentahydroxyflavanone. The naringenin, erio-
dictyol and pentahydroxyflavanone can be modified 
by the catalysis of flavanone-3β-hydroxylase (F3H) to 
form the corresponding dihydrokaempferol, dihydro-
quercetin and dihydromyricetin, respectively. Besides, 
the dihydrokaempferol can also be catalyzed by F3’H or 
F3′5’H to produce other two dihydroflavonols, dihydro-
quercetin or dihydromyricetin [6]. In the downstream 
pathways, dihydroflavonol-4-reductase (DFR) catalyzes 
these dihydroflavonols to form their corresponding leu-
coanthocyanidins. And the anthocyanidins were cata-
lyzed by anthocyanidin reductase (ANR) to produce the 
substrates for the proanthocyanidins synthesis. Finally, 
anthocyanins with different colors were produced by the 
joint action of glycosyl transferases (GT), methyl trans-
ferase (MT) and acyl transferase (AT) [7]. The enhanced 
expression of structural anthocyanin biosynthesis genes 
directly accounts for increased levels of anthocyanin 
accumulation in plants [8]. These structural genes are 
regulated mainly at the transcriptional level [9]. In the 
anthocyanin biosynthetic pathway, some regulated genes 
encode transcription factors (TFs) that combine the pro-
moters of structural genes to regulate their expression 
levels. Some of the R2R3-MYB, bHLH (basic helix-loop-
helix), and WD40 TFs are significantly related to antho-
cyanin biosynthesis and are involved in the formation of 
a MYB-bHLH or MYB-bHLH-WD40 (MBW) complex 
[10, 11]. The combinations and interactions between 
these TFs play an important role in regulating the antho-
cyanin biosynthetic pathway. At present, some progress 
has been made in the investigation of the role of anthocy-
anin in red leaves. Luo et al. [12] found that anthocyanins 

caused the red color in leaves. Furthermore, Jiang et  al. 
[13] analyzed the relationship between the change in leaf 
color and the genes that affect anthocyanin accumula-
tion, and Huang [14] showed that red leaves contained 
a large amount of anthocyanin by studying the physico-
chemical properties of Acer palmatum leaves.

Maples (Acer genus), with red or yellow autumn leaves, 
are plants well-known for their colored leaves. The bright 
color of maple leaves is caused by a large amount of 
anthocyanin in the leaves [15]. In recent years, research-
ers have attached great importance to the molecular 
study of maple leaf color and made great achievements 
in this area. Cai et  al. [16] found that the interaction 
between cyanidin 3-galactoside content and chlorophyll 
content was an important factor in leaf color change 
from red to green in A. palmatum. Guo [17] found seven 
anthocyanin-related TFs in Acer rubrum leaves during 
leaf color transformation that were mainly mediated by 
mechanisms including propane biosynthesis, antho-
cyanin biosynthesis, and flavonoid biosynthesis. These 
studies lay a foundation for further research into the 
molecular genetic mechanisms of anthocyanin synthe-
sis and accumulation in leaves, and the breeding of new 
varieties of plants with colored leaves.

A. pseudosieboldianum is a deciduous tree in fam-
ily Aceraceae, and is one of the most highly sought-after 
ornamental trees in landscaping due to its fiery red leaf 
color and graceful leaf shape in autumn [18, 19]. It is 
native to eastern Russia, northern Korea, and China. In 
China, it is distributed throughout eastern and south-
eastern Heilongjiang, southeastern Jilin, and eastern 
Liaoning. It is a native tree with excellent landscaping 
application prospects in northeast China [20]. Its appear-
ance is graceful and pleasant, and its leaves are red and 
colorful in autumn, therefore, it has high ornamental 
value and is an essential ornamental plant in landscaping.

The leaves of most maples are green in spring and sum-
mer and change to red in the autumn. However, we found 
a mutant of A. pseudosieboldianum with leaves that 
shifted between red and green in spring and summer. 
The objective of this study was to identify the genes caus-
ing the color change in maple leaves. Complete genome 
sequencing provides a great deal of genetic information, 
but sequencing is limited by high costs. RNA-seq analy-
sis represents a cost-effective tool for the discovery of 
functional genes. To date, advances in next-generation 
sequencing technologies have enabled the simultaneous 
generation of an enormous amount of data [21]. In this 
study, the transcriptome was used to analyze the genes 
involved in the flavonoid pathway in A. pseudosieboldi-
anum. The de novo transcriptome data generated in this 
study will allow for the elucidation of the mechanism of 
anthocyanin synthesis during mutation development and 
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enrich plant databases and will eventually serve as refer-
ence sequences for other plant species.

Results
Anthocyanin content analysis
To clarify the differences underlying the leaf coloration 
between the wild group (WG) and its mutants (MG), 
phenotypes (Fig. 1A) and content anthocyanin (Fig. 1B) 
from three developmental stages, the early (E), middle 
(M) and late stages (A) were analyzed. As was shown in 
Fig.  1B that the anthocyanin content of MG increased 
gradually during the leaf color transformation and in 
contrast, the anthocyanin content of WG was little and 
the change was not obvious (Fig. 1B). The result indicated 
that anthocyanin is one of the important indexes that 
affect the leaf color of maple variation group.

Sequencing and de novo assembly
To elucidate the molecular mechanism of leaf-color 
changes in A. pseudosieboldianum, 18 mRNA samples 
(WE, WM, WA and VE, VM, VA; in triplicate) were 
sequenced on the Illumina sequencing platform. In 
total, there were 390,877,630 raw reads were generated 
from the A. pseudosieboldianum transcriptome. After 
the low-quality reads were removed, 276,071,634 clean 
reads were obtained. The percentage of the Q30 base was 
91.55% or above. After obtaining high-quality sequenc-
ing data, the sequences were assembled using Trinity, an 
assembly software designed for high-throughput tran-
scriptome sequencing. This produced 70,014 transcripts 
with N50 lengths of 2,152  bp and 54,776 unigenes with 
N50 lengths of 2,073  bp. The unigenes had a minimum 
length of 190 bp, a maximum length of 17,342 bp, and a 
total length of 44,457,414 bp (Table 1).

Functional annotation and classification
In total, 34,486 unigenes, accounting for 62.96% of all the 
unigenes, were successfully annotated to the seven data-
bases, including the COG, GO, KEGG, KOG, Pfam, Swis-
sprot, and nr databases (Table 2). During GO annotation, 
19,372 unigenes were divided into three functional cat-
egories, including cellular components (CC; 36,577 uni-
genes), biological processes (BP; 28,731 unigenes), and 
molecular functions (MF; 36,577 unigenes). These uni-
genes were clustered into 53 GO terms,respectively. Fur-
thermore, CC and BP were clustered into 15 and 23 GO 

Fig. 1 The morphology (A) and the anthocyanin content (B) of leaves in A. pseudosieboldianum during early, middle and late stages from wild and 
mutant groups

Table 1 Statistics of transcriptome assembly and unigenes

Transcripts Unigenes

Number 70,014 54,776

Total length (bp) 67,202,571 44,457,414

Maximum length (bp) 17,342 17,342

Minimum length (bp) 190 190

Average length (bp) 959 811

N50 length (bp) 2152 2073

Table 2 All unigenes of the transcriptome annotated in the 
different public databases

Database Number of 
unigenes

COG annotation 10,596

GO annotation 19,372

KEGG annotation 21,833

KOG annotation 17,590

Pfam annotation 19,401

Swiss‑prot annotation 24,180

Nr annotation 32,814
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terms, respectively, with the ‘membrane’ (7,177 unigenes) 
and ‘metabolic process’ (9,500 unigenes) subcategories 
being the largest. In the MF category, these matched uni-
genes were annotated to 15 GO terms, with the two top 
terms being ‘catalytic activity’ (9,616 unigenes) and ‘bind-
ing’ (9,425 unigenes).

KOG analysis revealed 17,590 unigenes that were 
divided into 25 groups. The largest group was R (general 
function prediction only) with 3778 unigenes (19.24%), 
followed by T (signal transduction mechanisms) with 
2,142 unigenes (10.91%).

A total of 21,833 unigenes were assigned to 358 KEGG 
pathways. These KEGG pathways were clustered into 
five branches: carbon metabolism (803 unigenes), 2-oxo-
carboxylic acid metabolism (163 unigenes), fatty acid 
metabolism (163 unigenes), degradation of aromatic 
compounds (22 unigenes), and biosynthesis of amino 
acids (724 unigenes). These genes were analyzed for gene 
mining and provided a valuable resource for the func-
tional analysis of A. pseudosieboldianum.

Identification and functional analysis of differentially 
expressed genes (DEGs)
To explore anthocyanin biosynthesis-related genes in A. 
pseudosieboldianum at different color transition stages, 
DEGs of A. pseudosieboldianum at different color tran-
sition stages were compared. A total of 8,609 significant 
DEGs, including 4,897 up-regulated and 3,712 down-
regulated genes, were found in the control and mutant 
groups (Table 3). The Venn diagram of DEGs at various 
stages is shown in Fig. 2.

To accurately identify and classify the functions of each 
DEG, classification and enrichment GO analyses were 
conducted in the control group and the mutant group in 
the early, middle, and late stages. The enrichment degrees 
of the metabolic process and cellular process catego-
ries were the highest in the BP category, and the results 
showed that the enrichment degree of the catalytic activ-
ity and the binding was highest in the MF category. In the 
CC category, the top GO terms were ‘membrane’, ‘cell’, 
and ‘membrane part’. The GO annotations of DEGs for 
WA vs VA are shown in Fig. 3. In addition, the GO anno-
tation results of DEGs for WE vs VE and WM vs VM are 
shown in Fig. S1 and Fig. S2 respectively. All annotated 

unigenes were divided into three functional GO catego-
ries (Fig.  3A), consisting of the biological process (BP), 
the cellular component (CC), and the molecular function 
(MF) categories. The number of corresponding genes is 
also shown in the figure. Three GO DAGs (Fig. 3B) were 
constructed for the three GO domains (BP, CC, and MF). 
The top three enriched GO terms were enriched in the 
DAG of MF. The most significant enrichment (shown 
in red) was detected in the oxidoreductase activity of 
molecular functionality (GO: 0,016,491).

KEGG analysis can help to better elucidate specific 
processes, gene functions, and gene interactions at the 
transcriptomic level. To identify the DEGs involved in 
leaf discoloration during development, a KEGG pathway 
enrichment analysis of DEGs in the leaves of A. pseu-
dosieboldianum was conducted to further reveal the 
functions of DEGs. During the KEGG comparison, three 
comparisons were made between the control group and 
the mutant group in the early, middle, and late stages. 
The KEGG enrichment analysis of WA and VA (Fig.  4) 
revealed that the most significantly enriched pathway 
was the RAS signaling pathway, and the second most sig-
nificantly enriched pathway was the NF-kappa B signal-
ing pathway. The results were the same in the early and 
middle periods. The KEGG annotation of DEGs for WE 
vs VE and WM vs VM are listed in Fig. S3 and Fig. S4, 
respectively.

Identification of candidate genes involved 
in the anthocyanin biosynthesis
This study identified 13 candidate unigenes encod-
ing seven enzymes related to the flavonoid biosynthesis 
pathway (ko00941) in the A. pseudosieboldianum tran-
scriptome. The 13 genes with significant differences in 
flavonoid biosynthesis are as follows: one CHS gene, two 
CHI genes, one F3H gene, three F3’H genes, one DFR 
gene, three ANS gene, and two ANR genes(Table 4).

Identification of candidate genes involved in flavonoid 
transport
In this transcriptome, 119 DEGs were genes encod-
ing transporters (Table  5), including ABC transporters 
(Tables S1), glutathione S-transferase (GST) (Tables S2), 
multidrug resistance-associated proteins (MRPs) (Tables 

Table 3 Statistics of the number of DEGs in the control group and the mutant group during the three stages of leaf color change

All DEGs up-regulated down-regulated

WE1_WE2_WE3_vs_VE1_VE2_VE3 4369 2514 1855

WM1_WM2_WM3_vs_VM1_VM2_VM3 4096 2168 1928

WA1_WA2_WA3_vs_VA1_VA2_VA3 4371 2071 2300

All DEGs Number 8609 4897 3712



Page 5 of 14Li et al. BMC Genomics          (2022) 23:567  

S3), multidrug and toxic compound excretion-associated 
proteins (MATEs) (Tables S4), and H + -ATPases (Tables 
S5). These genes may be involved in the transport of fla-
vonoids from cytoplasmic synthesis to vacuolar accu-
mulation in A. pseudosieboldianum. This may be very 
important for the study of leaf color mutant genes in A. 
pseudosieboldianum. Among these genes, six GST genes, 
one MATE gene and one H + -ATPase gene were found 
to be related to the transport of flavonoids (Table 6).

Identification of candidate transcription factors (TFs) 
involved in the anthocyanin biosynthetic
To investigate the regulatory mechanism of anthocya-
nin and flavonoid biosynthesis genes in A. pseudosie-
boldianum, the transcripts of TFs were analyzed. The 
differentially expressed TFs are divided into different 
families, among which MYB, bHLH, and WD40 TFs play 
extremely important roles in regulating anthocyanin and 
flavonoid accumulation. The results of the present study 
showed that 214, 112, and 16 genes were predicted to 
encode MYB, bHLH, and WD40 proteins, respectively, 
in the transcriptomic database. The DEGs are listed in 
Tables S6, S7, S8. Among them, 19 MYB genes and seven 

bHLH genes were identified to be related to leaf color 
synthesis according to the KEGG analysis (Table 7).

qRT-PCR validation of differential expression
To confirm the unigenes obtained from sequencing and 
to further validate the reliability of the RNA-seq data, the 
expression levels of seven genes (including CHI, CHS, 
F3H, DFR, ANS) in leaves of six maples were analyzed. 
The qPCR expression of the seven gene were basically 
consistent with the transcriptome sequencing results 
during different stages of the color change in maple 
leaves (Fig.  5A). The correlation was analyzed from the 
expression levels of FPKM values and the qRT-PCR of 
genes related to leaf color in A. pseudosieboldianum 
(Fig.  5B). These results indicate that the transcriptomic 
analysis was reproducible and reliable, and these candi-
date DEGs may play important roles in leaf color. Further 
studies will be conducted to clarify their functions.

Discussion
Candidate genes involved in anthocyanin biosynthesis
Given that the A. pseudosieboldianum is rich in antho-
cyanin, we focus on identifying the candidate genes 

Fig. 2 Venn Diagram of DEGs at various stages of A. pseudosieboldianum development between three stages. (WE vs VE、WM vs VM、WA vs VA)
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involved in anthocyanin biosynthesis. Flavonoids have 
various structures and are critical secondary metabolites 
in many plants. The anthocyanin biosynthesis pathway is 
an important branch of the flavonoid metabolism path-
way and is responsible for anthocyanin production in dif-
ferent plant tissues [22]. Notably, coding enzymes play an 
important role during this process. However, the over-
all molecular mechanism of anthocyanin biosynthesis 

and accumulation in A. pseudosieboldianum is not fully 
understood. In this study, a total of 13 candidate gene-
coding enzymes were screened in the flavonoid biosyn-
thesis pathway. CHS is a key enzyme in the biosynthetic 
pathway of anthocyanins and flavonoids [23]. For exam-
ple, CHS genes act as the specific key genes regulat-
ing flavonoid accumulation in ginkgo leaves [24]. The 
results of this study showed that one CHS gene showed 
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Fig. 3 GO annotation of DEGs (WA vs VA) A GO enrichment histogram. B Thumbnail view of directed acyclicgraphs (DAGs) of BP, CC, and MF
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an increasing trend in the period in WE vs VE, WM vs 
VM, and WA vs VA. It may be the main reason the color 
of leaves shows red in spring and summer in the A. pseu-
dosieboldianum mutant. This result demonstrates that 
the biosynthesis of flavonoids is strongly enhanced by 
CHS expression. Dihydroflavonol 4-reductase (DFR) has 
been proposed to be an important step in the flavonoid 
biosynthesis pathway of anthocyanins, and the biosyn-
thesis of anthocyanins in tobacco can be modulated by 
introducing DFR genes [25]. In this study, one DFR gene 
was detected and found to be up-regulated in WE vs VE, 
WM vs VM, and WA vs VA. This suggests that DFR accu-
mulation is an important prerequisite for the accumula-
tion of anthocyanins and flavonoids in the early, middle, 
and late stages of A. pseudosieboldianum. Anthocyanin 
synthase (ANS) catalyzes the oxidation of colorless cryp-
tochrome anthocyanins to corresponding colored 
anthocyanins and is a key gene affecting anthocyanin 
accumulation in plants [26]. A study on the molecular 
mechanisms of melon peel coloration also found two 
ANS down-regulated genes involved in the accumula-
tion of anthocyanins. Three ANS genes were found in 
the present study, and they were more significantly up-
regulated in different stages. Therefore, These structural 
genes influence the formation of maple leaf color, which 
consistent with other studies [27, 28].

The ANR gene is a key gene involved in proantho-
cyanidin production in plants [29]. In the present study, 

two anthocyanidin reductase (ANR) genes (TRIN-
ITY_DN11089_c0_g3 and TRINITY_DN12211_c0_g1) 
were found in all DEGs. TRINITY_DN11089_c0_g3 was 
found to be up-regulated in WE vs VE and TRINITY_
DN12211_c0_g1 was found to be up-regulated in WM vs 
VM. This promoted the formation of procyanidins and 
hindered anthocyanin accumulation, which prevented 
the leaves from appearing red. In short, all structural 
genes eventually led to the production of a large number 
of anthocyanins, resulting in the transformation of maple 
leaf color.

Candidate TFs involved in anthocyanin biosynthesis
According to previous research performed on plant spe-
cies, TFs have been proposed to play an important role 
in regulating the biosynthesis and transport of flavo-
noids. In particular, the expression of structural genes 
involved in flavonoid synthesis is largely controlled by 
basic helix-loop-helix (bHLH), MYB proteins and WD-
repeat-containing proteins [30]. Previous studies have 
concluded that the MYB family plays a major role in 
regulating sets of genes that are responsible for second-
ary metabolite biosynthesis pathways in plants. The MYB 
TF from Petunia hybrida, where flavonoid biosynthetic 
genes are actively expressed, strongly suggests that MYB 
plays a role in the regulation of flavonoid biosynthesis 
[31]. MYB111 has been demonstrated to be involved in 
the regulation of flavonoids biosynthesis in Arabidopsis 

Fig. 4 KEGG annotation of DEGs (WA vs VA)



Page 8 of 14Li et al. BMC Genomics          (2022) 23:567 

[32]. In the tea cultivar ‘Zijuan’, MYB4, MYB23, MYB26, 
MYB82, and bHLH74, have been found to be related to 
anthocyanin synthesis [33]. MdMYB114 was confirmed 
to be significantly positively correlated with anthocyanin 
content in apple fruit [34]. In our study, 19 MYB were 
detected that may be related to regulating the expression 
of leaf color variation. These genes, including MYB111, 
MYB23, and MYB114 were differentially expressed 

and may be involved in leaf color regulation in A. pseu-
dosieboldianum. The N-terminus of the bHLH TF has a 
MYB-interacting region (MIR) that interacts with MYB 
proteins [35]. In maize, this structure plays an important 
role in color generation and is activated by the interac-
tion between bHLH proteins and R2R3-MYB proteins 
[36]. Thus, these seven bHLH TFs detected in this study 
may interact with MYB proteins and consequently affect 

Table 4 Statistics of candidate genes involved in the flavonoid biosynthesis

Gene name ID Stage Regulated Log2FC

CHS TRINITY_DN452_c0_g1 WE vs VE up 3.755269715

WM vs VM up 2.033196146

WA vs VA up 2.736729279

CHI TRINITY_DN3806_c0_g1 WE vs VE ‑ ‑

WM vs VM down ‑1.014599085

WA vs VA ‑ ‑

TRINITY_DN2599_c0_g1 WE vs VE ‑ ‑

WM vs VM ‑ ‑

WA vs VA up 1.053398091

F3H TRINITY_DN4505_c0_g1 WE vs VE ‑ ‑

WM vs VM down ‑1.687898465

WA vs VA up 2.906521555

F3’H TRINITY_DN9177_c0_g1 WE vs VE down ‑2.149433931

WM vs VM ‑ ‑

WA vs VA ‑ ‑

TRINITY_DN1592_c0_g1 WE vs VE ‑ ‑

WM vs VM ‑ ‑

WA vs VA up 1.390888323

TRINITY_DN10336_c0_g1 WE vs VE ‑ ‑

WM vs VM ‑ ‑

WA vs VA down ‑3.504240445

DFR TRINITY_DN3960_c0_g1 WE vs VE up 3.547581949

WM vs VM up 1.362813351

WA vs VA up 2.502763118

ANS TRINITY_DN18024_c0_g1 WE vs VE up 2.42177804

WM vs VM ‑ ‑

WA vs VA up 3.606238162

TRINITY_DN21360_c0_g4 WE vs VE down ‑3.510028167

WM vs VM down ‑3.84212978

WA vs VA down ‑1.486794701

TRINITY_DN4873_c0_g1 WE vs VE down ‑2.005736745

WM vs VM down ‑1.732875953

WA vs VA down ‑2.933684766

ANR TRINITY_DN11089_c0_g3 WE vs VE down ‑2.063110906

WM vs VM ‑ ‑

WA vs VA ‑ ‑

TRINITY_DN12211_c0_g1 WE vs VE ‑ ‑

WM vs VM down ‑2.883606996

WA vs VA ‑ ‑
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the synthesis of flavonoids. Also, the MYB-bHLH-WD40 
(MBW) ternary complex has been confirmed to play a 
key role in flavonoid biosynthesis and transport pro-
cesses because of its regulatory effect on many structural 
genes [37–39]. MYB, bHLH, and WD40 have been found 
among the transcriptome of DEGs in the present study 
and may form an MBW to regulate leaf color. In further 
studies, the regulation of leaf color variation by these TFs 
and their interactions will be investigated.

Candidate genes involved in anthocyanin transport
Anthocyanin synthesis is one of the most thoroughly 
studied metabolic pathways in biology, but the final 
molecular mechanism of anthocyanin transport from 
the cytoplasm to the central vacuole is still unclear [40, 
41]. To date, four anthocyanin transport models have 
been proposed, namely, Glutathione S-transferase (GST), 
multidrug resistance-associated proteins (MRPs), multi-
drug and toxic compound excretion associated proteins 
(MATE), and H + -ATPases, which have also been found 
to be involved in anthocyanin transport to vacuoles [42]. 
The most complete possible anthocyanin glycoside trans-
port mechanism is a combination of GST located in the 
cytoplasm. Transport mechanism research of Vitis vin-
ifera has provided evidence suggesting that GST-medi-
ate flavonoid transport is glutathione-dependent [43]. 
In the present study, six GST genes were significantly 

expressed and may also be related to flavonoid trans-
port. GST binds to anthocyanin and acts as a transport 
carrier of anthocyanin, transporting anthocyanin to the 
vacuolar membrane, and then transporting anthocyanin 
to the vacuole through MRPs (located on the vacuolar 
membrane). MATE and H + -ATPases are also important 
flavonoid transporters. In the present study, one MATE 
gene and one H + -ATPases gene were found that may be 
involved in flavonoid biosynthesis regulation.

Although a preliminary understanding of the flavonoid 
biosynthesis pathway is available, there is still limited 
information on the transmembrane transport of flavo-
noids and their accumulation in different compartments. 
These issues are also the focus of further research.

Conclusion
Through transcriptome sequencing of A. pseudosieboldi-
anum, this study comprehensively analyzed the genes 
related to the leaf-color mechanism and screened out 
the candidate genes, differential TFs and transposed-
factor candidate genes that determined the flavonoid 
biosynthesis of leaf color formation. In total, 8,609 DEGs 
were identified by RNA-seq transcriptome sequencing 
of A. pseudosieboldianum and its mutant. Among these 
DEGs, 13 structural unigenes encoding seven enzymes 
that related to the flavonoid biosynthesis pathway were 
identified, and six GST genes, one MATE gene and one 
H + -ATPase gene were found to be related to trans-
port of flavonoids. In addition, 19 MYB genes and seven 
bHLH genes were found to be related to leaf color regu-
lation. These findings provide useful insights into the 
molecular mechanisms of variants whose leaves turn red 
in spring and summer and will help researchers obtain 
more data on pigment synthesis. The findings also pre-
sent useful information on the deposition of flavonoids 
and anthocyanins during development, as well as valu-
able genetic resources for the improvement of leaf colors 
in the future.

Table 5 Statistics of different gene transporters of DEGs

Genes Transporters 
number of 
DEGs

ABC transporters 54

GST 23

MRPs 13

Mate Family 14

H + ‑ATPases 15

All transporters 119

Table 6 The transporter genes identified in differentially expressed genes for leaf color synthesis

Gene name ID Log2FC Regulated KEGG annotation

GST TRINITY_DN27953_c0_g1 2.681762358 up K00799 hypothetical protein; glutathione S‑transferase

TRINITY_DN2666_c0_g1 3.975348379 up K00799 glutathione S‑transferase F11‑like; glutathione S‑transferase

TRINITY_DN20109_c1_g2 4.32562752 up K05022 glutathione S‑transferase DHAR3, chloroplastic;
K21888 glutathione dehydrogenase/transferase

TRINITY_DN10065_c0_g1 1.075317256 up K00799 hypothetical protein; glutathione S‑transferase

TRINITY_DN74582_c0_g1 1.16577486 up K00799 glutathione S‑transferase F6; glutathione S‑transferase

TRINITY_DN1196_c0_g2 ‑1.064734174 down K00799 hypothetical protein; glutathione S‑transferase

MATE TRINITY_DN12742_c0_g1 2.059229886 up K03327 protein DETOXIFICATION 34; multidrug resistance protein, MATE family

TRINITY_DN5404_c1_g1 1.085133081 up K01535 ATPase 11, plasma membrane‑type; H + ‑transporting ATPase
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Methods
Plant materials
A. pseudosieboldianum were cultivated at Yanbian Uni-
versity (129°49 E, 42°92  N), Yanji City, Yanbian Korean 
Autonomous Prefecture, Jilin Province, China. On May 
15, May 30, and June 15, 2021, healthy maple leaves with-
out signs of disease or insect pests were selected from the 
mutation group and the control group for sampling. The 
experiment was repeated three times for each sample, 
with a total of 18 samples (Fig.  1A). All materials were 
frozen in liquid nitrogen and stored at − 80 °C until use. 
We declare that the research programme complies with 
relevant institutional, national and international guide-
lines and legislation, and we have permission to cultivate 
A. pseudosieboldianum.

Determination of anthocyanin in leaves
The content of anthocyanin was extracted by spectropho-
tometer. Approximately 0.2 g of leaf tissue was weighed 
per sample and placed into a centrifuge tube. Then, 20 ml 

of 1% hydrochloric acid methanol extract was added into 
the centrifuge tube. Ultrasonic extraction was performed 
for 4.5–6.0 h. Centrifugation was followed and the super-
natant was taken for further analysis. Spectrophotometer 
was used to extract anthocyanin in accordance based on 
the absorbance of the maximum absorption wavelength 
(535  nm) as measured. Three biological replicates were 
performed per group.

cDNA library construction and sequencing
Total RNA was extracted using a mirVana miRNA Isola-
tion Kit (Ambion) in accordance with the manufacturer’s 
protocol. RNA quantity, purity, and integrity were .

assessed using a Nanodrop-2000 spectrophotometer 
(GE, Fairfield, CT, USA). Total RNA was measured using 
an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, 
USA). After qualified samples were detected, eukaryotic 
mRNA was enriched by magnetic beads with Oligo (dT) 
through a-T complementary pairing with the ployA tail 
of mRNA. Then the mRNA was fragmented into short 
fragments by fragmentation buffer, and the first-strand 

Table 7 The transcription factors identified in differentially expressed genes for leaf color synthesis

Gene name ID Log2FC Regulated KEGG annotation

MYB TRINITY_DN13344_c0_g1 ‑2.901362299 down K00512 flavonoid 3’,5’‑hydroxylase‑like

TRINITY_DN7218_c0_g1 ‑2.854520525 down K09754 5‑O‑(4‑coumaroyl)‑D‑quinate 3’‑monooxygenase

TRINITY_DN73935_c0_g1 1.901287881 up K00512 flavonoid 3’‑monooxygenase‑like

TRINITY_DN826_c0_g1 2.106435083 up K09422 transcription factor MYB23; transcription factor MYB, plant

TRINITY_DN8618_c0_g1 1.251017941 up K09422 transcription factor MYB, plant

TRINITY_DN2186_c1_g1 ‑1.802818464 down K13264 isoflavone 7‑O‑glucoside‑6’’‑O‑malonyltransferase

TRINITY_DN3207_c1_g1 ‑1.187986048 down K13264 isoflavone 7‑O‑glucoside‑6’’‑O‑malonyltransferase

TRINITY_DN1359_c1_g1 2.475553161 up K09422 transcription factor MYB114 isoform X2; transcription factor MYB, plant

TRINITY_DN2377_c1_g1 1.639912152 up K09422 transcription factor MYB114; transcription factor MYB, plant

TRINITY_DN82895_c0_g1 2.407399588 up K0942 low quality protein: transcription factor MYB114‑like; transcription factor 
MYB, plant

TRINITY_DN902_c0_g1 1.504455192 up K09422 transcription factor MYB111; K09422 transcription factor MYB, plant

TRINITY_DN170_c0_g2 ‑6.925870172 down K08869 predicted protein; aarF domain‑containing kinase

TRINITY_DN8841_c0_g1 1.445303609 up K09422 transcription factor MYB41; transcription factor MYB, plant

TRINITY_DN5067_c3_g1 ‑1.10759741 down K09422 transcription factor MYB8; transcription factor MYB, plant

TRINITY_DN446_c1_g1 ‑1.583849397 down K09422 transcription repressor MYB5; transcription factor MYB, plant

TRINITY_DN81_c2_g2 1.293479038 up K09422 hypothetical protein; transcription factor MYB, plant

TRINITY_DN11156_c1_g1 ‑1.065685029 down K09422 putative R2R3‑Myb transcription factor; transcription factor MYB, plant

TRINITY_DN11156_c0_g1 ‑1.30708413 down K09422 hypothetical protein; transcription factor MYB, plant

TRINITY_DN8183_c0_g1 ‑1.578432552 down K09422 transcription factor MYB63; transcription factor MYB, plant

bHLH TRINITY_DN2728_c0_g1 ‑2.177329071 down K13081 leucoanthocyanidin reductase‑like; leucoanthocyanidin reductase

TRINITY_DN11733_c0_g1 ‑3.938382332 down K13081 leucoanthocyanidin reductase‑like; leucoanthocyanidin reductase

TRINITY_DN3592_c2_g1 1.056488843 up K12126 hypothetical protein; phytochrome‑interacting factor 3

TRINITY_DN5703_c0_g1 ‑1.584088694 down K12126 hypothetical protein; phytochrome‑interacting factor 3

TRINITY_DN3769_c0_g1 1.06366355 up K07953 GTP‑binding protein SAR1‑like; GTP‑binding protein SAR1

TRINITY_DN5075_c6_g1 1.001935548 up K13422 hypothetical protein; transcription factor MYC2

TRINITY_DN10517_c0_g1 ‑1.145096759 down K16189 transcription factor PIF4; phytochrome‑interacting factor 4
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cDNA was synthesized using random hexamers reverse 
transcription with mRNA as template. Then buffer, 
dNTPs and DNA Polymerase I were added to synthesize 
two-stranded cDNA. Subsequently, AMPure XP Beads 
were used to purify double-stranded cDNA. The purified 
double-stranded cDNA was repaired at the end, a-tails 
were added, and sequencing joints were connected. Then 
AMPure XP Beads were used for fragment size selection, 
and PCR enrichment was performed to obtain the final 
cDNA library. The libraries were then sequenced on an 
Illumina sequencing platform (Illumina HiSeq 2500, Illu-
mina, San Diego, CA, USA), and 150 bp paired-end reads 
were generated.

De novo assembly and functional annotation
FastQC software and NGS QC Toolkit (v2.3.3) soft-
ware were used to evaluate the quality of raw data and 
remove adapter sequences, low-quality, and duplicated 
reads. After the adaptor and low-quality sequences 
were removed, using Trinity [44] software obtain clean 

readings from scratch by assembling transcripts into 
sequences. BLAST [45] software was used to compare 
the sequences of unigene with seven public databases 
(evalue < 0.00001). Including Nr (NCBI non-redundant 
protein sequences) [46], Swiss-prot (manually annotated 
and reviewed protein sequence database) [47], GO (gene 
ontology) [48], KOG (Protein homologous clusters) [49], 
KEGG (Kyoto Encyclopedia of Genes and Genomes) 
[50]. KOBAS2.0 [51] was used to obtain KEGG orthol-
ogy results of unigene in KEGG. After predicting amino 
acid sequence of unigene, HMMER software was used to 
compare with FPKM [52] database to obtain annotation 
information of unigene.

Differential expression analysis
Bowtie software was used to compare the readings 
obtained by sequencing with unigene library, and 
the results obtained by comparison were estimated 
with RSEM [53] for expression level. The expression 
abundance of unigene was expressed by FPKM value, 

Fig. 5 Quantitative RT‑PCR analysis of seven candidate genes related to leaf color in A. pseudosieboldianum. A Quantitative real‑time PCR validation 
of RNA‑Seq data of seven genes. B The correlation point map from the expression level of FPKM value and qRT‑PCR of seven genes
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which could eliminate the influence of gene length and 
sequencing quantity difference on the gene expres-
sion. Single gene expression level was detected by 
the method of per thousand base per million reading 
fragments, and DESeq2 [54] was used for differen-
tial expression analysis between sample groups. The 
screening criteria based on FDR < 0.01 and FC (Fold 
Change) ≥ 2 were used to judge the significance of gene 
expression differences and select and obtain the final 
inter-group DEGs.

Quantitative real-time PCR (qRT-PCR) analysis
To verify the expression pattern of candidate genes, dif-
ferentially expressed genes related to anthocyanin syn-
thesis were verified by qRT-PCR. Quantitative analysis 
was performed using a fluorescence quantitative PCR 
kit (2 × SYBR® Green premix) and a Gene9600 fluo-
rescence quantitative PCR instrument. The qRT-PCR 
primers used are listed in Table S9. The gene c110191.
graph_c0 was used as a reference gene. The primers 
used are F: CAA CCA GTC TCA TCG CAA AT and R: 
GGC TAA CAT CCC TTA CCA AAT. The following reac-
tion procedure was that initial denaturation at 95  °C 
for 3 min followed by 39 cycles of 95 °C for 10 s, 58 °C 
annealing and extension for 30 s. After the reactions, a 
dissociation curve analysis was conducted to evaluate 
the primer specificity. The amplification results were 
analysed using the comparative cycle threshold (Ct) 
method, which uses the formula 2 − ΔΔCT [55]. The 
qRT-PCR results were calculated as the means of three 
replicated treatments. All primers were synthesized by 
Biotechnology Co. Ltd. Beijing, China.
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