
D900–D908 Nucleic Acids Research, 2019, Vol. 47, Database issue Published online 17 October 2018
doi: 10.1093/nar/gky939

CancerSEA: a cancer single-cell state atlas
Huating Yuan1,†, Min Yan1,†, Guanxiong Zhang1,†, Wei Liu1,†, Chunyu Deng1, Gaoming Liao1,
Liwen Xu1, Tao Luo1, Haoteng Yan1, Zhilin Long1, Aiai Shi1, Tingting Zhao2,*, Yun Xiao1,*

and Xia Li1,*

1College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
and 2Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001,
China

Received August 14, 2018; Revised September 15, 2018; Editorial Decision September 29, 2018; Accepted October 08, 2018

ABSTRACT

High functional heterogeneity of cancer cells poses
a major challenge for cancer research. Single-cell
sequencing technology provides an unprecedented
opportunity to decipher diverse functional states
of cancer cells at single-cell resolution, and can-
cer scRNA-seq datasets have been largely accumu-
lated. This emphasizes the urgent need to build a
dedicated resource to decode the functional states
of cancer single cells. Here, we developed Can-
cerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/ or
http://202.97.205.69/CancerSEA/), the first dedicated
database that aims to comprehensively explore dis-
tinct functional states of cancer cells at the single-
cell level. CancerSEA portrays a cancer single-cell
functional state atlas, involving 14 functional states
(including stemness, invasion, metastasis, prolifera-
tion, EMT, angiogenesis, apoptosis, cell cycle, differ-
entiation, DNA damage, DNA repair, hypoxia, inflam-
mation and quiescence) of 41 900 cancer single cells
from 25 cancer types. It allows querying which func-
tional states are associated with the gene (or gene
list) of interest in different cancers. CancerSEA also
provides functional state-associated PCG/lncRNA
repertoires across all cancers, in specific cancers,
and in individual cancer single-cell datasets. In sum-
mary, CancerSEA provides a user-friendly interface
for comprehensively searching, browsing, visualiz-
ing and downloading functional state activity profiles
of tens of thousands of cancer single cells and the
corresponding PCGs/lncRNAs expression profiles.

INTRODUCTION

Human cancer is a highly diverse and complex disease com-
posed of cancer cells with distinct genetic, epigenetic and
transcriptional status, forming heterogeneous functional
populations of cancer cells, which poses a major obstacle
to cancer diagnosis and treatment (1–4). Some cancer cells
have high cell proliferation activity, some have tumor ag-
gressiveness and metastasis capacity, some show stem-cell-
like properties, while some exhibit ‘lazy’ state of quiescence
(5–7). These functionally heterogeneous cancer cells act co-
operatively or competitively during the entire tumor evolu-
tion, leading to distinct tumor phenotypes (8–10). There-
fore, it is essential to comprehensively and adequately de-
code the functional states of cancer cells.

Single-cell sequencing-based technologies open up new
avenues for exploring complex ecosystems, especially can-
cers, revolutionizing whole-organism science (11). It pro-
vides an unprecedented opportunity to decipher the func-
tional states of cancer cells at single cell resolution, thus,
allowing researchers to accurately and unbiasedly explore
the functional heterogeneity of cancer cells, and deepening
the understanding of cancer cell as a functional unit to per-
form specific biological functions in the initiation and pro-
gression of cancer. In 2014, a pioneering study of glioblas-
toma used single-cell RNA sequencing (scRNA-seq) to un-
cover previously unexpected heterogeneity in cancer-related
functional states, such as stemness, proliferation, and hy-
poxia (5). Profiling 4347 single cells from six human oligo-
dendrogliomas by scRNA-seq, Tirosh et al. found that these
single cells exhibited widespread heterogeneity in stemness
and differentiation, and revealed that a few cancer cells with
high stemness may act as cancer stem cells to fuel the growth
of cancer (12). And a study about chronic myeloid leukemia
revealed that cells with different activities of quiescence,
proliferation, and stemness have different sensitivity to tyro-
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sine kinase inhibitor (TKI) treatments, leading to frequent
relapse for this disease (6).

The rapid development of scRNA-seq leads to the ac-
celerated accumulation of a large amount of scRNA-seq
datasets, and recently several related databases have been
developed. For example, SCPortalen collected and anno-
tated scRNA-seq datasets in human and mouse, and pro-
vided expression tables processed using a pipeline for down-
loading (13). JingleBells provided BAM files of immune-
related scRNA-seq datasets for visualization of reads (14).
scRNASeqDB collected human single cell transcriptome
datasets and help researchers to query and visualize gene
expression in human single cells (15). However, all of them
focused on collecting scRNA-seq datasets, a dedicated
database devoted to deciphering the functional states of
cancer single cells is still lacking.

Therefore, we developed CancerSEA, a dedicated
database that aims to comprehensively decode distinct
functional states of cancer cells at the single-cell level. As of
July 2018, the database contains 41 900 cancer single cells in
25 human cancers with 14 manually curated cancer-related
functional states (including stemness, invasion, metastasis,
proliferation, EMT, angiogenesis, apoptosis, cell cycle,
differentiation, DNA damage, DNA repair, hypoxia,
inflammation and quiescence). By characterizing these
functional state activities of each cancer cell, CancerSEA
provides an atlas of cancer single-cell functional states and
associates protein-coding genes (PCGs) and lncRNAs with
these functional states at single-cell level for promoting
mechanistic understanding of functional differences of
cancer cells. We expect that this elaborate database can
serve as an important and valuable resource for facilitating
the exploration of the tumor heterogeneity.

MATERIALS AND METHODS

Data collection, curation and processing

We systematically collected cancer-related scRNA-seq
datasets in human from Sequence Read Archive (SRA),
Gene Expression Omnibus (GEO) and ArrayExpress based
on the following keywords: (‘single cell’ OR ‘single-cell’
OR ‘single cells’ OR ‘single-cells’) AND (‘transcriptomics’
OR ‘transcriptome’ OR ‘RNA-seq’ OR ‘RNA-sequencing’
OR ‘RNA sequencing’ OR ‘scRNA-seq’ OR ‘scRNA seq’)
AND (‘tumor’ OR ‘tumour’ OR ‘cancer’ OR ‘carcinoma’
OR ‘neoplasm’ OR ‘neoplastic’). A total of 49 cancer-
related scRNA-seq datasets involving 128 518 single cells
were obtained initially (Supplementary Table S1). Among
them, 28 offered raw FASTQ sequencing files, and the rest
provided the expression matrix data. All datasets were col-
lected before July 2018. All single cells in these datasets
were analyzed through expression quantification, quality
control, and characterization of functional states (Figure 1,
Supplementary Figure S1).

For each cancer-related scRNA-seq dataset, we carefully
read the original paper, if available, and extracted the corre-
sponding metadata, including the cancer types and sources
(i.e., tissue, cell line, patient-derived xenograft (PDX) and
circulating tumor cell (CTC)). Also, we obtained the cell
groups (referring to patient ID, culture condition or cell
phenotype) from the supplementary tables of the paper, and

labeled each cell with the information of cell groups. These
‘cell group’ tags can help users to explore these datasets in
specific patients and cell phenotypes. When a dataset con-
tains different cancer types (or different types of sources),
we manually divided it into multiple sub-datasets. Then 72
(sub)-datasets were generated (Supplementary Table S1).

For scRNA-seq datasets with raw sequencing files, an in-
house bioinformatics pipeline was adopted for quality con-
trol and expression quantification (Supplementary Figure
S1). Briefly, we used the NCBI SRA Toolkit (version 2.8.2)
to obtain FASTQ files. Sequencing quality was assessed
by FastQC (version 0.11.2). Then, for sequencing data, we
trimmed adapter sequences and filtered low-quality reads
(quality value lower than 20) using the Trim Galore (ver-
sion 0.4.4). Expression quantification of transcripts was
performed by salmon (version 0.9.1) with optional param-
eters -k (k = 31 for long reads and k = 15 for short reads), –
gcBias, –seqBias and others default parameters by indexing
the GENCODE (Release 28, GRCh38) reference transcrip-
tome in quasi-mapping-based mode. The expression abun-
dance values of genes (including PCGs and lncRNAs) were
summarized by using R package tximport (version 1.6.0).
The TPM (transcripts per million) values of PCGs and
lncRNAs were used for subsequent analysis. For scRNA-
seq datasets with only expression matrix, we directly con-
verted the expression values to TPM/CPM values using
a custom script. Expression values were log2 transformed
with an offset of 1.

Quality control of single cells

Considering the low sensitivity and high technical noise
of scRNA-seq assay, we carried out two steps for qual-
ity control of single cells. First, in order to ensure that all
single cells were cancer cells without mixing normal cells
from tumor microenvironment, we removed non-malignant
single cells using the following criteria: (i) if the original
papers have included the information about whether cells
are malignant or not, only the malignant cells were re-
mained; (ii) using an RNAseq-inferred copy number vari-
ation (CNV) approach (5) to distinguish malignant cells
from non-malignant cells. After that, 68 708 malignant sin-
gle cells remained. Second, we calculated two quality mea-
sures for each cell, including the number of genes with de-
tectable expression (i.e. expression levels are greater than 0)
and the average expression level of 87 housekeeping genes
collected in (16). We then excluded cells with the number of
expressed genes fewer than 1000 or with the average house-
keeping expression <2. PCGs or lncRNAs with detectable
expression in at least 10% or 5% cells (the minimum num-
ber of expressed cells should be greater than 10) were re-
tained, respectively. At last, 41 900 cancer cells derived from
72 single-cell datasets from 25 cancer types were remained,
involving 18 895 PCGs and 15 571 lncRNAs.

Characterizing functional states of cancer single cells

After reviewing almost all cancer single-cell sequencing
studies, we concluded 14 crucial functional states of can-
cer cells, including stemness, invasion, metastasis, prolifer-
ation, EMT, angiogenesis, apoptosis, cell cycle, differenti-
ation, DNA damage, DNA repair, hypoxia, inflammation
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Figure 1. Overview of CancerSEA database. All scRNAseq datasets were collected from SRA, GEO and ArrayExpress, and were manually annotated
and curated. For quality control, we removed non-malignant single cells and cells with low quality. In addition, we collected and refined 14 functional
states signatures. State activities of cancer cells were assessed by GSVA. All data resource were deposited in CancerSEA, and displayed in web pages (gene
search, state search, browse, download).

and quiescence. To characterize these functional states for
cancer single cells, we built the corresponding gene signa-
tures through searching literatures and known databases
(including some general databases, such as Gene Ontol-
ogy (17) and MSigDB (18), and some specialized databases,
such as Cyclebase (19), HCMDB (20) and StemMapper
(21)) (Supplementary Table S2). For most of the signatures,
the collected genes that were mentioned in more than two
resources were kept. While for the invasion signature, genes
mentioned in more than two invasion-associated terms col-
lected from MSigDB were retained. Then, through func-
tional annotations and literature searching, genes that neg-
atively affect the corresponding functional states were re-
moved.

Based on these signatures, the activities of 14 functional
states across cancer single cells in each dataset were eval-
uated using Gene Set Variation Analysis (GSVA) with the
GSVA package in R (22). In brief, for each gene, we first per-
formed a non-parametric kernel estimation of its cumula-
tive density function and then calculated an expression-level
statistic to normalize expression profiles to a common scale.
The expression-level statistic can reflect whether a gene is
highly or lowly expressed in a specific cell in the context
of the cell population distribution. Then, in each cell, the
expression-level statistics of all genes were converted to nor-
malized ranks. Next, we used the Kolmogorov–Smirnov like
random walk statistic, similar to the GSEA method, to sum-
marize the expression-level rank statistics of a given signa-

ture gene set into a final enrichment score (i.e. GSVA score),
which is used to characterize the signature activity. At last,
the enrichment scores of 14 signatures across cells in all
scRNA-seq data were calculated. Then, for each single-cell
dataset derived from tumor tissue, PDX and CTC, we iden-
tified significant correlations between gene expressions and
functional state activities using Spearman’s rank correlation
test with Benjamini & Hochberg false discovery rate (FDR)
correction for multiple comparisons (correlation > 0.3 and
FDR < 0.05). Due to the low amount of mRNA within in-
dividual cells and sequencing technical noise, there is an ex-
cessive number of zeros in scRNA-seq data. During the cal-
culation of gene-state associations, only cells with detectable
expression of the genes of interest were used by setting the
parameter ‘na.action’ to na.omit, and at least 30 cancer sin-
gle cells were required.

Basic expression analysis of single cell datasets

For each dataset, we performed several basic analysis of
high-quality cancer single-cell expression, including PCA
and t-SNE analysis, hierarchical clustering of highly vari-
able PCGs/lncRNAs and inferred CNVs. PCA and t-SNE
analysis were conducted by ‘prcomp’ and ‘Rtsne’ func-
tion in R, respectively. Highly variable PCGs/lncRNAs
were extracted by ‘FindVariableGenes’ function in Seurat R
package with default parameters, which were visualized by
‘heatmap.2’ R function. Inferred CNVs of all cells were clus-
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tered by average-linkage hierarchical clustering and were vi-
sualized by ‘heatmap.2’ R function.

Database construction

CancerSEA is freely available to the research community
at http://biocc.hrbmu.edu.cn/CancerSEA or http://202.97.
205.69/CancerSEA and requires no registration or login.
CancerSEA is deployed using tomcat (version 7.0.47) and
tested in Mozilla Firefox, Google Chrome, and Apple Safari
browsers. All the data are stored and queried by MySQL
(version 5.6.40). Tables are visualized by Datatables (ver-
sion 1.10.16). Graph charts are generated by HighCharts
(version 6.1.0), d3 (version 5.4.0) and in-house R scripts.

RESULTS

Contents of CancerSEA

The current version of CancerSEA contains 14 functional
states of 41 900 cancer single cells from 25 cancer types,
involving 140 cancer patients, 76 cell lines with different
conditions, 13 and 51 cancer patient-derived PDXs and
CTCs, respectively. The average number of cancer single
cells per cancer type is 1676, with alveolar rhabdomyosar-
coma (ARMS) having the largest number of single cells (n
= 6875) and neuroblastoma (NB) has the smallest number
(n = 36). CancerSEA contains a total of 121 scRNA-seq
expression profiles, including 72 PCG expression profiles
and 49 lncRNA expression profiles. The average numbers
of PCGs and lncRNAs per cell are, respectively, 4911 and
817, involving a total of 18 895 PCGs and 15 571 lncRNAs.

Database feature and utility

CancerSEA depicts a cancer single-cell state atlas and al-
lows to query the relationships between genes (including
PCGs and lncRNAs) and the 14 functional states. The easy-
to-use interface provides an access for searching, browsing,
visualizing and downloading data. The online user guide il-
lustrates several use cases of CancerSEA.

Gene and gene list search. For a gene of interest, Can-
cerSEA provides its relationships to the 14 functional states
in different cancers. It allows to input a gene (PCG or
lncRNA) in the ‘Search’ page (Search PCG/lncRNA for
the associated functional states), with gene name or Ensem-
ble ID (Figure 2A). After clicking the ‘Search’ button, the
query results including four sections will be displayed. The
first section ‘Basic information of the input gene (list)’ dis-
plays the basic annotations of the gene of interest, including
gene symbol, alias, Ensembl ID, functional description and
external links including Entrez Gene database and Ensem-
ble database. When clicking the ‘Gene Symbol/ID’ of the
gene, a box plot characterizing the expression patterns of
the gene across all the datasets in which it expressed will be
shown (Figure 2B). The section ‘Relevance across 14 func-
tional states in distinct cancers’ contains two parts. The first
parts ‘Correlation plot’ shows the average correlations be-
tween the expression of the gene of interest and the activ-
ity of each functional state across all single-cell datasets
in different cancers with an interactive bubble chart. The

upper bar plot provides a summarized association across
all cancer types for each functional state by showing the
number of single-cell datasets in which the gene is signifi-
cantly related to the corresponding state. It can quickly and
clearly indicate which functional states are the most rele-
vant. When clicking the bar of a specific functional state,
the bubbles having significant correlations in at least one
dataset in the corresponding cancer type will be highlighted.
When positioning the mouse on a highlighted bubble, the
detailed information (including the correlation value and
the corresponding p-value) in each dataset will be popped
up, which informs users which datasets are the ‘significant
datasets’(Figure 2C). The second part ‘Correlation data ta-
ble ’ shows the detailed information of functional relevance
in each dataset (Figure 2D). In the third section, users can
learn more in-depth information about the functional rel-
evance in specific cancer. Through selecting a cancer type
in the drop-down box in the third section or clicking a can-
cer type in the left side of the bubble chart in the second
section, a result table is used to display the basic informa-
tion of all single-cell datasets in the selected cancer type
and the corresponding correlations with the 14 functional
states (Figure 2E). When clicking on the plus icon in a re-
sult row of a specific dataset, more details about the cor-
relations are displayed. The ranked expression of the gene
of interest in the selected dataset and the corresponding ac-
tivities of functional states with statistical significance are
shown with a series of bar charts. Users can choose different
correlation cutoffs and p-values to filter functional states,
and move the mouse over the bar chart of a state to obtain
the functional relevance scatter plot. The last section ‘Func-
tional relevance in distinct cell groups’ shows the detailed
functional relevance in each specific cell group of a specific
dataset through clicking different dataset tabs. It also con-
tains a box plot showing the expression distribution of the
input gene in this selected dataset and a t-SNE plot of all
single cells with colors representing the expression levels of
the input gene (Figure 2F).

CancerSEA also allows to input a gene list for querying
the correlations between the average expression levels of the
gene list and the activities of functional states (Figure 2A,
Supplementary Methods). Users can input the gene list of
their interest, or select pre-specified lists (including cancer
hallmark-related functions/pathways from GO (8,23,24),
MSigDB (18), KEGG and Reactome (25,26)). In addi-
tion, CancerSEA also allows uploading a comma-separated
TXT file with all the genes in one line. The mapped and un-
mapped genes in the gene list will be presented in the first
section ‘Basic information of the input gene (list)’. The basic
annotations and expression pattern of each detected gene
will be returned by clicking the gene symbol/ID”.

Functional state search. CancerSEA allows to query a
functional state of interest to obtain the PCG/lncRNA
catalogs that are highly related to the functional state at
single-cell resolution in the ‘Home’ page and ‘Search’ page.
In the ‘Home’ page, users can click the ‘state’ hyperlinks
embedded in the cell-tree image ‘Cancer Cells with Dif-
ferent States’ and the ‘Functional states’ panel in the top
right-hand window (Figure 3A).In the result page, the first
panel shows the activity profiles of the selected functional

http://biocc.hrbmu.edu.cn/CancerSEA
http://202.97.205.69/CancerSEA
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Figure 2. Functional relevance of a gene or gene list. (A) The ‘Search’ page of CancerSEA. (B) The basic annotations and expression pattern of SOX4.
(C) Relevance of SOX4 across 14 functional states in distinct cancers. The size of the bubble represents the average correlation strength. The bar chart
shows the number of datasets in which SOX4 is significantly related to the corresponding state. The red color indicates positive correlation, and the blue
one indicates negative correlation. (D) The correlation data table shows the detailed information of all functional associations with SOX4 in each dataset.
(E) Detailed functional relevance in HNSCC and in a specific cell group (F). In the scatter plot, the x-axis indicates the expression of SOX4, and the y-axis
indicates the activity of the functional state.
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Figure 3. Activity spectrums of a functional state and its associated PCG/lncRNA repertoires. (A) The ‘Home’ page of CancerSEA. (B) Activity spectrums
of metastasis across different cancer types. (C) PCGs and (D) lncRNAs frequently related to metastasis across different cancer types. (E) GO and KEGG
terms enriched by the associated PCGs.

state across different cancer types and the second panel
allows users to browse and download the repertoires of
PCGs/lncRNAs that are frequently associated with the
state across different cancer types (significantly related to
the query state at least in four scRNA-seq datasets) (Fig-
ure 3B–D). When clicking ‘More details’, users can be redi-
rected to the corresponding ‘gene search’ result page. Exter-
nal links to Entrez Gene and Ensemble databases are also
provided by clicking the ‘gene symbol’ and ‘Ensemble ID’,
respectively. Functions and pathways enriched by these re-
lated PCGs (hypergeometric test, P < 0.05) are displayed
in the third panel (Figure 3E). Furthermore, when clicking
the cancer types in the first panel, users can acquire cancer-
type specific PCG/lncRNA repertoires that are associated
with the functional state of interest. The cancer-type specific
PCG/lncRNA repertoires can also be obtained by select-
ing the cancer type and functional state in the ‘Search’ page
(Search functional state for the related PCG/lncRNA reper-
toires) (Figure 2A). In addition, when clicking the names of

single-cell datasets in the first panel, the PCG/lncRNA lists
that are associated with the state in the selected dataset will
be displayed.

Functional state atlas and detailed single-cell dataset infor-
mation. Functional state atlas of all cancer single cells
is comprehensively presented in the ‘Browse’ page. Users
can browse the functional state profiles of specific cancer
by clicking the cancer type in the cancer-dataset hierarchi-
cal navigation menu (Figure 4). The hierarchical cluster-
ing heatmaps of state activity of all datasets in the selected
cancer type are listed in the right panel, showing exten-
sive functional heterogeneity across cancer cells. In addi-
tion, by clicking the dataset name in the navigation menu,
users can select a dataset of interest to further browse the de-
tailed information, including ‘Detailed description’, ‘Func-
tional state profile’, ‘Cell distribution’, ‘Expression patterns
of PCGs/lncRNAs’ and ‘Inferred CNV heatmap’. The ‘De-
tailed description’ section contains relevant publication in-
formation, cancer type, accession number, number of cells,
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Figure 4. Functional state atlas and detailed dataset information in browse page. (A) Functional state atlas in specific cancer. Detailed information of
selected dataset: basic information (B), functional state profile (C), t-SNE and PCA analysis (D), expression of PCG/lncRNA (E), inferred CNV profile
(F).

cell group, source, and description. The ‘Functional state
profile’ section shows the state activity heatmap. Visualiza-
tion of the selected dataset using t-SNE and PCA analy-
sis is displayed in the ‘Cell distribution’ section with point
colors representing different cell groups. In the ‘Expression
pattern of PCGs/lncRNAs’ section, expression heatmaps
of highly variable PCGs/lncRNAs are displayed. In the
‘Inferred CNV heatmap’ section, users can easily view the
CNVs pattern across the cancer cells.

Data download. All data in CancerSEA can be down-
loaded in the ‘Download’ page, containing the functional
state profiles and PCG/lncRNA expression profiles for each

single-cell dataset as well as functional state signatures.
Users can select datasets of interest by searching for key-
words, such as cancer type, dataset ID (i.e. ExpID) and
source. By clicking ‘PCG/lncRNA’, users can download the
corresponding expression profiles (before and after quality
control) in a compressed file. Clicking on the icon of state
score will download the functional state profile of the se-
lected dataset. The detailed information of 14 functional
state signatures is also provided in the ‘Download for signa-
ture profiles’ section, including signature title, description,
number of genes, sources, functional state signature genes
and exact links to MsigDB gene lists, GO terms, PubMed
literature or other databases.
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Example application

To demonstrate the utility and potential application of Can-
cerSEA, we used SOX4 and VIM as examples to query
their associated functional states. SOX4 has been confirmed
that its up-regulation confers cancer cell stemness prop-
erties (27). As expected, in the result page, the expres-
sion of SOX4 shows strong positive correlations with stem-
ness state across almost all cancer types (Figure 2C), es-
pecially in head and neck squamous cell carcinoma (HN-
SCC), high-grade glioma (HGG) and non-small cell lung
cancer (NSCLC). When focusing on HNSCC in the ‘Func-
tional relevance in HNSCC’, we observed that SOX4 had
a significantly high correlation of 0.62 (P ≤ 0.001) in the
dataset ‘Puram SV. Cell. 2017 (Oral Cavity)’ (Figure 2E).
The t-SNE plot of 2105 single cells in the dataset displays
strong tumor heterogeneity with an extremely high expres-
sion of SOX4 in a subset of cells (Figure 2F). Like SOX4, we
searched VIM, a type III intermediate filament protein, in
CancerSEA and found that VIM is significantly related to
EMT and metastasis states in most cancers (Supplementary
Figure S2), consistent with previous that VIM is essential
for cell attachment, migration and epithelial-mesenchymal
transition (EMT) (28).

Also, we queried metastasis-related genes at single-cell
resolution in the ‘Home’ page (Figure 3A). In the result
page, we observed strong metastasis heterogeneity across
all cancer types in the functional activity spectrums (Fig-
ure 3B). We obtained 165 genes (including 162 PCGs and
3 lncRNAs) that are correlated with metastasis in at least
4 scRNA-seq datasets (Supplementary Tables S3 and S4).
Especially, in the top 10 genes with the most significant
datasets, 9 (including VIM (29), LGALS3 (30), CTSB (31),
ANXA2 (32), S100A6 (33), MT2A (34), S100A10 (35),
CLIC1 (36), ITGA3 (37)) have been widely confirmed to
be related with cancer metastasis (Figure 3C). When focus-
ing on BRCA we obtained metastasis-related genes specific
to BRCA (Supplementary Figure S3). The top one gene
S100A10 (35) has been reported to be involved in the pro-
cess of breast cancer cell adhesion to endothelial cells, indi-
cating an involvement of it in breast cancer cell interactions
during metastasis. These results suggest that CancerSEA is
a reliable and useful database for users to query the relevant
functional states of genes in cancer single cells.

SUMMARY AND FUTURE PERSPECTIVES

Tumours are complex ecosystems composed of cells with
heterogeneous functional states, leading to the frequent re-
currence of cancers. Single-cell sequencing technology pro-
vides an opportunity to decipher the functional hetero-
geneity of cancer cells at single-cell resolution. Thus, Can-
cerSEA, a database for cancer single-cell functional state at-
las, comes into being. To our best knowledge, CancerSEA is
the first dedicated database to decode the cancer cell func-
tional states at single-cell resolution. Through deciphering
the 14 functional states in 41 900 cancer single cells of 25
human cancer types, CancerSEA helps to understand the
molecular mechanisms of functional heterogeneity of can-
cer cells. We believe that CancerSEA will be a useful re-
source for cancer research.

CancerSEA devotes to deciphering the functional states
of cancer cells at the single-cell level. It portrays the activity
spectrums of 14 cancer-related functional states in 41 900
single cells of 25 cancer types, which show an unexpected
functional heterogeneity among different cancer cells. Can-
cerSEA allows users to query PCGs or lncRNAs for their
relevant functional states at single cell resolution. It also
allows searching for the associated functional states for a
gene list. Furthermore, for each functional state, it provides
highly associated PCG/lncRNA repertoires across all can-
cer types, in a specific cancer type, and in individual cancer
single-cell datasets. In addition, CancerSEA stores 72 can-
cer single-cell datasets containing 121 expression profiles
(including 72 and 49 expression profiles for PCGs and lncR-
NAs, respectively) and provides a quick access to down-
load these expression profiles, their corresponding func-
tional state spectrums, as well as the gene signatures of the
14 functional states.

CancerSEA is a useful resource that will facilitate to un-
derstand the functional heterogeneity of cancer cells. In
the future, we will continue to work on this database in
the following directions: (i) updating the database regularly
to keep up with the upcoming scRNA-seq data through
keyword search on a weekly basis; (ii) combining single-
cell multi-omics data, such as genome, epigenome and pro-
teome, to decode the functional states of cancer single cells;
(iii) Refining the functional states into more specialized
states (e.g. dividing the state of cancer metastasis into two
sub-states including regional lymph nodes metastasis and
distant metastasis); and (iv) supplementing new functional
states (e.g. drug sensitivity or resistance). Through our ef-
forts, we expect that CancerSEA will contribute to under-
standing the functional heterogeneity of cancer, and even to
the diagnosis and treatment of cancer.
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