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Abstract

Motivation: Copy number aberrations (CNAs), which delete or amplify large contiguous segments of the genome,
are a common type of somatic mutation in cancer. Copy number profiles, representing the number of copies of each
region of a genome, are readily obtained from whole-genome sequencing or microarrays. However, modeling copy
number evolution is a substantial challenge, because different CNAs may overlap with one another on the genome.
A recent popular model for copy number evolution is the copy number distance (CND), defined as the length of a
shortest sequence of deletions and amplifications of contiguous segments that transforms one profile into the other.
In the CND, all events contribute equally; however, it is well known that rates of CNAs vary by length, genomic pos-
ition and type (amplification versus deletion).

Results: We introduce a weighted CND that allows events to have varying weights, or probabilities, based on their
length, position and type. We derive an efficient algorithm to compute the weighted CND as well as the associated
transformation. This algorithm is based on the observation that the constraint matrix of the underlying optimization
problem is totally unimodular. We show that the weighted CND improves phylogenetic reconstruction on simulated
data where CNAs occur with varying probabilities, aids in the derivation of phylogenies from ultra-low-coverage sin-
gle-cell DNA sequencing data and helps estimate CNA rates in a large pan-cancer dataset.

Availability and implementation: Code is available at https://github.com/raphael-group/WCND.

Contact: braphael@princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is an evolutionary process where somatic mutations accumu-
late in a population of tumor cells (Nowell, 1976). Copy number
aberrations (CNAs), the deletion or amplification of large genomic
regions, are a common type of somatic mutation in many cancer
types (Ciriello et al., 2013). CNAs range in scale from a few kilo-
bases to chromosome arms and even entire chromosomes (Zack
et al., 2013). CNAs play an important role in driving cancer devel-
opment (Burrell et al., 2013; McGranahan and Swanton, 2015), and
thus characterization of these events is essential for disease diagno-
sis, prognosis and treatment (Fisher et al., 2013). Moreover, CNAs
provide important information for reconstructing tumor evolution
(Beerenwinkel et al., 2015; Schwartz, 2019).

There are two major challenges in modeling copy number evolu-
tion. First, genomes containing multiple duplicated regions are diffi-
cult to correctly reconstruct from current short-read DNA
sequencing technologies (Li et al., 2016; McPherson et al., 2017;
Oesper et al., 2012). Second, genome evolution models that allow
multiple genomic copies are computationally hard to solve (Fertin
et al., 2009). To address these difficulties, recent research has
focused on modeling the evolution of copy number profiles (CNPs),
a simplified representation of a genome. A CNP is a sequence of
integers that indicates the number of copies of each region, or seg-
ment, from a reference genome that are present in the genome.

Thus, CNPs model only the number of copies of segments of the ref-
erence genome and not the sequence of rearranged segments.
However, they are a useful representation because they can be read-
ily derived from DNA sequencing data or microarrays.

CNPs can be derived from DNA sequencing data of bulk tumor
samples using specialized algorithms that infer the integer-valued
CNPs from the mixtures of normal and cancerous cells in this data
(Carter et al., 2012; Fischer et al., 2014; Ha et al., 2014; Nik-Zainal
et al., 2012; Oesper et al., 2013; Shen and Seshan, 2016; Zaccaria
et al., 2018). While earlier methods calculated the total copy num-
ber of the two alleles (Carter et al., 2012), recent methods derive
allele-specific (McPherson et al., 2017; Zaccaria and Raphael,
2018), and even haplotype-specific CNPs (Jamal-Hanjani et al.,
2017). Recently, single-cell sequencing has emerging as a promising
approach for assessing tumor heterogeneity and evolution (Gawad
et al., 2016; Wang et al., 2014). Single-cell sequencing precludes the
need for deconvolution of bulk samples into integer CNPs, and thus
enables the detection of small populations of cells with specific aber-
rations (Wang et al., 2014). While high-coverage whole-genome
single-cell sequencing is technically and financially prohibitive, two
recent technologies, Direct Library Preparation (Laks et al., 2018;
Zahn et al., 2017) and the 10X Genomics CNV Solution (10X
Genomics, 2019a; Andor et al., 2018), have demonstrated the feasi-
bility of obtaining CNPs from thousands of single cells using ultra-
low coverage (<0.05� per cell). While earlier methods derived total

VC The Author(s) 2020. Published by Oxford University Press. i344

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36, 2020, i344–i352

doi: 10.1093/bioinformatics/btaa470

ISMB 2020

https://github.com/raphael-group/WCND
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa470#supplementary-data
https://academic.oup.com/


copy numbers from single-cell sequencing (10X Genomics, 2019b;
Garvin et al., 2015), a recent method called CHISEL (Zaccaria and
Raphael, 2019) derives allele-specific and haplotype-specific copy
number calls, thus opening new opportunities for analyzing copy
number evolution in cancer.

Modeling copy number evolution using CNPs is challenging be-
cause, unlike single-nucleotide mutations, CNAs often overlap, and
therefore the copy numbers of different segments are not independent
(Beerenwinkel et al., 2015; Schwartz, 2019). Recently, several meth-
ods have been introduced to describe the evolution of CNPs. Some
methods do not rely on an evolutionary model but instead use dis-
tance measures such as the Euclidean distance to reconstruct phyloge-
nies from CNPs (Navin et al., 2011; Pennington et al., 2007). Other
methods consider only events that alter the copy number of single seg-
ments independently (McPherson et al., 2016) or include only single
position events as well as whole-chromosome and whole-genome du-
plication events (Chowdhury et al., 2014). An extension to the latter
model allows for events of different weights (Chowdhury et al.,
2015), but both the unweighted and weighted models lack efficient
algorithms to compute the distance between profiles; thus, applica-
tions of this model have been limited to very short profiles.

An alternative model of CNA evolution is the copy number
transformation (CNT) model (Schwarz et al., 2014). In this model,
amplifications and deletions of contiguous intervals are counted as
single events. The copy number distance (CND) between two pro-
files is the length of a shortest sequence of amplifications and dele-
tions that transform one profile into the other. MEDICC (Schwarz
et al., 2014), the first algorithm to compute the CND, uses a heuris-
tic to reconstruct a phylogenetic tree from CNPs, and has been used
successfully in several cancer studies (Mangiola et al., 2016;
Schwarz et al., 2015; Sottoriva et al., 2015). More recently, Zeira
et al. (2017) showed that the CND between a pair of profiles can be
computed in linear time and El-Kebir et al. (2017) gave an integer
linear programming formulation for reconstructing a phylogenetic
tree between CNPs with the minimum number of events.

The CND is useful because it can be computed efficiently, but
the CND has the disadvantage that it gives all events equal weight,
regardless of their length, position or type (amplification versus dele-
tion). This limitation has several drawbacks. First, CNAs are
reported to have different rates in different cancers depending on
their location, length and type (Beroukhim et al., 2010; Ciriello
et al., 2013; Macintyre et al., 2018; Zack et al., 2013). Second,
some events, such as those affecting oncogeneic regions, may have
more profound effect on cancer development and thus are more im-
portant than others (Mermel et al., 2011). Third, the CND is sensi-
tive to errors in copy number calls as each change is counted as a
single event. The discrete nature of CND makes it hard to distin-
guish small focal events that are possibly errors from large scale
events such as chromosome losses.

Generalization of the CND to a model that weighs events differ-
ently is not straightforward. Moreover, it is not immediately appar-
ent that a weighted generalization retains the combinatorial
properties of the CNT model that enable its efficient computation.
For example, there is no change in computational complexity be-
tween computing edit distance and weighted edit distance for
sequences of independent characters. However, this is not the case
for other models with non-independent characters. Most famously,
while reversal distance can be computed in linear time (Hannenhalli
and Pevzner, 1995a, b), weighted reversal distance is NP-hard
(Bader and Ohlebusch, 2007; Pinter and Skiena, 2002). A recent
generalization of the CNT model allows each event to modify the
CNP with any amplitude at the same unit cost (Cordonnier and
Lafond, 2020). But, computing the optimal transformation under
this cost framework is NP-hard. Finally, the existing algorithms that
compute the CND efficiently restrict the order of aberrations to spe-
cific ordered CNTs that have identical distances (El-Kebir et al.,
2017; Zeira et al., 2017). This restriction is not appropriate for
weighted CND. While the MEDICC algorithm (Schwarz et al.,
2014) computes CND without any assumption on the order of
events, its algorithmic complexity has not been analyzed and is sug-
gested to be exponential (Zeira et al., 2017).

In this work, we derive a weighted CND and provide an efficient
algorithm to compute this distance. The weighted CND allows for
different weights (or probabilities) to be assigned to segmental
events according to their genomic positions, lengths and/or types
(amplification versus deletion). This is the first efficient algorithm
for weighted CND and relies on two key results: (i) a generalization
of the ordered CNTs used in the derivation linear-time algorithm for
unweighted CND (Zeira et al., 2017) to semi-ordered CNTs and (ii)
formulation of weighted CNTs as a linear program (LP) with a to-
tally unimodular constraint matrix, implying that integer solutions
are obtained with a polynomial time algorithm. In addition to the
distance, the algorithm also provides a minimum weight transform-
ation, i.e. a likely series of amplifications and deletions between a
pair of profiles.

We demonstrate the utility of the CND on three applications.
First, we show that weighted CND produces more accurate phylo-
genetic trees on simulated CNPs generated with events with varying
probabilities. Next, we use the weighted CND to derive phylogenet-
ic trees from single-cell whole-genome sequencing data of a breast
tumor obtained using the 10X Genomics CNV Solution. We show
that the weighted CND improves the inference of tumor clones and
cell lineages. Finally, we use the weighted CND to infer CNA rate
signatures across cancer types and chromosomes on the Cancer
Genome Atlas (TCGA) pan-cancer dataset.

2 Materials and methods

We start by reviewing CNTs and the CND (Section 2.1). We then
describe the solution space of optimal CNTs, generalizing from
ordered CNTs to semi-ordered CNTs (Section 2.2). Finally, we
show how to compute optimal weighted CNTs where events have a
weight determined by their position, length or type (Section 2.3).
Additional details and proofs are in the Appendix (Supplementary
Section S1).

2.1 CNT distance
We review the CNT model (Zeira et al., 2017).

We model chromosomes and CNAs as follows. A CNP C ¼
ðc1; . . . ; cnÞ is a vector of non-negative integers. A segmental event is a
triplet e ¼ ði; j; sÞ where 1 � i � j � n are the start and end posi-
tions of the event and s ¼ 61 is the type of the event. An event with
s¼1 is an amplification and an event with s ¼ �1 a deletion.
Segmental event e ¼ ði; j; sÞ transforms a profile C into a new profile
C0 ¼ eðCÞ ¼ ðc1; . . . ; ci�1;maxðci þ s;0Þ; . . . ;maxðcj þ s; 0Þ; cjþ1; . . . ;
cnÞ; i.e. positive values between ci; . . . ; cj are increased by s.

A CNT from a source CNP S to a target CNP T is a sequence
E ¼ ðe1; . . . ; elÞ of events such that T ¼ EðSÞ ¼ elð. . . e1ðSÞÞ. Given a
source CNP S and a target CNP T, the copy number transformation
distance (CND) (note that this measure is not a true metric as it is
not symmetric and does not obey the triangle inequality) d(S, T) is
the length of the shortest CNT from S to T. Note that if a pair S, T
of CNPs has si ¼ 0 but ti > 0 for some i, then there is no CNT from
S to T; we say that dðS;TÞ ¼ 1 in this case. The CND d(S, T) be-
tween a pair of profiles can be computed in linear time (Zeira et al.,
2017).

2.2 Semi-ordered CNTs
Both the linear time algorithm (Zeira et al., 2017) and the integer
linear programming (ILP) algorithm (El-Kebir et al., 2017) for com-
puting the CND restrict to ordered CNTs, where all deletions come
before all amplifications. Formally, let E ¼ ðe1; . . . ; elÞ be a CNT
from S to T. Suppose, we partition E into maximal contiguous
sequences of events of the same type. Thus, E ¼ ðE1; . . . ;EkÞ where
each phase Ej is a contiguous sequence in E, each Ej is composed of
events of the same type sðEjÞ, and no two consecutive subsequences
are of the same type. In this case, we say that E is composed of k
phases E1; . . . ;Ek. Let opðEj; iÞ ¼ jfð‘; h; sðEjÞÞ 2 Ejj‘ � i � hgj be
the number of events of type sðEjÞ that affect the ith position in the
profile in phase Ej. CNT E from S to T is phase-bounded provided
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opðEj; iÞ � B for all i 2 f1; . . . ; ng and every phase Ej, where B ¼
maxðmaxðSÞ;maxðTÞÞ is the maximum copy number. Zeira et al.
(2017) showed that for any pair S, T of CNPs with dðS;TÞ < 1
there exists a shortest phase-bounded CNT E ¼ ðE�;EþÞ with two
phases: E� having only deletions, and Eþ having only amplifica-
tions. A transformation of this form is called an ordered
transformation.

As a shortest ordered CNT always exists, it is algorithmically
sufficient to restrict attention to ordered CNTs in order to compute
the CND. However, unordered CNTs may yield the same distances,
and in some cases may be more biologically relevant. For example,
the CNPs S ¼ ð1; 1; 1;1;1Þ and T ¼ ð2;2; 1; 2;2Þ have CND
dðS;TÞ ¼ 2 (Fig. 1). A shortest ordered transformation E ¼
ðð1;2;þ1Þ; ð4;5;þ1ÞÞ consists of an amplification of the first two
positions followed by an amplification of the last two positions. On
the other hand, the unordered transformation E ¼
ðð1;5;þ1Þ; ð3;3;�1ÞÞ also has two events: an amplification of the
entire chromosome followed by a deletion of the middle segment. As
whole-chromosome duplications and deletions are common in can-
cer, the unordered transformation may be more plausible than the
first transformation. Thus, restricting to ordered CNTs may pre-
clude other optimal transformations that better explain the profiles.

We define a semi-ordered CNT from S to T as a CNT E ¼
ðE1;E2;E3Þ with three phases where E1 and E3 have only deletions,
E2 has only amplifications, and E1ðSÞi ¼ 0 for all i where ti ¼ 0. In
other words, a semi-ordered CNT has three phases: deletions, amplifi-
cations and deletions, and every zero position in T reaches zero after
the first phase of deletions. While there is no specific biological ration-
ale for restricting transformations to three phases, this restriction pro-
vides a richer space of transformations than ordered transformations
while remaining computationally tractable (Fig. 1). In Supplementary
Section S1.1, we show that while finding a shortest semi-ordered
transformation between a pair of profiles can be written as an ILP for-
mulation, the corresponding constraint matrix is totally unimodular
(TUM). As a result, the ILP can be converted to a linear programming
formulation (LP S2) without integrality constraints that is guaranteed
to have integer optimum (Hoffman and Kruskal, 2010). In addition,
we give a graph-theoretic characterization of the space of shortest
CNTs that can be generated from a solution to the LP.

2.3 Weighted CNTs
In this section, we derive a weighted CNT model and describe an ef-
ficient algorithm to compute the weighted CNT distance.

The CND counts all events equally in the distance, regardless of
the length or type of event. This is problematic for two reasons.
First, it has been observed that CNAs of different lengths occur at
different rates in cancer (Beroukhim et al., 2010; Ciriello et al.,
2013; Zack et al., 2013). Second, CNPs inferred from real data often
have uncertainty, and this uncertainty is generally length dependent.
For instance, consider the following pairs of CNPs: S ¼
ð1;1; 1; 1; 1;1Þ; T ¼ ð1;2;1; 1; 2;1Þ; E ¼ ðð2; 2;þ1Þ; ð5;5;þ1ÞÞ and

S0 ¼ ð1;1;1;2;2;2Þ; T 0 ¼ ð2;2;2;1;1;1Þ; E0 ¼ ðð4;7;�1Þ; ð1;4;þ1ÞÞ.
Both pairs of profiles have CND dðS;TÞ ¼ dðS0;T 0Þ ¼ 2. However,
the first transformation E includes two focal amplifications which
might be less likely in cases where the CNPs have errors. The second
transformation E0 also has a distance of 2, but the events are
chromosome arm gain and loss. While the CND gives both pairs the
same distance, if there is uncertainty in the CNPs, then arguably S0

and T 0 should be less similar than S and T.
To model differences in events, we introduce an event weight

function w : f1 . . . ng � f1 . . . ng � fþ;�g ! Rþ that maps events
on CNPs of length n to positive weights. Namely, wði; k; sÞ is the
weight of an operation starting at position i and ending at position k
of type s. The event weight accounts for the position of the event
along the chromosome, the length of the event and its type. For ex-
ample, deletions and amplifications can have different weights de-
pending the rate of these events in a specific cancer type. Longer
events may have a higher weight than shorter ones, and the weight
wð1;n;þÞ of a whole-chromosome duplication may have a different
weight regardless of the chromosome length.

We define the following weighted CNT model:
Weighted CNT model: Let S and T be CNPs, let E be a CNT

from S to T and let w be a weight function for events. We define the
weight WðEÞ ¼

P
e2E wðeÞ of the CNT E to be the sum of weights

of events in E.
The weighted CNT model distinguishes transformations based

on their weight and not just the number of events. For example,
there are two shortest CNTs from S ¼ ð1;1; 1; 1; 1Þ to
T ¼ ð2; 2; 1;2;2Þ: (i) an amplification of the entire chromosome fol-
lowed by a deletion of the middle segment, or (ii) an amplification
of the first two positions followed by an amplification of the last
two positions (Fig. 1). Suppose that the weight function is
wði; j;þ1Þ ¼ 2 and wði; j;�1Þ ¼ 1. Then, the weight of the first
CNT is 3 whereas the weight of second CNT is 4.

The weighted CNT model can also be interpreted as a probabil-
ity model. Suppose that each event e ¼ ði;k; sÞ occurs with probabil-
ity pe, and that events in a transformation E from S to T are
independent. Then, the probability of observing a transformation E
is
Q

e2E pe and minE:EðSÞ¼Tð�
P

e2E log peÞ gives a maximum likeli-
hood CNT between S and T. Therefore, setting the weight wðeÞ ¼
�log pe for each event e will make the weight of a transformation
proportional to its likelihood.

The goal of the event weight function is to distinguish between
CNTs. In Supplementary Section S1.1, we show how weights can be
used to determine a shortest semi-ordered CNT consistent with a
single solution to the LP (Supplementary Problem S2). However,
there may be multiple optimal solutions to the LP. Moreover, while
a shortest CNT has the minimum number of events, the true bio-
logical transformation need not be parsimonious. For instance, a
shortest transformation of ð1;1; 1; 1;1;1Þ to ð1; 1; 1;2;2; 2Þ involves
one chromosome arm amplification. Yet, a biological explanation
for gaining an arm could be first gaining a whole chromosome and
then losing an arm. The next problem generalizes the CND by find-
ing a minimum weight transformation between a pair of profiles.

Problem 1 (Minimum weight semi-ordered CNT). Given a source CNP

S, a target CNP T and a weight function w, find semi-ordered phase-

bounded CNT E having a minimum weight W(E).

We now give our main result; an LP formulation to find a min-
imum weight semi-ordered CNT. Let xj

lk be a variable indicating the
number of events from position l to position k in phase j.

Minimum weight semi-ordered CNT (LP 1): min
P

j

P
l�k wðl; k; jÞxj

lk

subject to

si �
X

l� i� k

x1
lk1 � i � n; if ti ¼ 0; (1.1)

X

l� i� k

x1
lk � si � 11 � i � n; if ti > 0; (1.2)

Fig. 1. Weighted and semi-ordered CNTs from ð1; 1; 1; 1; 1Þ to ð2; 2; 1; 2; 2Þ. The

right (yellow) CNT is ordered with two amplifications while the left (blue) CNT is

semi-ordered and has one amplification and one deletion. Given a weight function

that assigns a weight of 1 to deletions and 2 to amplifications, the left CNT has a

weight of 3 while the right CNT has a weight of 4
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si �
X

l� i� k

x1
lk � x2

lk þ x3
lk ¼ ti1 � i � n; if ti > 0; (1.3)

X

l� i�k

xj
lk � B1 � i � n; j 2 f1; 2;3g; (1.4)

0 � xj
lk1 � l � k � n; j 2 f1; 2; 3g: (1.5)

LP 1 has a quadratic number of variables and a linear number of con-

straints. Next, we show that LP 1 yields a minimum weight

transformation.

Theorem 1 The constraint matrix of LP 1 is totally unimodular. Thus,

LP 1 has an integer solution corresponding to a minimum weight semi-

ordered CNT between a given pair S, T of CNPs and any weight func-

tion w.

Note that as the minimal weight CNT problem does not find a
shortest transformation, it may produce long transformations.
Therefore, we may want to find a transformation that balances both
its weight and its length. In Problem 2 we find a transformation that
minimizes a linear combination of the weight and the length of the
transformation, while in Problem 3 we find the minimum weight
transformation only among the set of shortest transformations.

Problem 2 (Minimum regularized semi-ordered CNT). Given a source

CNP S, a target CNP T, a weight function w and a non-negative number

k, find a phase-bounded semi-ordered CNT E that minimizes

WðEÞ þ kjEj.

Problem 3 (Minimum weight shortest semi-ordered CNT). Given a

source CNP S, a target CNP T and a weight function w, find a shortest

phase-bounded semi-ordered CNT E having a minimum weight,

minE:jEj¼dðS;TÞWðEÞ.

We show that LP 1 solves both Problems 2 and 3. First, for
Problem 1, let E be a semi-ordered CNT from S to T and denote
by xj

lk the number of events in E from position l to k in phase j.
The objective WðEÞ þ kjEj of Problem 2 can be written asP

j

P
l�k wðl; k; jÞxj

lk þ k
P

j

P
l�k xj

lk. Hence, Problem 2 is equiva-
lent to Problem 1 with modified weights w0ðl; k; jÞ ¼ wðl; k; jÞ þ k
and is solved with LP 1.

We reduce Problem 3 to Problem 2 with k ¼ B
P

j

P
l� k wðl;k; jÞ.

As WðEÞ � k for any phase-bounded CNT E, in order to minimize
WðEÞ þ kjEj, the length jEj of the CNT must be minimized first and
only then the weight W(E) of the CNT should be minimized. We note
that Problem 3 can also be solved directly by modifying LP 1 with a
constraint

P
j

P
l�k xj

lk � dðS;TÞ, where d(S, T) is the CND from S
to T. Though by adding this constraint, the constraint matrix of the
modified formulation would not be TUM, the first approach shows
that that Problem 3 has integer optimum regardless.

3 Results

We present three applications of the weighted CND. First, we show
on simulated data that the weighted CND provides better estimates
of the evolutionary distance between CNPs that evolve with non-
uniform length distribution compared to the unweighted CND and
the Euclidean distance (Section 3.1). Next, we show how the
weighted CND helps recover cell populations in tumors using noisy
CNPs derived from low-coverage single-cell DNA sequencing data
(Section 3.2). Finally, we use the weighted CND to estimate CNA
rates on TCGA data (Section 3.3).

3.1 Reconstruction of simulated copy number trees
In this section, we compare distance-based tree reconstruction on
simulated CNPs using three distances: Euclidean distance,

unweighted CND and weighted CND. We simulate CNPs from a
directed tree via copy number events that occur with different prob-
abilities. We assume that the tree is unknown but the probability
distribution of events is known. We further assume that all profiles,
including inner nodes are used to reconstruct the evolutionary tree
and estimate the events along the edges. Obviously, these assump-
tions do not hold in real data; rather, the goal of these simulations is
to show that using the weighted CND with prior knowledge of the
distribution of events gives better estimates of distance than the
other distance measures.

In this setting, a minimum spanning arborescence (MSA)
(Edmonds, 1967) of the simulated profiles corresponds to a max-
imum parsimony tree when using unweighted CND between nodes.
Conversely, we define the likelihood of a tree as the product of all
transformation probabilities along its edges. Therefore, if we set the
weight of an event e as –log(p(e)), where p(e) is the probability of e
in the simulation, then an MSA corresponds to a maximum likeli-
hood tree when using the weighted CND.

We generate a rooted, directed binary tree T with n nodes
and a designated root node r having a CNP of length m with all
entries having the same value b. The length of each edge in T,
corresponding to the number of events between nodes, is 1þX,
where X is drawn from a Poisson(k) distribution. Thus, each
edge has a minimum of one event and an average of 1þ k
events. Each event is an amplification with probability p and a
deletion with probability 1 – p. For each event, we draw the
length l of an event from a distribution having PrðlÞ / e�b l

m. The
position an event acts along the genome is selected uniformly
among m� l þ 1 possible positions. Profiles in the tree are simu-
lated from the root downwards. Throughout the simulations we
fix n¼61, k¼1, b¼2, m¼50, p¼0.6. We tested different dis-
tribution of event lengths b 2 f10; 5;1;�1;�5;�10g
(Supplementary Fig. S2). For each b, 50 trees and corresponding
profiles are simulated.

Let G be the set of simulated profiles in the tree T. Given a dis-
tance measure d, we calculate a pairwise distance matrix D. Note
that D is not necessarily symmetric as both the weighted CND and
unweighted CND are not symmetric. Moreover, for some ordered
pairs of profiles there may not exist a transformation between them
and in this case the distance in undefined. We build a directed
weighted graph G ¼ ðV ¼ f1 . . . ng;E ¼ fðu; v;Dðu; vÞÞj8u; v 2
V;Dðu; vÞ < 1gÞ, i.e. G has a directed edge from u to v of weight
D(u, v) if the distance from u to v exists. To make a fair comparison,
when building the graph based on the Euclidean distance, we re-
move edges where the CND will not exist. Finally, we find a min-
imum weight spanning arborescence T̂ rooted at r in G (Edmonds,
1967).

We evaluate the difference between the inferred tree T̂ ¼
ðV;ET̂ Þ and the true tree T ¼ ðV;ETÞ using two measures. First, we
define the true positive edge rate PðT̂ ;TÞ ¼ ET̂ \ET

n�1 as the fraction of
edges common to both trees. Second, we calculate the difference
DðT̂ ;TÞ ¼ NðTÞ �NðT̂ Þ between N(T), the total number of events
along the edges of T, and NðT̂ Þ, the corresponding quantity for T̂ .
DðT̂ ;TÞ quantifies how well the inferred tree recapitulates the events
of the simulated tree. As events can overlap and cancel one another
over time, a tree that correctly captures the events (DðT̂ ;TÞ � 0) is a
better estimation of the true evolution.

We find that both the unweighted CND (CND) and weighted
CND (WCND) outperform the Euclidean distance (EUC) in
reconstructing the true tree across all values of b (Fig. 2a). In
addition, the weighted CND shows significant improvement over
the unweighted CND (p � 3 � 10�5 in paired t-test) over all
values of b. The average PðT̂ ;TÞ improvement increases from
0.03 when b¼10 to 0.11 when b ¼ �10. Smaller values of b
correspond to distributions where longer events are more likely
than short ones (Supplementary Fig. S2). In this case, there is a
higher probability for events to overlap, creating by chance simi-
lar profiles on different branches of the tree. As there are more
similar profiles, it is more difficult to correctly recover the true
tree topology. We indeed see that the reconstruction perform-
ance improves in all methods when b increases. The weighted
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CND shows most improvement exactly in those hard cases
(b < 0).

We also find that the weighted CND infers trees with DðT̂ ;TÞ �
0 for all values of b (Fig. 2b). In contrast, the Euclidean distance
yields trees that grossly overestimate the true number of events in
the tree (DðT̂ ;TÞ � 0), while the unweighted CND yields trees that
underestimate the true number of events in the tree (DðT̂ ;TÞ < 0).
The latter is not surprising as the unweighted CND minimizes the
total number of events in the tree. Although for b 2 f�1; 1g, both
the weighted and unweighted CND produce trees with similar num-
ber of events, the weighted CND has higher PðT̂ ;TÞ. This shows
that the weighted CND is able to recover the tree topology among
multiple trees with the same total number of events along the edges.
For other b, the weighted CND produces trees with total number of
events closer to the true tree, having an average of 0.36–3.78 more
events than the unweighted CND.

As in real data the true distribution of events is unknown, we
repeated the simulations using different probabilities for tree in-
ference with the weighted CND. Specifically, we simulated trees
with b 2 f10; 5;�5;�10g except we assigned the weight of an
event of length l from a distribution with PrðlÞ / e�signðbÞ l

m. We
find that even with an incorrect weight distribution, the WCND
still infers trees that are significantly better than the unweighted
CND (Supplementary Fig. S3a). Thus, having prior knowledge of
the event distribution is still superior to using an unweighted
CND. On the other hand, both weighted and unweighted CND
find trees with the exact minimum number of events
(Supplementary Fig. S3b).

3.2 Single-cell cancer sequencing data
We analyzed CNPs derived from ultra-low-coverage (0:02� to
0:05�) single-cell whole-genome sequencing data of a breast tumor
obtained using the 10X CNV Solution (10X Genomics, 2019a). The
dataset includes five tumor sections, each comprising �2k cells.
CHISEL (Zaccaria and Raphael, 2019) was used to infer a
haplotype-specific CNP (separating integer copy numbers of the two
homologous chromosomes) for each cell in 5-MB bins across all
autosomes. Thus, each cell has 44 CNPs corresponding to the 22
pairs of chromosomes. We analyzed cells jointly across all five sec-
tions, focusing on cells that CHISEL classified as tumor cells
(Zaccaria and Raphael, 2019); we excluded centromere bins that
had highly variable calls and discarded duplicate cells with identical
CNPs, resulting in a final dataset of 4012 cells by 1052 CN entries.
We arbitrarily designated one allele as A and the other as B (Fig. 3a).

Due to the ultra-low coverage, copy number calls in individual
cells are prone to errors. While whole-chromosome and arm-level
CNs can be more reliably called, focal (single bin) changes in the
CNPs are more likely to be errors. The CHISEL analysis (Zaccaria
and Raphael, 2019) addressed this issue by clustering cells using
Hamming distance and creating consensus CNPs for each cluster of
cells. This procedure resulted in eight groups of cells, or clones,
labeled I–VIII and characterized by different large-scale CNAs,
including whole-chromosome and chromosome–arm level events
and an early whole-genome duplication (Fig. 3a and Supplementary
Fig. S4). This analysis also built a phylogeny relating these clones
with two main branches: one branch containing clones I and II
harboring deletions of chromosome 2A and 3B, and arm deletions of

Fig. 2. Comparison of trees constructed using Euclidean distance (EUC), unweighted CND (CND) and weighted CND (WCND) on simulated profiles with length-based distri-

bution of CNAs. (a) The proportion PðT̂ ;TÞ of edges common to the simulated tree and the tree inferred by the MSA. (b) The difference DðT̂ ;TÞ in the total number of events

between the simulated and the tree inferred by the MSA. P-value in paired t-test: *� 0:05, **� 10�1, ***� 10�3, ****� 10�4

Fig. 3. (a) Haplotype-specific CNPs obtained from whole-genome single-cell sequencing of a breast tumor. Cells were previously clustered into eight clones I–VIII (Zaccaria

and Raphael, 2019). Copy numbers were limited to 4 for simpler presentation. Trees constructed using neighbor joining on clone consensus CNPs using (b) Euclidean distance,

(c) unweighted CND and (d) weighted CND. Dashed branches marked with an asterisk indicate differences from previous CHISEL (Zaccaria and Raphael, 2019) analysis
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6A.p and 10B.p; the other branch containing clones III–VIII har-
boring deletions of chromosomes 4B and 8A, and also a deletion of
chromosome 2B in most of the clones in this lineage. The CHISEL
tree analysis also suggested that clone III is the ancestor of clone
IV which is the ancestor of clones V–VIII.

As the individual cell CNPs are noisy, we first analyzed the clone
CNPs. Similar to CHISEL, we created consensus CNPs for the cells
of each clone (Supplementary Fig. S4). While cells in the dataset had
on average 81 break points, i.e. positions where consecutive copy
numbers do not match, clone profiles had only 39 breakpoints on
average. We then calculated a symmetric distance matrix between
clones using Euclidean distance, unweighted CND and weighted
CND. Because both CNDs are not symmetric, we defined the sym-
metric distance between a pair of profiles as the average of the dis-
tances in both directions. We constructed a phylogenetic tree of the
clones using neighbor joining. As the major clonal events in this
sample are large chromosomal aberrations, we gave whole-
chromosome and arm level events a high weight corresponding to
(�log ) a probability of 10�7. On the other hand, we suspect that
focal changes are more likely to be errors, and thus assigned these
events a weight corresponding to a probability of 0.9. We gave
amplifications and deletions equal probabilities. While all distances
are able to separate the two main lineage of the tumor, only the
weighted CND produces a tree concordant with previous analysis
(Fig. 3b–d). Notably, the Euclidean distance mistakenly places
clones III and VI close together on the tree because the events that
distinguish these two clones are shorter relative to other chromo-
somal events (1A.q gain and 3B loss). Similarly, the unweighted
CND also misplaces a branch, placing clones VI and VIII as
descendants of clone III. This placement would imply that
chromosome 2B was lost twice independently in two separate
branches, which is unlikely since most cells on this lineage contain
this mutation. This change is caused by a single bin in chromosome
1A.p having a different copy number than the rest of the arm. This
change is shared by clones III and VIII making them one event
closer in terms of the unweighted CND. On the other hand, the
weighted CND gives this change a low weight in comparison to
chromosome/arm level events, thus correctly resolving the clone
topology.

To show that the weighted CND is able to cope with errors, we
next computed phylogenies on the 4012 individual cells using neigh-
bor joining. The tree computed using Euclidean distance (Fig. 4a)
has clades that largely recapitulate the clone assignment given in
Zaccaria and Raphael (2019), which is not surprising because (i)
Hamming distance was used to cluster cells into clones in CHISEL
and (ii) whole-chromosome and arm level events are the major
events in this tumor and since Euclidean distance weighs events pro-
portional to their lengths, it is more robust to small changes in the
profiles. However, we find that the Euclidean distance tree has
strange evolutionary relationships placing clones III, V and VI to-
gether in the same clade although previous analysis (Zaccaria and

Raphael, 2019) suggested that clones V and VI descended from
clone IV. This arrangement would again imply that chromosome 2B
was lost twice independently, which is not likely. The unusual place-
ments are not surprising, because Euclidean distance has no underly-
ing evolutionary model for CNAs. In contrast, the tree based on the
unweighted CND (Fig. 4b) mixes cells from different clones in the
same clade and even cannot separate the two main lineages (I–II
and III–IIIV) that are the most distinct in their CNPs. This is like-
ly because the unweighted CND is susceptible to noise in the CNPs
in individual cells, and small differences in CNPs are weighted
equally as large events. Finally, the tree inferred using the weighted
CND clearly divides the two main lineages, preserves most of the
clonal structure and recapitulates the evolutionary relationships
from the clone tree in Zaccaria and Raphael (2019). Importantly,
the weighted CND tree shows that clones V–VIII descend from
clone IV, which is the more reasonable as these cells are distin-
guished by a 2B loss. The weighted CND tree does group some cells
from different clones into the same clade. Closer inspection of cells
that were reported to be from the same clone in Zaccaria and
Raphael, (2019) but were split in the weighted CND tree sheds light
on smaller sub-populations of cells. For instance, a small group of
13 cells that were classified as clone VIII but separated from the
rest of the cells from this clone have one fewer copy of the p arm of
chromosome 16B compared to the other cells in this clone. As we
use higher weights for arm events, these cells were split from the rest
of the clone. Similarly, a group of 14 cells of clone V containing a
loss of chromosome 11 were separated from the rest of the cells in
this clone.

As the true weights of events are unknown, we explored how the
choice of weights in the weighted CND affects the phylogeny. We
restricted our analysis to a single tumor section (E) with 1062 cells
and calculated cell pairwise distance matrices using weighted CND
with various weights. As the space of possible event weights is large,
we reduced the weight function to three parameters: amplification/
deletion probability P, local/chromosome event probability q and
focal/segmental probability r. Therefore, the probability of a seg-
mental deletion, for example, would be ð1� pÞqð1� rÞ. Each of
these parameters was assigned either 0.25 or 0.75 resulting in a total
of eight parameter configurations. In addition, we also considered
another parameter combination p ¼ 0:5;q ¼ 1� 10�6; r ¼ 0:8 to
reflect the fact that chromosomal events are the major events in this
tumor’s evolution.

We find that varying the weights yields neighbor-joining trees
that are quite different from one another, showing that the selection
of weights can have a considerable effect of the resulting trees
(Supplementary Fig. S6). We see that when perturbing only the
probability p of amplifications while keeping other parameters
fixed, the resulting trees seem a lot more similar. This can be
explained by the fact that when symmetrizing the distance, some of
the information on the direction of events is lost. Interestingly,
weighted CND trees are more similar to the unweighted tree when

(a) Euclidean distance (b) Unweighted CND (c) Weighted CND

Fig. 4. Trees built on single-cell CNPs for different distance measures (a-c) visualized using iTOL (Letunic and Bork, 2019) where edge lengths are scaled for visualization and

not proportional to the distance
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the chromosome/arm level events and focal events are more likely
(q ¼ 0:25; r ¼ 0:75) and least similar when segmental events are
more likely (q ¼ 0:75; r ¼ 0:25). Conversely, the tree is more similar
to the Euclidean tree when focal events have lower weights
(q ¼ 0:75; r ¼ 0:75). This corroborate with our expectation as
Euclidean distance gives a higher weight to longer events. Finally,
the additional parameter combination that assigns a high weight to
chromosome event gives a tree that is the most similar to the
Euclidean distance tree than the other parameter combinations, as
expected.

3.3 Estimating CNA rates in TCGA pan-cancer data
A key challenge in applying the weighted CND to real data is how
to select biologically realistic weights. Estimating CNA rates is sub-
stantially more difficult than estimating SNV rates: as CNA overlap
with each other, it is difficult to conclude which CNAs have
occurred from pairs of moderately diverged CNPs. In this section,
we illustrate how the weighted CNT can help in the inference of
CNA rates using the inferred transformations between pairs of
CNPs. We apply this procedure to CNPs from 26 cancer types from
TCGA. It has been observed that different cancer types have differ-
ent rates of CNAs (Ciriello et al., 2013; Zack et al., 2013), and even
within a cancer type, different chromosomes show varying patterns
of aneuploidy (Taylor et al., 2018).

We infer CNA rates from a collection of CNPs using the following
model. Let D ¼ fðS1;T1Þ; . . . ; ðSn;TnÞg be a set of independent pairs
of source and target profiles. Our goal is to find a probability distribu-
tion P over CNAs that will maximize the likelihood of observing the
set of CNP pairs, namely maxP

P
i PrðSi ! TijPÞ. Here, we assume

that there are m classes of events C1; . . . ;Cm with unknown probabil-
ities p1; . . . ; pm. Event classes may be determined by length, genomic
location, or type of event: e.g. whole-chromosome amplifications,
whole p-arm deletions, local q-arm amplifications, etc.

To find the most likely CNA probability distribution P, we use
an EM-like approach. Previous analysis of CNA used a similar ap-
proach based on a heuristic for deconstruction of CNPs to identify
segmental events (Mermel et al., 2011; Zack et al., 2013). We start

with a random probability distribution Pð0Þ over CNAs. At each

iteration t, we find the most likely transformation Ei ¼
argmaxEðSiÞ¼Ti

PrðSi ! TijE;Pðt�1ÞÞ for each pair i of profiles given

the probabilities Pðt�1Þ at the previous iteration. Then we re-estimate

the event probabilities p
ðtÞ
j ¼

P
i
jfe:e2Ei ;e2CjgjP

i
jEi j

by the proportion of

events in each class j in the entire cohort. We continue until conver-
gence or a predefined number of iterations.

We obtained total CNPs and whole-genome doubling statuses
for 10180 samples from the 26 cancer types from the TCGA pan-
cancer dataset that had at least 100 samples (Taylor et al., 2018).
For each cancer type and each chromosome, we created a set
fðSi;TiÞg of CNP pairs where Ti is the CNP of the ith sample and
Si ¼ bi; . . . ; bi is a profile with the same CN bi across segments,
where bi ¼ 2, 4 or 6 depending on the sample’s genome doubling
status. For each such cohort, we estimated CNA rates considering
the following classes of events. As it has been noted that CNA tend
to be localized on each chromosome arm, we classify events based
on their start and end points in relation to the centromer (p-arm, q-
arm, cross). An event is classified as affecting the whole chromo-
some/arm if its length consists of at least 80% of the chromosome/
arm length (Taylor et al., 2018). Finally, each event is either an amp-
lification or a deletion giving 12 classes of events overall.

We limited our analysis to the 17 non-acrocentric chromosomes
resulting in 442 distributions over 12 CNA classes (Supplementary
Fig. S7). We clustered the inferred CNA rates into eight groups with
k-means using the Silhouette method to determine the number of clus-
ters. The cluster centroids represent CNA rate signatures common to
cancers and chromosomes (Fig. 5). The different signatures show vari-
ability in CNA rates. For instance, in Cluster 1 about 30% of events
are whole-chromosome deletions while in Cluster 4 about 30% of
events are chromosome amplifications. Similarly, Cluster 0 shows
more deletions on the q-arm and amplifications on the p-arm while

Cluster 6 shows more deletions on the p-arm and amplifications on
the q-arm. Cluster 2 has around 50% focal amplifications on the q-
arm whereas Cluster 3 has around 50% focal deletions on the q-arm.

We tested whether the clusters were enriched for certain cancer
types or chromosomes (Table 1). With the exceptions of Cluster 1
having a high number chromosomes from TGCT and KIRC, and
Cluster 5 having a high number of LAML chromosomes, clusters
were not enriched to specific cancer types. On the other hand, al-
most half of the chromosomes were enriched in some cluster.
Notably, 24 (out of 26) chromosome 17 CNA rates were included in
Cluster 2 suggesting that the distribution of events on chromosome
17 is consistent across cancer types. Cluster 6, having a high propor-
tion of deletions on the p-arm and amplifications on the q-arm, was
enriched with Chromosomes 1, 3 and 8. Chromosome 3 p-arm loss
and q-arm gain have been shown to be a dominant feature of squa-
mous cell carcinomas (Taylor et al., 2018). Indeed, we see that
HNSC, LUSC, CESC have similar CNA rates characterized by 3p-
arm loss and 3q-arm gain (Supplementary Fig. S8).

4 Discussion

In this paper, we introduce a weighted CND. The weighted CND
allows for segmental events to have different weights, or probabil-
ities, based on type, length and location, enabling more detailed
studies of the rates of copy number events compared to the
unweighted CND that is currently in use. We give the first efficient
polynomial-time algorithm to compute the weighted CND. This al-
gorithm is based on the observation that computation of the
weighted CND is an optimization problem with totally unimodular
constraint matrix. In addition to computing the minimum weighted
distance, the algorithm also provides an explicit transformation that
achieves this distance. We illustrate the utility of the weighted CND
in three different applications: distance-based phylogenetic tree re-
construction, analysis of noisy CNPs from single-cell DNA

Fig. 5. Inferred CNA rates in TCGA pan-cancer CN data. Colors correspond to 12

classes of events: fdeletions(�), amplifications(þ)g � fwhole chromosome, whole

p-arm, whole q-arm, focal p-arm, focal q-arm, crossing centromereg

Table 1. Significantly enriched chromosome and cancer type in

each CNA rate cluster

Cluster Chromosome Cancer

0 5 (1.22e-6)

1 18 (5.6e-5) TGCT (4.04e-7),

KIRC (6.36e-5)

2 17 (4.6e-22)

3 4 (3.77e-6)

5 LAML (1.25e-10)

6 1 (3.99e-7), 3 (3.21e-6),

8 (3.99e-7)

7 6 (1.3e-5), 9 (1.3e-5)

Note: Hyper-geometric P-value is presented in parentheses. The P-values

were thresholded with Bonferroni correction for multiple testing.
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sequencing data and estimation of CNA rates. We show on simu-
lated data that the weighted CND outperforms Euclidean distance
and unweighted CND in inferring ancestral relations between pro-
files when events are generated with different rates. We analyze
CNPs from single-cell DNA sequencing of a breast tumor and show
that the weighted CND overcomes errors in copy number calls and
improves tree reconstruction. Finally, we use the weighted CND to
infer CNA rate signatures from the TCGA pan-cancer data-set.

An important question in applications of the weighted CND is
how to determine the weights. We showed that it is possible to esti-
mate CNA rates from cancer cohorts, but there is substantial room
improving this process. First, larger cohorts are needed to estimate
the distribution of sub-arm focal events as a function of their length
and/or position along the chromosome. Second, while we assumed
that samples from the same tumor type share the similar CNA rate
distribution, there may actually be different mutagenic processes
that affect the rate of CNAs in different samples (Alexandrov et al.,
2020; Macintyre et al., 2018; Shah, 2018). There may be multiple
CNA rate distributions both within a cohort and even within a sin-
gle sample. Third, CNPs from bulk tumors are a mixture of multiple
cells with potentially different CNPs. Thus, one must rely on accur-
ate deconvolution of bulk samples into integer copy numbers
(Gerstung et al., 2020; Salcedo et al., 2020; Zaccaria and Raphael,
2018) or obtain larger cohorts of single-cell sequencing data.
Finally, an alternative approach for finding event weights is by
examining the relative least-squares fit of the distances to the tree
[e.g. using the Fitch–Margoliash method (Fitch and Margoliash,
1967)] for different weight parameters.

The probabilistic model used in the weighted CND can be
extended in several ways. First, the model assumes that events are
independent given a transformation. This may not be the case in
general as the probability of events may depend on previous events.
Second, the model does not directly estimate errors in the CNPs.
Both a probabilistic model and a simulation framework that accur-
ately model real events and errors are important directions for future
work. In addition, the number of CNAs and not just their relative
proportions should be modeled, especially because some cancers are
characterized by a higher number of CNAs (Ciriello et al., 2013).
Finally, extending the model to more complex CNAs such as whole-
genome duplications (Bielski et al., 2018) or breakage–fusion–bridge
cycles (Zakov et al., 2013) remains open.
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