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tracking and analysis of rodent behavior

Chia-Ming Hsieh,1,2 Ching-Han Hsu,2 Jen-Kun Chen,1,3,* and Lun-De Liao3,4,*

SUMMARY

Researchers in animal behavior and neuroscience devote considerable time to observing rodents behavior
and physiological responses, with AI monitoring systems reducing personnel workload. This study pre-
sents the RodentWatch (RW) system, which leverages deep learning to automatically identify experi-
mental animal behaviors in home cage environments. A single multifunctional camera and edge device
are installed inside the animal’s home cage, allowing continuous real-time monitoring of the animal’s
behavior, position, and body temperature for extended periods. We investigated identifying the drinking
and resting behaviors of rats, with recognition accuracy enhanced through contextual object labeling and
modified non-maximum suppression (NMS) schemes. Two tests—a light cycle change test and a sucrose
preference test—were conducted to evaluate the usability of this system in rat behavioral experiments.
This system enables notable advancements in image-based behavior recognition for living rodents.

INTRODUCTION

The study of experimental rodent behavior is very important for achieving an in-depth understanding of behavioral and physiological phe-

nomena, especially in nervous system, psychological disease, and drug development research. Observing and analyzing animal behavior

helps researchers understand the functions and interactions of different neural pathways and study psychotherapeutic methods for treating

diseases, mood disorders, and cognitive disorders.1,2 The effectiveness and safety of drugs and how drugs affect the behavior and physio-

logical responses of animals have been evaluated.3–5 However, past animal behavior studies have often relied on experienced human ob-

servers, who must spend considerable time monitoring, evaluating, and quantifying animal behavior. Computer science and artificial intelli-

gence (AI) algorithms, particularly deep learning technology, have been utilized in specialized experimental or home cage environments for

research animals to comprehensively and accurately evaluate animal behavior and physiological status. AI has become increasingly promi-

nent in animal behavior and neuroscience research. Researchers must observe experimental animals for extended periods in animal behavior

studies, and video equipment is usually used to record the animals’ behavioral responses.6–8 When the experimental design requires long-

term continuous observation, the researcher may become fatigued, leading to errors in judgment when evaluating complex or subtle animal

behaviors. In addition, errors can occur due to differences among observers or laboratories, affecting the reliability and reproducibility of the

research.9–11 Moreover, collecting and analyzing large-scale data with manual methods is difficult when multiple animals must be observed

simultaneously or recorded over long periods. Manual approaches are extremely time-consuming and inefficient, making it difficult to inves-

tigate complex behavioral patterns.

Notable advancements have been made in the development of animal behavior research techniques. Many automated monitoring

methods, including radio frequency identification (RFID), infrared beams, capacitance technology, piezoelectric sensors, and video tracking

algorithms, have been developed.12 Thesemethods have been applied to analyze the behavior and track the positions of rats andmice. Auto-

mated monitoring systems help researchers accurately capture and analyze these behaviors and enable long-term experiments. In addition,

advances in automation help decrease researcher time and effort and enable large-scale research, thus accelerating scientific research. With

the development of digital technology, automatedmonitoring systems with high-resolution photography and sensing technology have been

used to continuously monitor animal behaviors.13 Automated systems offer many benefits when used in animal behavior research. They are

objective and consistent and can accurately capture and record a wide range of behaviors. These systems are becoming even more efficient

and useful for providing detailed data for analysis with advances in AI.

The design of the experimental environment should be carefully considered to ensure that an animal’s behavior is natural and reproduc-

ible. Researchers often house experimental animals in home cage environments, allowing the animals to exhibit more natural behaviors in a

familiar, low-stress environment and reducing the distractions associated with laboratory environments. Over time, automated monitoring

technology has been increasing applied in home cage environments.14 The use of automated monitoring technology can greatly increase
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the speed of analysis; moreover, this technology is objective and consistent, thereby ensuring the reproducibility and replicability of the

research results.15 Reproducibility and replicability are particularly important in behavioral research because animal behavior is often a key

indicator. The use of automated monitoring techniques improves the standardization of the experimental design and reduces differences

in the observation standards of different researchers or laboratories, which is crucial for ensuring reproducible research results. Existing auto-

matic analysis methods focus mostly on observing rats and mice in home cage environments from a top or side view. A top-view camera

design can achieve better results in recognizing the positions or interactive behaviors among multiple animals.16–18 A side-view camera

design can obtain clearer images of subtle movements and postures.19,20 However, a top-view camera may not capture a complete view

of the home cage environment because of obstruction from the cage cover or feed rack. A side-view camera needs to be installed outside

the cage to obtain a complete view; however, imagequalitymay be reduced in cages with low transparency,making it difficult to capture clear

images of subtle behavioral postures. Therefore, in our design, the camera is installed in the cage to capture images from the front-view po-

sition, with the camera facingdown at approximately 45� tomonitor the rat. Setting the camera inside the cage is beneficial for obtaining high-

quality images. This approach prevents the issue of the thermal lens being unable to detect body temperature due to the cage barrier. The

front-view camera design enables the capture of subtle poses via the side-view camera and position tracking via the top-view camera.

Deep learning algorithms can be applied for the automatic recognition and analysis of animal behavior. Key point pose estimation

methods have been used to measure animal movements in neuroscience research.21–24 Pose estimation algorithms are used to automatically

identify mouse body parts for animal behavior analysis. Deep learning algorithms can differentiate similar-looking objects to identify different

species or behaviors. Liu et al.25 used the neural network architecture of the SqueezeNet model to instantly identify Aedes aegypti and Culex

quinquefasciatus in flight. Yu et al.26 used an improved YOLOv3model to detect the crawling behavior of ewes during estrus. Girardie et al.27

used two YOLOv2 convolutional neural network (CNN) models to detect six postures and three standing activities by sows to evaluate how

sow behavior affects piglet performance during early lactation. These results obtained using deep learning technology show that You Only

Look Once (YOLO)-based object detection algorithms can be used to quantitatively analyze complex behaviors and track animal positions. In

this study, we used the YOLOv528 deep learning network architecture to build themodel. YOLO algorithms are famous for their excellent real-

time recognition capabilities and efficient processing speed,29 which are crucial for large-scale animal behavior monitoring and analysis.

YOLOv5 also performs well in terms of object position detection and classification accuracy. The advantages of YOLOv5 include the ability

to develop behavioral recognition models for rats. Objects and their positions can be identified instantly during a single trial with high accu-

racy, thus improving research efficiency and the objectivity of the results compared with manual work.

Rodents remain the primary experimental animals utilized during the preclinical research phase of drug development.30,31 The European

Parliament implemented strengthened animal protection policies through Directive 2010/63/EU, mentioning the principles of replacement,

reduction, and refinement (3Rs),32 and 3R-related platforms continue to be established.33 The 3R principle is a universal concept among in-

ternational researchers. Routine disinfection and cleaning of experimental animal materials can be mechanized to reduce human workload.

However, daily clinical observation and care of animals must still be performed via human monitoring. Timely intervention, treatment, and

setting of humane endpoints on the basis of an animal’s health status require considerable human workload and time. In experimental animal

facilities with large animal populations, caretakers and researchers are limited in the number of daily observations of experimental animals

they can perform, making it challenging to monitor the health of each animal continuously. Moreover, during the outbreak of large-scale in-

fectious diseases, medical resources can be scarce, and home care and isolation are prevalent. Remote real-time physiological monitoring

devices can be used to help monitor patients with mild symptoms or asymptomatic patients, providing early warning capabilities and timely

medical guidance.34–36 Furthermore, these devices can detect both physical parameters and psychological stress to assess emotional and

stress levels, allowing intervention before the condition worsens.37–39 Recent technological advances and a focus on animal welfare have

led to the development of real-time physiological monitoring systems for laboratory animal facilities. This study presents the

RodentWatch (RW) system, which is small, scalable, and suitable for standard cages and can detect behavior, location, and body temperature

data. Future updates will include the development of abnormal behavior recognition and early warning systems in accordance with the 3R

principles to ensure animal welfare.

In this study, the RW system was developed, and the YOLOv5s neural network architecture was used to establish a real-time behavior

recognition model for rats. The hardware is lightweight and easy to install, with a single multifunction camera design. The compact design

allows the camera to be installed in the cage, and long-term monitoring of the animals in the original cage can be performed during both

day and night without moving the animals. The designed hardware system is simple and inexpensive, which can reduce commercialization

costs and increase the potential for expansion. We expect this tool to be used in preclinical research and daily care in laboratory animal

facilities.

RESULTS

We developed the RW system using a multifunctional camera and an edge computing device to identify rat behaviors through deep

learning models. Figure 1 illustrates the hardware design of the RW system, while Figure 2 presents its operational and processing frame-

work. Figure 3 provides representative examples of the eight behavioral posture categories. Figure 4 offers an overview of the dataset,

which includes training, validation, and test sets. Our study focused on identifying drinking and resting behaviors in rats, with recognition

accuracy enhanced through contextual object labeling and modified non-maximum suppression (NMS) strategies. Two experiments were

conducted to evaluate the usability of this system in rat behavioral studies. These aspects are described in detail in the following sections

and the STAR Methods.
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Enhanced recognition of drinking behavior

Establishing the YOLOv5s model requires manual annotation of bounding boxes and behavior categories to create datasets. The manually

annotated bounding box should be as close as possible to the target object to prevent unnecessary background information from affecting

the feature extraction process of the model. We utilized the pretrained YOLOv5s deep learning network architecture to construct the original

model (O model). We utilized the contextual object labeling method with the training set to expand the object bounding boxes to include

drinking behavior and the bottle cap area to improve the accuracy of themodel in recognizing drinking behavior. The drinking category in the

training set was reannotated, and an enhanced drinking model (D model) was developed using the same parameter settings. We used the

evaluation tools provided by YOLOv5 to assess the performance of the two models in the object detection task on the basis of the valida-

tion sets.

The AP metric is suitable for evaluating performance differences between models. The AP values of each category under the same IoU

threshold of 0.5 were compared between the O and D models. The results show that the AP value of the drinking category increased

from 0.785 for the O model to 0.909 for the D model, as shown in Figure 5A. The AP value of the resting category also increased from

0.869 for the O model to 0.911 for the D model, as shown in Figure 5H. In addition, the AP values of the grooming, searching, and gnawing

categories increased to varying degrees from theOmodel to theDmodel, as shown in Figures 5C, 5E, and 5F. TheAP values of the eating and

rearing categories decreased slightly from the O model to the D model, as shown in Figures 5B and 5D. Compared to the O model, the ac-

curacy of identifying the scratching category improved with the D model, with an AP value below 0.1, as shown in Figure 5G. The average AP

values of all categories (mAP) improved from 0.722 for the O model to 0.771 for the D model, as shown in Figure 5I. The results show that

expanding the bounding box representing the drinking behavior to include contextual objects can enhance model accuracy.

A confusion matrix is a tool used to evaluate the prediction performance of machine learning classification models. Analyzing the corre-

spondence between themodel’s predictions based on the validation set and the actual categories is beneficial for understanding themodel’s

performance in each behavioral category. In a confusion matrix, the rows represent the actual behavior, whereas the columns represent the

behavior predicted by the model. In a binary classification problem, the values in the confusion matrix denote the proportions of instances

from each true class that are classified into the predicted categories. Specifically, in Figure 6A, the value of 0.67 for the true category ‘‘drink-

ing’’ predicted as ‘‘drinking’’ indicates that 67% of the instances from the true ‘‘drinking’’ category were accurately classified as TPs by the

model. Thus, each cell in the confusion matrix represents the proportion of instances from a given true class that are assigned to a specific

predicted class. The O model correctly predicted the numbers of positive categories, including eating, rearing, and searching, with a detec-

tion rate exceeding 0.8, whereas the detection rates for other categories were below 0.7. The detection error rate for the resting category

being incorrectly predicted as the searching category was as high as 0.91 since the behavioral features of the two categories are very similar,

Figure 1. Overview of the RW system

(A) Exploded-view schematic of the single multifunctional camera. The multifunctional camera comprises a near-infrared (NIR) lens, near-infrared light, a thermal

lens, a 3D printing shell, and an angle adjustment bracket.

(B) Schematic of the multifunctional camera mounted in a cage. The camera monitors the rat at an angle of approximately 45� and is connected to the edge

computing device through a wire. The NIR lens FOV is greater than 160� (red lines). The thermal lens FOV is 57� (blue lines).

(C) Actual image of the camera mounted in the cage. The camera is simple and convenient to mount in a standard housing cage for rats. The modified cage lid

reduces the problem of the feeder position blocking the view of the rat.

ll
OPEN ACCESS

iScience 27, 111223, November 15, 2024 3

iScience
Article



as shown in Figure 6A. Compared with the O model, the enhanced D model has a higher correct detection rate, particularly for the drinking

category, with the detection rate of this category increasing from0.67 to 0.90. In addition, the detection rate of the resting categorywas higher

for the D model, increasing from 0.08 to 0.48, as shown in Figure 6B. Since the training set includes many images in the searching category,

bothmodels tend to predict the searching category. This results in a lower recall rate for the gnawing and scratching categories because there

are fewer images representing these behaviors in the training set. However, the improved D model still achieved a correct detection rate of

more than 0.85 for four behavioral categories: drinking, eating, rearing, and searching.

The drinking and resting categories can easily be differentiated by the model on the basis of the identified instances in the validation set

images. Multiple detection bounding boxes are generated in the images with the confidence threshold set to 0.001, allowing us to intuitively

understand the recognition results of the model. Figure 6C shows an image that represents the true drinking behavior category identified by

the Omodel. The model predicted three categories with confidence values of 0.86, 0.004, and 0.002. However, the drinking category was not

successfully identified by the model, and resting behavior was incorrectly identified. The recognition results of the Dmodel for the image are

shown in Figure 6D. The model predicted two categories: drinking, with a confidence value of 0.72, and searching, with a confidence value of

0.42. The results show that the improvedDmodel can better detect the drinking category, and the incorrect detection of the resting category

is reduced. In addition, Figure 6E shows an image that represents the true resting behavior identified by the O model. The model predicted

two categories with confidence values of 0.64 and 0.002. However, the resting category was not successfully identified, and the drinking cate-

gory was incorrectly identified. The recognition results of the D model for the image are shown in Figure 6F. The model predicted three cat-

egories with confidence values of 0.75, 0.17 and 0.03. The results show that the improved Dmodel can better detect the drinking and resting

categories, and the incorrect detection of the drinking category is reduced.

Enhanced recognition of resting behavior

The F1-confidence curve is used to evaluate the performance of binary classifiers, considering the classification accuracy and recall, as well as

the impact of different confidence thresholds. The performance of the Dmodel was improved by incorporating the situational object labeling

method, which was used for detection based on the verification set. The F1 scores of each category under different confidence thresholds are

Figure 2. The operation and processing framework of the RW system

(A) Operation and application of the RW system. The hardware is lightweight and can be easily expanded to multiple housing cages. The housing cage can be

monitored on the original cage rack without moving the cage. The burden of manual observation on researchers is reduced through visual real-time detection

with the remote monitoring system. Complete video and data recording allow for further analysis and related applications.

(B) Graphical user interface (GUI) software tool for the RW system.We developed this tool using Python and PyQt5 to provide a convenient user interface for easy

operation, real-time information display, and data recording.

(C) Flowchart of the proposed method. The NIR lens is used to acquire rat images, and the improved YOLOv5 model is used to identify behaviors and bounding

boxes. The thermal lens is used to track position and body temperature changes. Real-time detection results can be displayed via the GUI.
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shown in Figure 7A. The model showed the best performance for the behavior category, with the average highest F1 score of 0.64, corre-

sponding to a confidence threshold of 0.395. This result demonstrates that the model achieves a good balance between precision and recall

at this confidence threshold, making it suitable for application in actual scenarios. Therefore, the NMS modification, test set, and animal

experiment results were analyzed on the basis of these confidence values.

The stationary features of the rats were used to improve the model’s accuracy for the resting category. First, a set of fewer than 300 de-

tected instances was output by the D model. For these instances, the confidence values for the resting and searching categories were

adjusted on the basis of whether the rat was stationary. The detected instance with the highest confidence score after NMS processing

was subsequently used as the final output. TheDmodel with themodifiedNMS strategywas named the resting anddrinking enhancedmodel

(RD model). The validation set results revealed that the F1 score of the resting category increased from 0.570 with the D model to 0.678 with

the RDmodel and that the F1 score of the searching category increased from 0.742 with the Dmodel to 0.766 with the RDmodel. The average

F1 score of all the behavioral categories also increased from 0.644 to 0.664, as shown in Figure 7B.

The images in the validation set were examined to understand the impacts of the two models on detecting resting and searching behav-

iors. Figure 7C shows six consecutive images of a rat displaying actual resting behavior, with 1 s intervals between images. The D model

correctly detected resting behavior in only one image, with a confidence threshold of 0.395, and the other images were misidentified as con-

taining searching behavior. In contrast, all six images were correctly identified as showing resting behavior by the RD model. The results for

this representative image show that the RD model can increase the confidence of the resting category and reduce the confidence of the

searching category when the rat is in a stationary state, thereby increasing the correct detection rate.

In addition, upon further analysis with the confidence threshold set at 0.395 for the O, D, and RDmodels, the overall F1 scores of the three

models are 0.566, 0.644, and 0.664, respectively. The overall recognition accuracy is effectively enhancedwith thesemodel improvements.We

conductedMcNemar’s test to evaluate the differences in the recognition accuracy among themodels. The results demonstrated a significant

difference in accuracy between theO andDmodels (p = 4.363 10�130, McNemar’s test), as well as between the D and RDmodels (p = 8.753

10�68, McNemar’s test).

Figure 3. Representatives of 8 behavioral posture categories

The behavioral categories in this study included (A) drinking, (B) grooming, (C) eating, (D) rearing, (E) gnawing, (F) searching, (G) resting, and (H) scratching.

Searching is defined as the default behavior and includes unclassified behaviors and partial images with limited viewing angles.
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Performance analysis based on the test set

The main objective of including the test set is to test the model’s performance with unseen data to determine whether the model can gener-

alize well to real-world data, as opposed to the validation set. The test set includes test sets 1, 2, 3 and 4, and the behaviors in the images were

detected by the RD model. The results revealed that the F1 scores of the drinking, eating, rearing, searching, and resting categories were

greater than 0.8, and the F1 scores of the drinking, eating, and rearing categories were greater than 0.9. The average F1 score of all categories

was 0.756, as shown in Figure 8A. The confusion matrix analysis results were similar to those of the F1 score. The correct detection rate by the

RDmodel was greater than 0.8 for the drinking, eating, rearing, searching, and resting categories, with the correct detection rate for the drink-

ing, rearing, and resting categories exceeding 0.9, as shown in Figure 8B.

A detailed analysis of the precision and recall for each category based on test sets 1, 2, 3, and 4 is shown in Table 1. The precision in

identifying grooming behavior was greater than 0.8 with all four test sets; however, the recall was relatively low with test sets 1, 2, and 4.

The F1 scores for each category in test sets 1, 2, 3, and 4 are shown in Table 2. Specifically, the F1 scores of the grooming category were

0.793, 0.432, 0.894, and 0.676 for test sets 1, 2, 3, and 4, respectively. The disparities in the F1 values among the test sets may be attributed

to the diversity of grooming behaviors or individual differences in the rats. Expanding the dataset could enhance identification perfor-

mance. The F1 scores of the resting category were 0.409, 0.851, 0.960, and 0.812 for test sets 1, 2, 3, and 4, respectively. This inconsistency

may be due to differences in the number of images in the test sets. The low accuracy in identifying the scratching category may be attrib-

uted to the insufficient number of images in the training, validation, and test sets. Overall, the RD model had an F1 score higher than 0.8 in

identifying five categories in the test set, and the confusion matrix results demonstrated the high correct detection rate of the RD model.

These results show that the contextual object labeling and enhanced NMS methods effectively improve the model’s accuracy in identifying

drinking and resting behaviors, as well as the overall detection performance of the model. Thus, this model may have good generalizability

in practical applications.

Figure 4. Dataset overview

(A) The number of instances of each category in the training set. Under normal conditions, the dominant behavioral activity is searching, and many instances of

this category are included in the training set. In addition, fewer gnawing and scratching behaviors are included.

(B) The percentage of instances in each image in the training set. The single-rat images in the training set accounted for 84.9% of the total images, and the two-rat

images accounted for 15.1% of the images.

(C) The number of images in the training, validation, and test sets. The training set includes manually selected images from multiple videos. The images in the

validation and test sets include continuously captured images taken at 1-s intervals.

(D) The number of images for each category in the validation set. A high proportion of the images in the validation set were in the searching and resting behavior

categories.

(E) The number of images for each category in the test set. The test set includes test sets 1, 2, 3, and 4. The test sets includedmore images of searching and resting

behaviors than images of other behaviors.
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Application of the developed RW system

The RW system developed in this study can be used to record behavior, position, and body temperature data of rats to further analyze the rat’s

behavioral patterns and body temperature changes. For example, in the analysis based on test set 1, we generated a fence diagram according

to each category of rat behavior every second, as shown in Figure 9A (See also Video S1). A stacked bar chart can also represent the proportion

of each behavior at 5-min intervals, as shown in Figure 9C. The time of occurrence and duration of each behavior can be fully represented

through such plots. Furthermore, heatmaps are typically used to determine in which specific areas rats tend to linger for extended periods.

This helps in identifying the rats’ preferred locations or specific activity areas, making it easier for researchers to comprehend the rats’ behav-

ioral patterns and spatial distribution, as shown in Figure 9B. In addition, the body temperature of each rat wasmonitored and recorded using a

thermal lens. The temperature records in test set 1 were processed with amoving average, and the change curve is shown in Figure 9D. A body

temperature change chart can be used to study the biological behavior of rats and explore the relationship between physiology and body tem-

perature changes. In physiological research, these graphs help analyze how internal and external factors affect a rat’s body temperature.

Experiment 1: Light cycle change experiment

The L/D group had a normal light cycle of 12 h light/12 h dark on the first day of the experiment. The results revealed that the major behavior

exhibited by the animals during the day was resting, and the activity frequency was low, with the most active time being night, as shown in

Figure 5. Comparison of the PR curves of the O and D models

(A–H) PR curves for each of the 8 behavioral categories. The AP values of the O and D models were compared, with the IoU threshold set to 0.5. The AP value of

the drinking category increased from 0.785 for theOmodel to 0.909 for the Dmodel. The AP value of the resting category increased from 0.869 for theOmodel to

0.911 for the D model. In addition, the AP values of the grooming, searching, and gnawing categories increased to varying degrees. However, the AP values for

the eating and rearing categories decreased slightly, and the precision of the scratching category score was insufficient.

(I) The average AP value of all categories with the IoU threshold set to 0.5 increased from 0.722 for the O model to 0.771 for the D model.
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Figure 10A. In the L/L group, the light cycle was 12 h light/12 h light on the second day of the experiment. Compared with that in the L/D

group, the activity frequency of the rats in this group decreased at night, indicating that light affects rat activity, as shown in Figure 10B.

We analyzed the differences in daytime and nighttime rat activity. The results revealed that during the daytime, the rats in both the L/L

and L/D groups were active less than 3.5 G 0.4% of the time regardless of the light cycle conditions. However, at night, the rats in the L/D

group were active 18.5 G 1.8% of the time, which was significantly greater than the value of 6.8 G 1.1% in the L/L group (p = 9.90 3 10�5,

t test, n = 7), as shown in Figure 10C. The results indicate that the behavioral distributions of the rats in the L/D and L/L groups were consistent

with the nocturnal habits of rodents. In addition, the natural habit of rodents is to rest or have low activity levels during the day. The analysis

revealed that resting behavior accounted for 61.8G 7.8–66.7G 2.9% of the behavior during the day. In contrast, in the L/D group, for which

the lights were turned off for 12 h at night, resting behavior accounted for only 32.7 G 4.7% of the overall behavior, as shown in Figure 10D.

However, when the light was turned on at night, the resting behavior of the rats in the L/L group significantly increased to 49.1G 3.0% of the

overall behavior (p = 0.001, t test, n = 7).

The thermal lens location data of the rats can be used to generate a heatmap of the locations of the rats in the home cage. The housing

cages were placed on a shelf against a wall in the housing room. We divided the housing cage into two areas to analyze the response of the

rats to brightness. Zone A represents the side closer to the wall, where the laminate blocks the indoor light, and the brightness is low. Addi-

tionally, zone B represents the area near the outside of the cage, which is brighter. The L/D group and L/L group were subjected to different

light cycle conditions on the first and second days, respectively. The heatmap shows that the activity levels of the rats in both groups were

lower during the day, and the preferred location was zone A of the housing cage, as shown in Figures 10G1 and 10G3. The rats in the L/D

group were active in zones A and B when the light was turned off at night, as shown in Figure 10G2. However, the rats in the L/L group

were affected by light when the light was turned on at night, and the preferred location was zone A of the housing cage, as shown in

Figure 10G4.

Figure 6. Comparison of the confusion matrix and behavior recognition results of the O model and the D model

(A) Confusion matrix of the Omodel. The detection rates of correctly predicted positive categories for the eating, rearing, and searching categories were greater

than 0.8. Since the behavioral posture features of these behaviors are very similar, the rate of incorrectly predicting the true resting category as the searching

category was as high as 0.91.

(B) Confusionmatrix of the Dmodel. The correct detection rates of the improved Dmodel for the drinking, eating, rearing, and searching categories were greater

than 0.85. The correct detection rate of the drinking category increased significantly from 0.67 to 0.90, which also caused the correct detection rate of the resting

category to increase significantly from 0.08 to 0.48.

(C) Representative image of the drinking category identified by theOmodel with the confidence threshold set to 0.001. The Omodel identified three objects but

did not correctly predict the drinking category.

(D) The same image as (C) was correctly identified by the D model. The D model identified two objects, one of which was correctly predicted as the drinking

category.

(E) Representative image of the resting category identified by theOmodel with the confidence threshold set to 0.001. TheOmodel identified two objects but did

not correctly predict the resting category.

(F) The same image as (E) was identified by the D model. The D model identified three objects, one of which was correctly predicted as the resting category.
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A detailed analysis was conducted to compare the location distribution differences between the rats in zones A and B when the lights

were turned off at night. The distribution of the locations of the rats in the L/D group in zones A and B were similar, indicating that the rats

were active and moved around the housing cage when the lights were off at night. However, when the lights were turned on at night, the

rats in the L/L group preferred zone A, which had less light, compared with those in the L/D group (p = 4.65 3 10�10, t test, n = 7), as

shown in Figure 10E. In addition, the thermal lens recorded the changes in the body surface temperature of the rats during the day

and night. The average body surface temperatures of the rats in the L/D group during the day and night were 30.8 G 0.32�C and

33.1 G 0.22�C, respectively. In contrast, the average body surface temperature of the rats in the L/L group was 31.1 G 0.16�C during

the day and 31.1 G 0.33 �C at night. These results indicate that under the standard light cycle, the body temperatures of the rats in

the L/D group were greater at night than during the day (p = 7.46 3 10�5, t test, n = 7). However, when the lights were on at night, there

was no significant difference in the body temperature of the rats in the L/L group at night and during the day (p = 0.93, t test, n = 7), as

shown in Figure 10F.

Overall, the results showed that in the L/D group under a standard light cycle, the rats exhibited typical nocturnal activity patterns

and rested more during the day. However, the activity levels of the rats in the L/L group with the lights turned on at night were signif-

icantly lower than those of the rats in the L/D group, resulting in no significant difference in the preferred positions of the rats in the L/L

group during the day or at night. In addition, the body temperatures of the rats in the L/L group were lower than those of the rats in the

L/D group when the lights were turned on at night, suggesting that changes in the light cycle impacted the body temperatures of

the rats.

Figure 7. Comparison of the F1 score and behavior recognition results of the D model and RD model

(A) F1-confidence curve of the D model based on the validation set. The behavioral category with the highest average F1 score of 0.64 corresponds to a

confidence level of 0.395. This indicates that the model achieves a good balance between precision and recall at this confidence threshold.

(B) F1 scores of the D and RDmodels with the confidence level set to 0.395. The validation set results revealed that the F1 score of the resting category increased

from 0.570 with the D model to 0.678 with the RD model and that that of the searching category increased from 0.742 with the D model to 0.766 with the RD

model. The average F1 score of all the behavioral categories also increased from 0.644 to 0.664.

(C) Representative image of the resting category identified by theD and RDmodels with the confidence set to 0.395. Six consecutive representative images of the

resting category were captured continuously at one image per second. The D model correctly identified only one image, whereas the RD model correctly

identified all six images as the resting category.

ll
OPEN ACCESS

iScience 27, 111223, November 15, 2024 9

iScience
Article



Experiment 2: Sucrose preference test

For the SPT, we analyzed and compared the results of three groups, namely, the W/W group, S/S group and W/S group. The experimental

process is shown in Figure 11A. The results showed that the rats in the W/W group spent 409G 106 and 644G 126 s drinking water from the

two sucrose-free water bottles, with no significant difference between groups (p = 0.48, t test, n = 8). On the second day, the amount of water

consumed by the rats from the two bottles of sucrose-containing water was significantly greater in the S/S group than in the W/W group

(2,055 G 347 and 2,374 G 406 s, respectively). On the third day, the rats in the W/S group spent 2,992 G 666 s drinking from the sucrose-

containing water bottle on the right side, which was significantly longer than the 166G 37 s spent drinking from the sucrose-free water bottle

on the left side (p = 3.563 10�3, t test, n = 8), as shown in Figure 11B. The sucrose preference of the rats in the W/S group was 94.3G 1.3%,

indicating that the rats clearly preferred sucrose, as shown in Figure 11C.

Some rats may have a position preference in the SPT. The effect of this position preference can be eliminated by changing the position of

the water bottle.40 The position of the water bottle was not changed during this experiment. The data obtained from the eight rats in theW/W

group and S/S group were analyzed individually, which revealed that some rats had different degrees of water bottle preference, as shown in

Figures 11D and 11E. However, the t test results of theW/W (p= 0.48, t test, n= 8) and S/S (p= 0.14, t test, n= 8) groups revealed no significant

difference in the time spent drinking from the left or right water bottle, as shown in Figure 11B. The purpose of theW/W and S/S groups in the

two experiments was to teach the rats the difference between water bottles with and without sucrose. Then, an SPT was conducted with the

W/S group. The results of this experiment revealed that the eight individual rats had clear preferences for sucrose in the right water bottle

containing sucrose, and the average sucrose preference was 94.3 G 1.3%, as shown in Figure 11F.

DISCUSSION
Enhancing behavior recognition through contextual object labeling

The bounding boxes in the object detection task must be manually annotated. The bounding box usually surrounds the object as closely as

possible to promote model generalization, which allows the model to learn the object features and reduce interference from background

information. However, the drinking behavior of the rats wasmisidentified as searching behavior. The inadequate accuracy in identifying drink-

ing behavior may be attributed to the model learning insufficient features. In actual images of rats showing drinking behavior, the image al-

ways includes a water bottle cap. Therefore, the contextual object labeling method was used to expand the bounding boxes for drinking

behavior to include rats and water bottle caps. Thus, the model learns the contextual features of water bottle caps, which helps enhance

its ability to identify drinking behaviors.

In addition, the improvedmodel couldmore accurately identify the resting category. The AP value of the resting category for theOmodel,

which does not include the water bottle cap feature, was 0.869 based on the validation set. In contrast, the AP value of the resting category for

the D model, which does incorporate the water bottle cap feature, increased to 0.911, as shown in Figure 5H. For the resting category, the O

model had a high precision value and a low correct detection rate of only 0.08, as shown in Figure 6A. The low correct detection rate was

caused by the low recall, meaning that the Omodel identified too many FNs in recognizing resting behavior. In the Dmodel, the recall value

for identifying resting behavior was improved, and the correct detection rate increased to 0.48. This finding indicates that the D model can

more accurately identify both drinking behavior and resting behavior, and the number of incorrect searching behavior identifications is

reduced, as shown in Figure 6B. In the SPT, accurate identification of drinking behavior by the model is critical. The identified behavior

and location information revealed which bottle the rat drank from and at what time. The sucrose preference of the rats was consistent

with the results of the typical SPT. Therefore, incorporating the bottle cap as a situational object into a rat’s bounding box is a reasonable

approach for improving the accuracy of the model in identifying a rat’s drinking behavior. The results of this experiment verified that the

model is practical and can simulate human object recognition in the real world.

Figure 8. Evaluation of the RD model based on the test set

(A) The F1 scores of the RD model were evaluated across the four subsets of the test set. The F1 scores of the drinking, eating, rearing, searching, and resting

categories were all greater than 0.8 based on all test sets. The average F1 score across all categories was 0.756.

(B) Confusion matrix of the RD model. The confusion matrix results show five behavioral categories with correct detection ratios higher than 0.8.
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Enhancing behavior recognition with a modified NMS strategy

In the CNN layer, the input image is processed to extract features and obtain visual information about the different edges, textures, and po-

sitions of an object on the basis of its appearance and characteristics. The feature information extracted from images showing highly similar

rat behavioral postures was insufficient as training data, and themodel could not achieve good recognition accuracy. According to the behav-

ioral classification of the rats in this study, the postures of resting and searching behaviors were very similar. The modified NMS strategy con-

siders the stationary states of objects as process feature and adjusts the confidence scores of the resting and searching categories to improve

accuracy. In addition to resting behavior, various rat behaviors involve static postures that are continuous across frames. We set the optimal

parameters and thresholds on the basis of the detection results obtained based on the verification set to achieve the best accuracy and thus

improve the recognition performance of themodel. The accuracy and generalizability of themodified RDmodel were confirmedbased on the

test set, as shown in Figure 7B. We also observed that the F1 score of the resting category based on test set 1 was lower than the F1 scores of

this category based on the other three test sets, which may be due to the different numbers of samples in each test set. The F1 score of the

resting category based on all test sets was 0.863, which was higher than the 0.678 result based on the validation set. This may be related to

individual differences among rats, and increasing the number of samples in the dataset may improve the robustness of the model.

The model’s accuracy in identifying resting behavior was a critical indicator in the light cycle change experiment, given the close correla-

tion between resting behavior and lighting conditions. The experimental results showed that the model successfully identified resting behav-

iors with or without light at night and fully reflected the natural habits of the rats. Therefore, specific optimization processesmay be required in

object detection tasks in certain scenarios to ensure better detection of target objects. The modified NMS strategy considers the character-

istics of a rat’s stationary state to optimizemodel performance. Thismethodwas useful for improving the recognition accuracy of rat behavior.

These results demonstrate the value of our approach in practical applications, indicating that our model offers a promising solution for similar

behavior recognition tasks.

Consistency of experimental validation

We conducted two animal experiments to verify the usability of the RW system in practical applications. In related research on light cycle

changes, Depres-Brummer et al.41 reported that long-term light cycles can induce complete suppression of body temperature and activity

rhythm changes. Our experimental results are consistent with these findings, showing that light reduces the active behavior and body surface

temperature of rats and increases their resting behavior, as shown in Figures 10C and 10F. In addition, in the L/D group with a standard light

cycle, resting behaviors during the day accounted for 61.8–66.7%of all behaviors. In contrast, resting behaviors accounted for only 32.7% of all

behaviors at night. This result is consistent with the findings of Ikeda et al.,42 who reported that the total percentage of non-rapid eyemoment

(NREM) and rapid eye movement (REM) sleep during the daytime was 68%, whereas the percentage at night was 35.0%.

Relevant studies have shown that the body temperatures of rats at night are greater than those during the day43–45 and that nighttime light

stimulation can decrease body temperature.46 This finding is consistent with our experimental results, which showed that the rats’ body tem-

perature increased when the light was turned off at night. In contrast, the rats’ body temperatures were reduced by light stimulation when the

light was turned on at night, as shown in Figure 10F. However, the surface body temperatures of different body parts of rats vary, with higher

surface temperatures around the eyes and ears and lower temperatures on the back and tail.47,48 For rats that weremore active at night, when

the light was turned off, the chance of the thermal lens detecting the areas around the eyes and ears may have increased, thereby increasing

the average temperature. However, this finding was not confirmed in this study.

Table 1. Analysis of precision and recall of the RD model based on the test set

Class

Test set 1 Test set 2 Test set 3 Test set 4 All test sets

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Drinking 0.920 0.983 0.948 0.879 0.918 0.966 0.927 0.981 0.930 0.943

Eating 0.913 0.803 0.971 0.990 0.978 0.929 0.963 0.945 0.948 0.891

Grooming 0.918 0.697 0.899 0.284 0.974 0.826 0.959 0.518 0.935 0.557

Rearing 0.945 0.934 0.995 0.977 1.000 0.996 0.997 0.982 0.976 0.965

Gnawing 0.651 0.481 0.556 0.294 0.524 0.423 0.433 0.743 0.592 0.487

Searching 0.894 0.912 0.863 0.746 0.936 0.947 0.838 0.869 0.883 0.874

Resting 0.257 1.000 0.740 1.000 0.937 0.983 0.809 0.817 0.799 0.938

Scratching 0.419 0.464 0.000 0.000 1.000 0.068 0.542 0.263 0.500 0.168

All class 0.740 0.784 0.747 0.646 0.908 0.767 0.808 0.765 0.821 0.728

The precision and recall values of the drinking, eating, and rearing categories were consistently high across all test sets, with the precision values ranging from

0.913 to 1.000 and recall values ranging from 0.803 to 0.996. In contrast, the precision and recall of the gnawing and scratching categories were lower, with mean

values ranging from 0.168 to 0.592 across all test sets, indicating challenges in accurately classifying these behaviors. The aggregated results for all categories

revealed average precisions ranging from 0.740 to 0.908 across individual test sets, with an overall average precision of 0.821 across all test sets.
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In studies related to the SPT, Verharen et al.40 studied the impact of sucrose preference on mouse licking behavior. The results revealed

that the average degree of sucrose preference was 90.5%, and Liu et al.,49 in work related to chronic mild stress (CMS) research, reported that

sucrose preference ranged from 70 to 80%. According to our experimental results, rats spent significantly more time drinking water from bot-

tles containing sucrose than from bottles without sucrose. Additionally, the sucrose preference was 94.3%, as shown in Figure 11C, which

confirmed the rats’ preference for sweet substances. This experiment demonstrated the application potential of the proposed system in su-

crose preference testing. The time spent drinking from the two water bottles was determined by identifying the drinking behavior and loca-

tion of the rats, and this innovative approach provides a fast, accurate, and objective analysis method for behavioral and neuroscience

research. In conclusion, these two animal experiments verified the reliability and usability of the RW system for use in rat behavioral

experiments.

Position tracking performance

The location tracking performance of a model is affected by various factors, and well-designed hardware settings are required to achieve

optimal performance. Using a camera for position tracking is a simple and accurate method. However, when a camera is installed at a low

position in the cage, the camera view could easily be covered by bedding or blocked by nest materials due to animal digging behavior.

The multifunctional camera we designed was installed higher in the cage. The camera view was not obscured by environmental enrichment

objects or nest materials in the cage, and a complete view of the cage could be continuously obtained. In addition, when animals hide in

objects or nestingmaterials, part of the body view is blocked and cannot be identified. The thermal lens used in this work effectively detected

the positions and temperatures of the animals through the gaps and heat conduction of the nest material. In the light cycle change exper-

iment, a thermal lens was used to track the rat’s position for 48 h, allowing a complete understanding of the rat’s position within the cage, as

shown in Figure 10G. The thermal lens data could still be used for position tracking without a complete view of the rat, thereby verifying the

distribution of the nocturnal activities of the rats in the cage. We applied the thermal lens in a home cage with environmental enrichment

objects to make the RW system robust for tracking rats.

Impact of dataset independence on performance

The training set is used to train the model in the model-building process, the validation set is used to fine-tune the parameters and prevent

overfitting, and the test set is used to evaluate the model’s performance with unseen data. Ensuring the independence and representative-

ness of these datasets is critical for the practical applicability of the model. Maleki et al.50 verified that data samples from the same individual

may be randomly assigned to the training and validation sets, resulting in data leakage. Data samples of the same individuals should not over-

lap in the training, validation, or test sets to prevent data leakage and maintain data independence.48,50

The training, validation, and test sets containing rat data used in this study were all extracted from videos. Behavior is typically character-

ized by a series of continuous movements. When manually selecting images to form a dataset, there was a tendency to densely oversample

the same rat, leading to selected images that were too similar and correlated. Randomly dividing the dataset into training and validation sets

for deep learning tasks is a suitable approach for large-scale datasets with sufficient diversity. When we randomly divided the dataset into

training and validation sets at a ratio of 8:2, the mAPs of all the categories exceeded 0.9. The high accuracy was attributed to the correlation

between the datasets. Therefore, ensuring that the same data do not appear in the training and validation sets helps to prevent overly high

accuracy, which may impact the model’s generalizability in practical scenarios, which may involve small datasets or datasets from a few

Table 2. Analysis of the F1 scores of the RD model based on the test set

Class

Test set 1 Test set 2 Test set 3 Test set 4 All test sets

Instances F1 score Instances F1 score Instances F1 score Instances F1 score Instances F1 score

Drinking 117 0.950 124 0.912 58 0.941 52 0.953 351 0.936

Eating 223 0.854 103 0.981 98 0.953 109 0.954 533 0.919

Grooming 274 0.793 313 0.432 178 0.894 225 0.676 990 0.698

Rearing 572 0.939 215 0.986 263 0.998 309 0.990 1359 0.970

Gnawing 233 0.553 17 0.385 52 0.468 35 0.547 337 0.534

Searching 2125 0.903 1491 0.800 1737 0.941 1813 0.853 7166 0.879

Resting 28 0.409 1303 0.851 1170 0.960 1038 0.812 3539 0.863

Scratching 28 0.441 34 0.000 44 0.128 19 0.345 125 0.251

All class 3600 0.730 3600 0.668 3600 0.785 3600 0.766 14400 0.756

The recognition performance of the model was evaluated based on the four test subsets. The F1 scores of the grooming category ranged from 0.432 to 0.894

across test sets 1, 2, 3, and 4. The observed variation in valuesmay be attributable to the diversity of grooming behaviors or individual differences among rats. The

F1 scores of the resting category ranged from 0.409 to 0.960 across test sets 1, 2, 3, and 4. The variation in scores may be influenced by the difference number of

images in test set 1.
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individuals. The validation sets used for deep learning tasks are often sampled randomly and widely. In this study, we partitioned the training

and validation sets on the basis of samples collected during different periods. Since themodel utilizes themodifiedNMS strategy, the resting

behavior over continuous frames is considered in the recognition process. Therefore, the validation set consists of continuous images ex-

tracted from two 1-h videos. However, the RW system developed in this study, which was trained with a small-scale dataset, achieved great

accuracy and was successfully applied in practical experiments.

Evaluation of the impact of imbalanced datasets

Imbalanced datasets are challenging for constructing deep learning models. Some classes have far more samples than other classes do,

which is a common and expected problem in the real world. Similarly, this problem arose with the training and validation sets used in this

study. The dataset included significantly more samples in the searching category than in the other categories; as a result, the model tended

to predict searching behavior, as searching was themajority category. Undersampling is often used to balance datasets by removing samples

from categories with the most data so that the number of samples is similar among all the categories, thus improving model performance.

However, thismethodmay lead to the loss of important feature information, ultimately affectingmodel accuracy. In our case, we attempted to

use undersampling to process the searching category and rebuild the model based on the undersampled dataset; however, this led to a

decrease in accuracy based on the validation set. Consequently, we decided to retainmany samples in the searching category and not change

the number of samples in the training set. Addressing data imbalance is a complex task. For categories that occur less frequently in the real

world, more time and effort are required to collect sufficient representative samples. This is crucial for establishing a comprehensive and high-

quality training set.

The advantages of the RW system

We comprehensively compared the advantages and characteristics of the RW system with those of other behavior recognition systems, as

shown in Table 3. The first advantage is that the RW system uses only deep learning technology to identify rat behavior in real time without

the use of any sensors. Moreover, real-time location tracking and body temperature detection can be achieved with the RW system. The sec-

ond advantage is its suitability for installation in a standard conventional cage. The rats can be monitored in the home cage on the original

Figure 9. Test set 1 was analyzed to generate typical graphical representations

(A) Fence chart. Each category of rat behavior was plotted at 1-s intervals to present the occurrence time and duration of each behavior (See also Video S1).

(B) Heatmap. This heatmap can be used to determine a rat’s preferred location or specific activity area.

(C) Stacked bar chart. For each behavioral category, the number of times each behavior occurred every 5 min was counted to evaluate the pattern and time

distribution of the rat behavior.

(D) Body surface temperature change chart. The moving average curve of the body surface temperature data detected by the thermal lens was used to

understand body temperature changes over time.
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Figure 10. Experiments to determine the effects of light cycle changes on rats

(A) Activity and rest distribution of the L/D group under a normal light cycle. The main behavior exhibited by the rats during the day was resting, and their activity

frequency was low, while the rats were more active at night. Data are represented as mean G SEM.

(B) Activity and rest distribution of the L/L group under 24 h of light. Compared with that of the rats in the L/D group, the activity frequency of the rats in the L/L

group decreased significantly due to nighttime light exposure. Data are represented as mean G SEM.

(C) Comparison of the percentage of active time during the day and night. For the rats in the L/L and L/D groups, which had different light cycle conditions, the

rats were active in the daytime less than 3.5 G 0.4% of the time. At night, the rats in the L/D group were active 18.5 G 1.8% of the time, which was significantly

greater than the activity level of the rats in the L/L group (6.8 G 1.1%)(p = 9.90 3 10�5, t test, n = 7). Data are represented as mean G SEM.

(D) Comparison of the percentage of rest time during the day and night. There was no significant difference in the percentage of rest time between the L/L and

L/D groups during the 12 h of daytime lighting. However, the percentage of rest time in the L/L group when the lights were turned on at night was significantly

greater than that in the L/D group. Data are represented as mean G SEM.

(E) Comparison of the location distribution within the cages at night with the lights turned off. The space in the housing cage was divided into two zones. Zone A

was close to the wall side, and the brightness was lower because the area was shielded. Zone B represents the area close to the outside of the rack, which is

brighter. There was no significant difference in the time that the rats in the L/D group spent in zone A or zone B (p = 0.99, t test, n = 7). However, the rats in

the L/L group, which were exposed to light at night, spent significantly more time in zone A to reduce their exposure to light (p = 4.65 3 10�10, t test, n = 7).

Data are represented as mean G SEM.

(F) Comparison of body temperature changes during the day and night. There was no significant difference in the daytime average body surface temperature

between the L/D and L/L groups (p = 0.19, t test, n = 7). The average body surface temperature of the rats in the L/D group was significantly greater than that of

the rats in the L/L group at night (p = 6.313 10�5, t test, n = 7), indicating that the body temperature of the rats was greater at night than during the day under a

normal light cycle. Data are represented as mean G SEM.

(G) Heatmap of the position distribution of the rats affected by brightness in the housing cage.
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cage rack without the need to move the home cage. This reduces cage costs and time needed for animal adaptation. This design is more

convenient for researchers, whereas conventional systems have complex multisensor designs and space-consuming arrangements. The third

advantage is the physiological monitoring of body surface temperature with the RW system. Real-time monitoring of rat body temperature

changes and behavioral responses helps researchers gain amore comprehensive understanding of the physiological states of rats. The fourth

advantage is that the RW system uses only a single multifunction camera that is easy to install. The camera is designed to be lightweight,

portable, space-saving, and highly scalable. This approach can easily be scaled up and has better space utilization than conventional systems,

which is advantageous for conducting high-throughput experiments.

Additionally, we compared the accuracy of the RW system with that of seven behavior recognition systems, as presented in Table 4. Each

system can identify various behavior categories, utilizing a variety of evaluationmetrics such as the F1 score and confusionmatrix.While direct

numerical comparisonsmay be biased due to these discrepancies, the results still offer valuable insights. The F1 score is ametric that balances

precision and recall. The value of each cell in the confusion matrix represents the proportion of instances in each true class that are classified

into a given predicted class. The F1 scores and confusion matrix values of the RW system for drinking, eating, and rearing behaviors ranged

from 0.92 to 0.97 and 0.89 to 0.96, respectively. In contrast, the F1 scores and confusion matrix values of the other four systems were between

0.76 and 0.95 and between 0.42 and 0.79, respectively. This demonstrates the good performance of the RW system and its distinct advantages

in recognizing these behaviors. In terms of grooming behavior, the F1 score of the RW systemwas 0.70, which is comparable to the F1 score of

0.70 reported in a 2020 study. However, the confusion matrix value of 0.56 was lower than the range of 0.70–0.74 obtained with the other

systems. This suggests that our system may require further optimization under specific conditions. Resting or sleep behavior accounts for

a substantial portion of daily activities of rodents and is generally well detected by most recognition systems. The RW system demonstrated

an F1 score of 0.86 for resting behavior, with a confusionmatrix value of 0.94. The other systems presented F1 scores ranging from 0.85 to 0.87

and confusion matrix values between 0.85 and 0.94, indicating that their performance in this category was comparable to that of the RW sys-

tem. Searching and sniffing behaviors were combined into a single category for cross-system comparison. The RW system achieved F1 scores

and confusion matrix values of 0.88 and 0.87, respectively, for this category. These results exceed the accuracy range of 0.66–0.70 observed

with the other two systems. The RW system does not include a distinct category for walking behavior. Instead, walking behavior is included in

the default searching category. The four recognition systems in the comparison table all include walking categories, with accuracies ranging

from 0.55 to 0.86. This suggests that walking behavior is a category that could be included in the RW system in the future. The accuracy of the

RW system in detecting gnawing and scratching behaviors was suboptimal. Since these behaviors were not included in the recognition tasks

of other systems, a direct comparison was not feasible. In conclusion, despite the use of different evaluation metrics across systems, our sys-

tem demonstrated outstanding performance in identifying behaviors, particularly drinking and eating. This comparison highlights the

strengths of the RW system and identifies potential areas for improvement, providing valuable insights for future research.

In summary, the RW system has several notable advantages, demonstrating its value in rat behavior research. Its use of a single multifunc-

tional camera, coupled with integrated physiological monitoring systems, offers a streamlined and space-efficient solution that is readily

deployable in standard conventional cages, without the need for additional sensors or complex installations. Furthermore, the RW system

demonstrated superior accuracy in the recognition of key behaviors such as drinking, eating, and rearing. These strengths demonstrate

that the RW system is a highly promising research tool with significant potential to advance rodent behavioral studies.

Future work

The F1 scores of some categories based on the validation and test sets were low. The reason may be that the number of data samples is too

small, the near-infrared image quality is poor, or the image blur limits the judgment ability of the human annotator. In future work, the use of

high-performance edge devices to increase data sample sizes and acquire high-resolution images could support the development of large-

scale models, potentially resulting in a significant improvement in accuracy. Additionally, transitioning from wired to wireless data transmis-

sion could increase the convenience of installing the system, representing a potential research direction. Photoacoustic technology has been

widely used in preclinical research, including detecting metastatic tumors,58 evaluating the correlation between neural activity and hemody-

namics,59,60 and performing functional assessments of arthritis.61 However, studies have shown differences in hemodynamic and neurological

responses between anesthetized and freely moving rats.62–64 Thus, wearable photoacoustic devices could be integrated into the RW system

to reveal the correlation between neural activity and behavioral changes in freely moving rats; we are currently developing such a system.

Conclusion

In this study, an RW system suitable for application in a familiar low-pressure home cage environment was developed. The RW system is a

multifunctional design created by using 3D printing and an edge device that enables real-time rat behavior recognition, location tracking,

and body temperature change measurements via a GUI tool. The improved recognition model was constructed on the basis of the

YOLOv5s neural network architecture. In this process, we used contextual object labeling and a modified NMS scheme to increase the

Figure 10. Continued

(G1 andG3)When the light was turned on during the day, the rats in the L/D group and L/L group preferred zone A of the housing cage and stayed as close to the

wall side as possible to reduce exposure to light.

(G2) When the light was turned off at night, the rats in the L/D group had footprints distributed in both zone A and zone B.

(G4) When the nighttime light was turned on, the rats in the L/L group preferred zone A to reduce their exposure to light.

ll
OPEN ACCESS

iScience 27, 111223, November 15, 2024 15

iScience
Article



accuracy of detecting the drinking and resting categories. The accuracy of the model based on the test set and the F1 scores of the drinking,

eating, rearing, searching, and resting categories were greater than 0.8, with the F1 scores for the drinking, eating, and rearing categories

exceeding 0.9. The average F1 score across all categories was 0.756. We conducted two experiments to verify the practicality of the RW sys-

tem in behavioral research. In the light cycle change experiment, the rats in the L/D group, with the lights turned off at night, were active

18.5G 1.8% of the time, which was significantly greater than the 6.8G 1.1% value in the L/L group (p = 9.903 10�5, t test, n= 7). These results

Figure 11. Analysis of the sucrose preference test results

(A) Schematic diagram of the experimental procedure. TheW/W group was given two bottles of sucrose-free water on the first day, and the S/S group was given

two bottles of 5% sucrose-containing water on the second day. TheW/S group was given one sucrose-free water bottle and one sucrose-containing water bottle

on the third day to test the preferences of the rats.

(B) Comparison of the time spent drinking water from the left and right water bottles by the rats in each group. The drinking category was identified by the RW

system every second according to the position of the rat relative to the positions of the two water bottles, and the time spent drinking water from the water bottle

was obtained. There was no significant difference in drinking time between the two sucrose-free water bottles in theW/W group (p = 0.48, t test, n = 8). The time

spent drinking water containing sucrose from the two bottles in the S/S group was greater than that in the W/W group. The time spent drinking water from the

right sucrose-containing water bottle in theW/S group was significantly greater than that spent drinking from the left sucrose-free water bottle (p = 3.563 10�3, t

test, n = 8). Data are represented as mean G SEM.

(C) The sucrose preference of the rats in the W/S group was 94.3 G 1.3%. The results showed that the rats clearly preferred sucrose. Data are represented as

mean G SEM.

(D and E) Analysis of water bottle preference of individual rats in theW/Wgroup and S/S group. Individual ratsmay have different preferences for the left and right

water bottles, but no consistent preferences among individual rats were observed.

(F) Analysis of sucrose preference of individual rats in the W/S group. Individual rats showed a preference for sucrose by consistently choosing the right water

bottle containing sucrose.

ll
OPEN ACCESS

16 iScience 27, 111223, November 15, 2024

iScience
Article



are consistent with the nocturnal habits of rodents. In the SPT, the times spent drinking from the two water bottles were obtained separately

by analyzing drinking behavior and location data. The results revealed that the sucrose preference was 94.3 G 1.3%, indicating that the rats

clearly preferred sucrose, which is consistent with the known preference of rats for sweet substances. Overall, this research represents an

important breakthrough in rat behavior recognition and provides approaches for similar behavior recognition tasks. The RW system is ex-

pected to become a research tool with great application potential.

Limitations of the study

A multifunctional camera is installed in the cage to obtain a complete image of the cage at a wide angle of approximately 45�. However, it is
difficult for humans to determine a rat’s behavior category when the rat is positioned below or facing away from the camera. During the exper-

iment, the use of a singlemultifunctional camera was sufficient to determine the rats’ behavioral categories and body temperatures. However,

some behavioral experiments require identifying rat behavior in all directions to obtain comprehensive behavioral data without omissions.

Multiple cameras must be deployed to address this issue. Owing to the social nature of rats, housing individual rats in single cages should

be avoided unless required by the experimental design. Currently, the RW system is applicable only in single-housing experiments. However,

recognizing the behaviors of multiple rats is challenging because of the complex social behaviors exhibited by rats. The increased activity of

multiple rats in the same enclosure results in greater occlusion within the FOV, complicating model identification and tracking. Incorporating

multiple cameras from different angles could mitigate these issues.

The RW system is currently suitable for conventional rat housing cages of standard sizes. Adapting the system to different housing con-

figurations would require adjustments to the camera’s FOV and positioning tomaintain similar heights and angles. Additionally, if other hous-

ing systems use feeders or water bottles with different appearances, the behavior identification accuracy will be affected. In addition, to apply

the RW system to rats with different fur colors, the amount of training set data should be increased to improve the model’s generalizability.

However, for mice with large differences in appearance and size, a new dataset specifically for the relevant mice would be needed to develop

a suitable model. Therefore, future work should focus on developing an extended version of the system that incorporates multiple cameras.

Additional research objectives include creating models capable of recognizing multiple individual rats and expanding the system to other

species. Moreover, a meticulous labeling process is crucial, as errors due to differences between observers or laboratories can occur.9–11

In this study, the training, validation, and test sets were all annotated by the same researcher. While this method guarantees consistency

in labeling judgments, it also introduces a potential systemic bias in model predictions. To address this issue, multiple researchers could

annotate the dataset according to a defined ethogram in future research. Statistical analysis of interobserver variability could be performed

Table 3. Comparison of characteristics between the RW system and other behavior recognition systems

Reference This work 201851 202052 201353 201054 201955 201256 201657

Classes of behaviors 8 9 4 or 7 10 8 2a 2a 1a

Classification

technology

YOLOv5 SVM with

RBF kernel

SVM Image

processing,

ML

SVM-HMM Image

processing

Sensors,

infrared

RFID, infrared

Real-time behavior

recognition

Real-time Offline Offline Near

real-time

Offline Offline Real-time Offline

Operational Space Small

footprint

Large

footprint

Large

footprint

Large

footprint

Small footprint Small

footprint

Small footprint Small footprint

Home-cage Design Conventional

cage

Conventional

cage

Open-field Proprietary

cage

Conventional

cage

Proprietary

cage

Conventional

cage

Conventional

cage

Detection quantity

of animals

Single Single Single Single Single Single Single Multiple

Camera perspective Front view Top view Top view Top view Side view Top view – Top view and

side view

Tracking detection Yes Yes Yes No No Yes Yes Yes

Body temperature

detection

Yes No No No No No No No

ML: Machine learning.

The main differences between the RW system and other behavioral recognition systems included the recognition technology, system functions, and operating

space.51–57 The RW system uses only deep learning technology to identify rat behavior in real time without the use of any sensors; in addition, the RW system can

track location and body temperature simultaneously. Moreover, the RW system can easily be installed in a standard conventional cage, thus reducing costs and

adaptation time. Additionally, body surface temperature and behavioral responses can be monitored with the RW system, providing comprehensive physiolog-

ical insights. The single multifunction camera is easy to install, portable, and scalable, making it ideal for high-throughput experiments.
aApplication scenarios can broaden behavioral categories.
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to select appropriate annotators for establishing the ground truth labels.18 Alternatively, in cases of discrepancies among annotators, a

consensus model can be created by combining the labels from the best annotators on the basis of the majority vote.65 The incorporation

of these approaches will enhance the objectivity and reliability of annotations in future studies.
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Table 4. Comparison of the accuracy of the RW system and other behavioral recognition systems

Reference This work 201851 202052 201353 201054 201955 201256 201657

Evaluation

metric F1 score

Confusion

matrix F1 scorea
F1 score

(4 classes)

Confusion

matrix

Confusion

matrix

Custom

metric CageScore�
Spearman’s

rank coefficient

Drinking 0.94 0.94 – – 0.42 0.72 – – –

Eating 0.92 0.89 – – 0.79 0.75 – – –

Grooming 0.70 0.56 0.60 70.3% 0.74 0.70 – – –

Sup.

Rearing/Uns.

Rearing

0.97 0.96 0.85/0.76 95.1% 0.70 0.70 – – –

Gnawing 0.53 0.49 – – – – – – –

Searching/

Sniffing

0.88 0.87 0.66 – 0.70 – – – –

Resting/Sleep 0.86 0.94 0.85 87.3% 0.00 0.94 90.5% 85-90% –

Scratching 0.25 0.17 – – – – – – –

Walking – – 0.68 70.9% 0.86 0.55 – – –

Hang – – – – – 0.92 – – –

Bending – – 0.81 – – – – – –

Micro-motion – – 0.70 – – 0.83 – – –

Twitch – – – – 0.81 – – – –

Activity – – – – – – – – 0.95

The RW system demonstrated excellent performance in detecting drinking, eating, and rearing behaviors, achieving F1 scores between 0.92 and 0.97 and confu-

sionmatrix values ranging from 0.89 to 0.96. In comparison, for other systems, the F1 scores ranged from 0.76 to 0.95, and the confusionmatrix values ranged from

0.42 to 0.79. For grooming behavior, the F1 score of the RW system was 0.70, which is consistent with values reported for other systems. However, its confusion

matrix value of 0.56 is lower than the 0.70 to 0.74 range obtained with other systems. With respect to resting or sleeping behavior, the performance of the RW

systemwas comparable to that of the other systems, with an F1 score of 0.86 and a confusionmatrix value of 0.94. The F1 scores of the other systems ranged from

0.85 to 0.87, and the confusion matrix values were between 0.85 and 0.94. For detecting searching and sniffing behaviors, the RW system achieved an F1 score of

0.88 and a confusion matrix value of 0.87, surpassing the 0.66 to 0.70 accuracy range reported by other systems. The detection of gnawing and scratching be-

haviors by the RW system was suboptimal, and direct comparisons with other systems were not possible because these behaviors were excluded from their

recognition tasks.51–57

aF1 score is the average of two test sets.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All procedures were performed according to the Institutional Animal Care and Use Committee (IACUC) of the National Health Research In-

stitutes (NHRI), Taiwan (IACUC number: NHRI-IACUC-111017). All animals were maintained in a housing environment with a constant tem-

perature range of 23�C–25�C, a relative humidity range of 40–60%, a regular 12/12 h light/dark cycle, and ad libitum access to food and water.

Standard rat cages suitable for housing one to two rats per cage were used in this study.When a single rat was housed in a single cage, two or

more environmental enrichment items were provided to stimulate normal behavior and ensure the welfare of the animal. The environmental

enrichment items used in this study were mainly nest materials and wooden strips. The training and verification sets included images of five

healthy female Sprague‒Dawley rats aged 5 to 16 weeks that were transferred from other experiments. Two animal experiments were con-

ducted in this study: 1) a light cycle change experiment and 2) a sucrose preference test. The same 8 female Sprague‒Dawley rats aged 16 to

17 weeks were used in both experiments, and the animals were sourced from BioLASCO Taiwan Co., Ltd., Taipei, Taiwan. One day before the

experiment, each rat was individually housed, and a multifunctional camera was installed to allow the rats to acclimate to the environment.

METHOD DETAILS

Hardware of the multifunctional camera

The RW system hardware consisted of a multifunction camera and an edge computing device. Figure 1A presents an exploded view of the

multifunction camera, showing all the components in detail, including an infrared lens (IC board model: LRCP5055W), six near-infrared lights,

and a thermal lens (model: Lepton 3.5). The thermal lens has a longwave infrared range of 8–14 mm and a pixel size of 12 mm. The exterior and

bracket of the camera weremanufactured using a 3Dprinter (model: KINGSSEL K-3030). Themultifunctional camerawas installed in the home

cage and fixed on the cage lid with a bracket and a screw at a 45-degree angle to monitor the rats. The wire was connected to a Jetson Nano

edge device (model: NVIDIA Jetson Nano Developer Kit) outside the cage.

A near-infrared (NIR) lens with a field of view (FOV) > 160� was used for real-time identification of rat behavior. The complete FOVwithin the

cage can be obtained, including images of the feed and water bottles located on the cage lid, as shown in Figure 1B. In experimental animal

housing environments, a light cycle is generally implemented to simulate day and night. The NIR lens is set to display near-infrared images

regardless of whether there is light in the cage and can bemonitored throughout the day without being affected by changes in the light cycle.

The thermal lens had an FOV of 57� and was used to track the rat’s body temperature and location in real time. A photo of the actual instal-

lation of the camera in the housing cage is shown in Figure 1C. The camera was easy to install and fits in rat cages with standard sizes (26.03

47.6 3 20.3 cm, WxDxH). The modified cage lid reduced the problem of the feeder position blocking the view of the rat.

Program for determining location and body surface temperature

The RW system can be expanded for research applications and installed in multiple housing cages. The system automatically detects and

records behavioral and physiological data of the rats. Researchers canmonitor these data online in real time, helping reduce the burden asso-

ciated with manual observation, as shown in Figure 2A. We used Python66 and PyQt567 to develop a graphical user interface (GUI) software

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: organisms/strains

Rat: Sprague–Dawley LASCO N/A

Software and algorithms

YOLOv5 open source website https://github.com/ultralytics/yolov5

Python Python software foundation https://imagej.nih.gov/ij/

OpenCV Python Data Analysis Library http://opencv.org

PyQt Riverbank Computing https://www.riverbankcomputing.com/software/pyqt/

LabelImg Tzutalin https://github.com/HumanSignal/labelImg

Jetson Nano Developer Kit SD Card Image NVIDIA Corporation https://developer.nvidia.com/jetson-nano-sd-card-image

Microsoft� Excel� LTSC MSO (16.0.14332.20771) Microsoft Office 2021

Other

Source code This paper https://github.com/hijay31/The_RW_system
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tool for the RW system. This tool provides a convenient operation interface and real-time detection information, including behavioral recog-

nition, location tracking, body temperature data, and pie charts of the proportion of each behavior. The body temperature detected by the

RW system is the body surface temperature obtained through a thermal lens. The video and related data are stored in MP4 and CSV formats

for further analysis, as shown in Figure 2B. TheGUI runs onWindows and Linux. Figure 2C shows the programprocess of the RWsystem.When

the multifunction camera is initiated, the NIR lens acquires the image. Then, an improved model based on YOLOv5 is implemented on the

edge device, which can instantly identify a rat’s behavior through deep learning technology and automatically display the boundingbox of the

area in which the recognized behavior was performed. Additionally, thermal lens images are used to obtain coordinates and pixel values to

calculate the position and body temperature of the rat. Finally, when integrated into the GUI, the rat’s behavior, body temperature, and po-

sition data can be displayed in real time, and historical behavior and body temperature information can be displayed using raster graphs,

histograms, and curve graphs.

The rat cage was placed on a cage rack close to the wall, resulting in low light in the area near the cagewall. In addition, turning off the light

at night resulted in no light in the cage; however, the surface temperature of the rat could still be detected with thermal imaging regardless of

the brightness of the light. We used OpenCV68 to control the temperature to a maximum of 42�C and a minimum of 29�C for the input tem-

perature array. The aim of this step was to prevent interference from temperature values in the thermal images that clearly did not represent

the rat’s body temperature. Then, we performed image binarization, dilation, and erosion processing to obtain the center coordinates of the

rat bounding box. A threshold for the pixel distance of the rat’s movement was set to reduce the potential of unstable position changes, and

unstable detection values higher than the threshold were filtered as outliers and not included in calculations. The 45-degree image was pro-

cessed via checkerboard correction and perspective transformation to obtain a top-view image, which is better for visualizing the position of

the rat.

The bounding box of the rat was obtained by processing the thermal image with OpenCV. Two modes were used for body temperature

detection: in one mode, the center coordinate of the bounding box was used as the detection coordinate; in the other mode, the highest

temperature value in the bounding box was used as the detection coordinate. The output temperature value was calculated from themoving

average of the temperature values of the detected coordinates. A threshold for the moving distance of the coordinates was also set. The

detected coordinate values higher than the threshold were filtered as outliers, and a new coordinate was obtained from the next frame

for use in calculations.

Animal behaviors are complex and diverse. We defined eight behavioral categories for this study with reference to common behavioral

classifications in behavioral research. The categories included drinking, eating, grooming, rearing, gnawing, searching, resting, and scratch-

ing. Sniffing behavior is a major activity in the daily lives of rodents.69 We classified sniffing behavior in the searching category and defined

searching as the default behavior, which included unclassified behaviors and partial images with limited viewing angles. The behavior clas-

sification diagram is shown in Figure 3. Multiple behavioral postures were classified as grooming. Rodent self-grooming behavior has a com-

plex and sequential structure consisting of repetitive stereotyped behaviors. The grooming behavior includes paw paddling around the nose

in the first phase, facial grooming in the second phase, bilateral paddling backward and upward with both paws in the third phase, and body

grooming in the fourth phase.70,71 Furthermore, tail and genital grooming can often be observed in rodents as part of their general grooming

behavior.72

Dataset structure and sources

The training set consisted of images of one to two rats per cage collected from the cage racks of the housing room between May 2022 and

December 2022. A multifunctional camera installed in the home cage collected a total of 34 videos, each with a duration of 1 h. In each video,

1–2 images were captured per second, and the resolution of each image was adjusted to 6403 480 pixels. The camera was installed one day

before video collection to allow the animals to acclimate to the presence of the camera. There were 14,123 images in the training set with

15,158 labeled instances, which were selected and labeled by an experienced researcher using the LabelImg73 tool. The number of instances

of each behavior category is shown in Figure 4A. The proportion of rat behaviors in the searching category was relatively high, so the re-

searchers selected more images of searching behaviors to include in the training set. The training set contained 11,189 images of a single

rat and 1,987 images of 2 rats, as shown in Figure 4B. In addition, 6.7% of the images in the training set were animal-free background images,

which were included to help reduce the number of false positives during model recognition. The verification set was labeled by the same

researcher who labeled the training set and was used to adjust the model training parameters and optimization function to find an optimal

model. The verification set images were obtained from two 1-h video files captured in February 2023. The rat captured in these videos was one

of the five rats from the videos in the training set; however, the recording period did not overlap with that for the training set. The two videos

contained 7,200 images in total; in each video, one imagewas capturedper second, resulting in 3,600 imagesper video, as shown in Figure 4C.

The images in the validation set were captured from consecutive video frames and represent the distribution of the rat’s behavior over an

hour. The analysis revealed that the rat performed searching and resting behaviors more than the other behaviors, as shown in Figure 4D.

The test set plays a crucial role in verifying the generalizability of the model and ensuring its effectiveness in real-world applications. The

four subsets of the test set included consecutive video frames from four videos taken of four rats the day before the light cycle change exper-

iment. The four subsets were labeled test sets 1, 2, 3, and 4, and each subset contained 3,600 images. Analysis of the test sets revealed that,

except for test set 1, the number of images in the searching and resting categories was greater than the number of images in the other cat-

egories. In contrast, the number of images in the resting category was higher in test sets 2, 3, and 4, with fewer instances of this category

appearing in test set 1, as shown in Figure 4E.
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Model training

The YOLO series algorithms are popular real-time object detection algorithms and are widely used in computer vision. The proposed model

was developed based on the YOLOv5s neural network architecture. Themodel has 7.2million parameters and a file size of only 14MB,making

it suitable for running on edge computing devices. The hardware for model training included an i7-13700K processor, 64 GB of RAM, and an

NVIDIA GeForce RTX 4090 24 GB GPU. The training hyperparameters were set to a batch size of 32, momentum of 0.937, weight decay of

0.0005, and learning rate of 0.01. The YOLOv5s pretrained model was used for training, and early stopping was performed during training.

The training dataset was used to train the model, whereas the validation dataset was used to evaluate the model’s performance and gener-

alizability during training. After each epoch, inference was performed based on the validation dataset, and the corresponding loss and eval-

uation metrics were calculated. By monitoring the changes in these metrics, the convergence of the model during training can be evaluated.

Contextual object labeling

Contextual object labeling is a method in which the surrounding environment of an object is considered in object detection or object recog-

nition tasks. In the real world, target objects often do not exist in isolation; they are interconnected with other objects and specific environ-

ments. This provides rich background information that can be used by the visual system to aid in object recognition.74 Because of the type of

cage we used, the water bottle was placed inside the feeder, as the rat’s mouth needed to touch the outlet of the water bottle for the rat to

drink. There was an obvious relationship between the rats’ drinking behavior and the water bottle cap. This allowed us to include the stainless

steel water bottle cap within the bounding box of the rat’s drinking behavior, thus enhancing the contextual information associated with the

drinking behavior.

Modification of nonmaximum suppression

Nonmaximum suppression (NMS) is an important postprocessing step in object detection. Deep learning CNNs have been applied in target

detection tasks; neural network models are usually used to detect and output sets of instances. Each instance includes the bounding box

location, class prediction, and confidence score. Overlapping instances can be removed using NMS, with only the final instances output.

In the focus category of this study, the postures of some resting and searching behaviors are similar, which affects the confidence score

and leads to incorrect identification in the final NMS output. We modified the confidence levels of the resting and searching categories

for a set of instances detected by the model. Then, we removed overlapping instances via NMS. After NMS processing, the instance with

the highest confidence score was used as the final output result.

The NMS method was modified as follows. At the beginning of the model detection process, the Euclidean distance E between the de-

tected bounding boxes of the previous frame bi� 1 and the prior previous frame bi� 2 was calculated. If the distance was lower than the set

thresholdDt , the object was determined to be in a stationary state. However, if the distance was greater than the thresholdDt , the object was

determined to be in a nonstationary state. The status of the next framewas repeatedly determined, and the number of consecutive stationary

states S was calculated, as shown in pseudocode.

S

�
S + 1; Eðbi� 2;bi� 1Þ%Dt

S = 0; Eðbi� 2;bi� 1Þ>Dt
(Equation 1)

If the number of consecutive frames in the stationary state S was greater than the set threshold N, the object was determined to be in a

stationary state. Within the set of instances si detected by the model, all instances in the resting category siðrestÞ were multiplied by xup to

increase their confidence scores. Additionally, all instances in the searching category siðsearchÞ were multiplied by xdown to reduce their con-

fidence scores. Conversely, if the object was determined to be in a nonstationary state, the confidence scores of all instances in the resting

category were decreased, and the confidence scores of all instances in the searching category were increased, as shown in pseudocode.

si

�
siðrestÞxup; siðsearchÞxdown; S >N
siðrestÞydown; siðsearchÞyup; S%N

(Equation 2)

Evaluation metrics

We used evaluation metrics that are commonly applied in deep learning. The precision represents the accuracy of the model in predicting

positive examples. The recall represents the model’s ability to identify positive examples. The number of true positives (TPs) indicates the

number of times that positive categories were correctly predicted by the model as positive, whereas the number of false positives (FPs) rep-

resents the number of times that positive categories were incorrectly predicted. The number of true negatives (TNs) is the number of times

that negative categories were correctly predicted, and the number of false negatives (FNs) is the number of times that negative categories

were incorrectly predicted. The calculation formulas are shown as follows:

Precision =
TP

TP+FP
(Equation 3)

Recall =
TP

TP+FN
(Equation 4)
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The precision‒recall (PR) curve is a graphical representation used to evaluate the relationship between the precision and recall of a binary

classification model at different thresholds. Ideally, the PR curve should be closer to the upper right corner of the coordinate axis, indicating

that themodel canmaintain both high precision and high recall. This enables themodel to capturemore positive examples successfully while

reducing the number of FP predictions.

The average precision (AP) is a metric commonly used in information retrieval and object detection tasks. It is calculated by computing the

PR curve for a model and then calculating the area under that curve. In other words, the AP represents the tradeoff between precision and

recall across different thresholds. The calculation formula is shown as follows:

AP =

Z
PðRÞdR (Equation 5)

The F1 score is a metric used to evaluate the performance of a binary classification model. The precision and recall are both considered to

calculate a single score ranging from 0 to 1, with higher values indicating better model performance. The calculation formula is shown as

follows:

F1 score =
23Precision3Recall

Precision+Recall
(Equation 6)

The intersection over union (IoU)metric is commonly used in computer vision and image analysis. It is employed to evaluate the accuracy of

object detection algorithms, particularly in tasks such as object localization and instance segmentation. The IoU quantifies the degree of over-

lap between a predicted bounding box Bp and an actual bounding box Bg. The calculation involves determining the ratio of the intersection

area between the predictedbounding boxBp and the actual bounding boxBg to the union area. This ratio is then used to assess the detection

effectiveness, distinguishing between TPs and FPs. The calculation formula is shown as follows:

IoU =

��BpXBg

����BpWBg

�� (Equation 7)

Animal experimental research design

Rodents are primarily nocturnally active animals,75–78 and albino rats prefer low light intensity in housing cages.79 The light cycle for exper-

imental animals typically consists of 12 h with lights on and 12 h with lights off. Photoperiod changes can affect animal physiology and

behavior.80 We conducted a light cycle change experiment for two consecutive days and recorded the changes in animal behavior every sec-

ond. On the first day of the experiment, eight rats in the light/dark (L/D) group were subjected to a normal 12-h light/12-h dark cycle. The next

day, the light cycle was changed to 24 h of continuous light, resulting in the light/light (L/L) group. Each group of rats was divided into two

batches. After the first batch of 4 rats was subjected to the experiment with 4 sets of multifunctional cameras, the second batch of 4 rats was

subjected to the same experiment. Due to abnormal file reading, 14 h of data for rat number 1 on the first day could not be obtained and was

thus excluded from the data analysis. The experimental dataset includeddata from seven rats, with 51min of data unavailable for rat number 4

on the first day because of abnormal file reading. In the data analysis, drinking, eating, grooming, rearing, gnawing, and scratching were

defined as activity.

The sucrose preference test (SPT) is a behavioral experiment method typically used to study emotions, stress, and depression in animals.

The test reflects an animal’s emotional state and depression type through its preference for sweet substances.49,81–83 In a typical SPT, animals

are exposed to two water bottles. One bottle of water does not contain sucrose, while the other does, and the animals can choose freely

between the two bottles. Finally, the intake from each bottle is measured to calculate the preference for sucrosewater. This experiment allows

researchers to assess how animals respond to pleasure and reward. The percentage concentration of sucrose in the water bottles used in this

experiment was 5%. Eight rats were given two bottles of sucrose-free water on the first day, referred to as the water/water (W/W) group, and

two bottles of sucrose-containing water on the second day, referred to as the sucrose/sucrose (S/S) group. On the third day, the rats were

given a sucrose-free water bottle and a sucrose-containing water bottle, referred to as the water/sucrose (W/S) group, to test their prefer-

ences. Each group of rats was divided into two batches. After the first batch of 4 rats was subjected to the experiment with 4 sets of multi-

functional cameras, the second batch of 4 rats was subjected to the same experiment. The sucrose preference was calculated as 100%3 time

spent drinking (s)/total experimental time (s). During the experiment, the rats had ad libitum access to food andwater. The experimental data-

set included data from eight rats, with data from rats 2 and 3 in the W/S group unavailable for 44 and 166 min, respectively, on the third day

due to abnormal file readings.

In this experiment, the RW systemwas used to identify drinking behavior, track the location of the rat, and detect the body temperature of

the rat. We divided the housing cages into four areas. The coordinates of the rats recognized by the RW system corresponded to these areas.

The first and second areas corresponded to the positions of the two water bottles in the housing cage. The RW system determined the time a

rat spent drinking from the two water bottles by analyzing the locations and drinking behaviors of the rats, after which the preferred water

bottle was determined. The rat localization data in this experiment were obtained via model recognition rather than thermal data because

the model was updated after the experiment.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All the values are expressed as the mean G SEM. Paired two-sided t-tests were performed for the light cycle change test and sucrose pref-

erence test using Excel (Microsoft Software). The statistical significance of the differences in the recognition accuracies of the models (O, D,

and RD) was assessed viaMcNemar’s test. The results of eachmodel were evaluated against the ground truth labels of the test set, resulting in

binary classification outcomes for each instance. Pairwise comparisons were performed with McNemar’s test, a nonparametric method for

evaluating differences in paired proportions. Specifically, McNemar’s test was used to determine whether the differences in the prediction

accuracies of the O and D models and the D and RD models were statistically significant. For each comparison, a 2x2 contingency table

was constructed, with cells representing counts of TPs, FPs, FNs, and TNs. The test was conducted with 1 degree of freedom. Statistical sig-

nificance was determined at thresholds of *p < 0.05, **p < 0.01, and ***p < 0.001.
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