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Abstract
A small group of cell surface receptors are proteoglycans, possessing a core
protein with one or more covalently attached glycosaminoglycan chains. They
are virtually ubiquitous and their chains are major sites at which protein ligands
of many types interact. These proteoglycans can signal and regulate important
cell processes, such as adhesion, migration, proliferation, and differentiation.
Since many protein ligands, such as growth factors, morphogens, and
cytokines, are also implicated in tumour progression, it is increasingly apparent
that cell surface proteoglycans impact tumour cell behaviour. Here, we review
some recent advances, emphasising that many tumour-related functions of
proteoglycans are revealed only after their modification in processes
subsequent to synthesis and export to the cell surface. These include enzymes
that modify heparan sulphate structure, recycling of whole or fragmented
proteoglycans into exosomes that can be paracrine effectors or biomarkers,
and lateral interactions between some proteoglycans and calcium channels
that impact the actin cytoskeleton.
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Introduction
Proteoglycans are present in all cellular and tissue compartments. 
Moreover, in mammals they are expressed by virtually all cells. 
By definition, proteoglycans consist of a core protein to which 
one or more glycosaminoglycan chains are covalently attached. 
While the number of proteoglycan core proteins in the mammalian 
genome is not large, their form and functions are highly variable. 
Aggrecan, a major constituent of cartilage matrix, for example, 
may have >100 chondroitin sulphate chains, which are key to its 
function in the maintenance of a hydrated, compression-resisting 
matrix1,2. Decorin, on the other hand, with roles in collagen fibril 
formation and regulation of innate immunity, has only one chon-
droitin or dermatan sulphate chain3. Not surprisingly, since prote-
oglycans can be intracellular, cell surface, or extracellular matrix 
components, they are increasingly studied in the context of tumour 
growth, the tumour and stem cell niche, and invasion, metastasis, 
and tumour-host interactions4–9.

On the surfaces of most mammalian cells are representatives of 
two major families of heparan sulphate proteoglycans (HSPGs), 
the glypicans and syndecans5,10–12. The former are linked to the 
membrane through a glycosylphosphatidylinositol anchor, while 
the syndecans are transmembrane, with a highly conserved short 
cytoplasmic domain. Usually the core proteins carry two to five 
heparan sulphate chains, but syndecans may sometimes also, or 
alternately, carry chondroitin or dermatan sulphate chains5. The 
synthesis of heparan sulphate chains is a complex Golgi apparatus-
localised process; while all of the transferases and other modify-
ing enzymes involved in their synthesis are known, their regulation 
is not13. The importance of heparan sulphate synthesis lies in the 
fact that this glycosaminoglycan has an ability to interact with a 
wide array of binding partners that include cytokines, chemokines, 
growth factors, extracellular matrix macromolecules, enzymes, 
and lipoproteins14,15. Heparan sulphate chains have regions of high  
modification (i.e. high levels of sulphation) interspersed with 
regions of low, or no, sulphation15. This most complex of all post-
translational modifications is under scrutiny, since most protein 
binding partners of heparan sulphate engage with highly sulphated 
domains14,16, so the control of its synthesis and how this may change 
with transformation are important issues. Moreover, mature heparan 
sulphate chains can be further modified by a single mammalian 
heparanase enzyme and by two sulphatases that selectively remove 
the sulphates of some glucosamine residues17–19. Heparan sulphate 
editing is now a topic of great interest in tumour biology and some 
recent developments are summarised below.

For many years, it was assumed that cell surface HSPGs had 
few independent functions but were mostly acting in cis as 
co-receptors with other receptors, e.g., tyrosine kinase growth fac-
tor receptors and integrins5,11,12,20. The notion was that the heparan 
sulphate chains provided binding sites for ligands that could then 
be concentrated for high-affinity receptor binding and subsequent 
signalling. It now seems clear that there are more intricate inter-
actions at the cell surface that involve independent roles for the 
cell surface HSPGs. Some of the latest insights into cell surface 
HSPG functions with relevance to tumour biology are briefly 
reviewed here. Recent information on the roles of other classes 
of extracellular matrix proteoglycans in cancer can be found 
elsewhere3,4,7,9,21.

Heparan sulphate editing: regulatory events in tumour 
progression
There is abundant evidence that heparan sulphates, owing to their 
diversity in structure and location, play important roles in regulat-
ing the growth and progression of cancer. Much of this regulation 
occurs via the ability of heparan sulphate to fine-tune molecular 
interactions that regulate cell behaviour22. Over the last decade, it 
has become increasingly apparent that enzymes can edit heparan 
sulphate structure, thereby precisely modulating its function and 
regulating cell behaviour. These enzymes include the endoglu-
curonidase heparanase, which cleaves and shortens heparan sul-
phate chains of proteoglycans that as a consequence possess new 
non-reducing termini, and the extracellular sulphatases Sulf-1 and  
-2 that selectively remove 6-O sulphates. Both of these enzyme activ-
ities are proving to be powerful regulators of tumour behaviour.

Heparanase is associated with aggressive tumour behaviour includ-
ing enhanced growth, angiogenesis, and metastasis. Although 
a number of studies in many tumour types have supported these 
conclusions, a unifying mechanistic explanation of precisely how 
heparanase promotes angiogenesis and metastasis was lacking 
until recently. In a paper just published in Oncogenesis, Jung et al.  
demonstrate that heparanase-mediated trimming of syndecan-1 
heparan sulphate chains and upregulation of matrix metallopro-
teinase-9 (MMP-9) expression results in enhanced shedding of  
syndecan-1 from the cell surface. Shedding exposes a juxtamem-
brane site on the syndecan-1 core protein that binds to both very 
late antigen-4 (VLA-4 [integrin α4β1]) and vascular endothelial 
growth factor receptor-2 (VEGFR2). This coupling of VLA-4 to 
VEGFR2 activates the latter, thereby initiating downstream sig-
nalling that displaces the cytoskeletal adaptor protein paxillin 
from VLA-4, in turn facilitating the activation of Rac GTPase and  
polarised cell migration23. This mechanism is in play on both 
endothelial cells and tumour cells and demonstrates how hepara-
nase, in concert with syndecan-1, drives angiogenesis, tumour cell 
invasion, and subsequent metastasis.

Evidence is also emerging that heparanase plays a key role in pro-
moting chemoresistance. In breast cancer cell lines expressing a  
high level of heparanase, inhibition of the enzyme sensitised the 
cells to killing by lapatinib24. Elevated heparanase expression by 
myeloma cells enhances their resistance to both bortezomib and 
melphalan and this resistance is reversed in vivo when mice are 
treated with the heparanase inhibitor Roneparstat25. Furthermore, 
heparanase was shown to be present at a high level on tumour cells 
that survive extensive chemotherapy in myeloma patients, lending 
further support to the notion that heparanase promotes resistance 
to therapy25. Together, these findings raise the exciting possibility 
that the efficacy of anti-cancer drugs may be enhanced when com-
bined with the use of heparanase inhibitors. This is of particular 
interest, as there are currently four anti-heparanase drugs in clinical 
trials in cancer patients19. These drugs are all heparin mimetics that 
are thought to inhibit heparanase activity by blocking the enzyme’s 
active site. However, recent solving of the crystal structure of 
heparanase provides an opportunity for the discovery of small mol-
ecule inhibitors of enzyme activity that should exhibit improved 
specificity over the heparin mimetics26. Heparanase-neutralising 
antibodies have also recently shown promise in attenuating the 
growth and metastasis of lymphoma and myeloma tumours in mice27.
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While heparanase may have important roles in supporting tumour 
angiogenesis, it is important to recognise that it is not the only 
mechanism. Many angiogenesis-promoting growth factors, 
such as VEGF, fibroblast growth factors (FGFs), cytokines, and 
chemokines, have high affinity for heparan sulphate. It is there-
fore likely that vascular remodelling is a consequence of multiple 
interactions involving cell surface HSPGs14,28–30.

Although it is generally agreed that the function of Sulf-1 and -2 is 
to selectively remove 6-O sulphates from heparan sulphate chains, 
the impact of these two extracellular sulphatases on tumour growth 
and progression remains controversial. By altering the composi-
tion of heparan sulphates, the Sulfs regulate the signalling capacity 
of heparin-binding growth factors such as Wnts, FGF, EGF, and 
VEGF, among others19. Predictably, this has important conse-
quences for tumour behaviour. What is surprising is that despite 
their seemingly identical function, there are data to support the 
conclusion that Sulf-1 suppresses tumour growth while Sulf-2 pro-
motes tumour growth31,32. However, such a generalisation appears 
to be misleading because there is evidence that in some instances  
Sulf-1 promotes, while Sulf-2 inhibits, tumour growth. Together, 
these findings strongly suggest that there are factors beyond the 
catalytic activity of the Sulfs that determine their ultimate impact 

on tumour behaviour31,33,34 (Figure 1). Such factors may be related 
to spatial or temporal expression of the Sulfs, variations in their 
specificity for the heparan sulphate substrate, or differing abili-
ties of the Sulfs to diffuse through the tumour microenvironment.  
Moreover, there is evidence for non-catalytic properties of Sulfs  
that lead to alterations in heparan sulphate synthesis through changes 
in sulphotransferase expression33 or upregulation of glypican-3  
core protein, which is relevant to hepatocellular carcinoma34.

Signalling at a distance through exosomes
In 2012, the first of several papers was published suggesting 
that syndecans were cell surface receptors important in exosome 
formation35. For this, the most C-terminal region of the syndecan  
cytoplasmic domain interacting with PDZ domain proteins was 
required. The cytoplasmic scaffolding protein syntenin (also 
known as melanoma differentiation-associated gene 9; MDA-9) 
binds to all syndecans through one of its two PDZ domains36,37, and 
this was shown to be important for the endosomal and trafficking 
events that lead to exosome formation38. The other PDZ domain 
of syntenin had high affinity for the membrane phospholipid 
phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P

2
). Syntenin 

also interacts through its C-terminal domain with Bro1/ALG-
2-interacting protein (ALIX39), a central player in exosome  

Figure 1. Cell surface proteoglycans regulate cell communication. Cell surface heparan sulphate proteoglycans can interact with multiple 
ligands through their glycosaminoglycan chains. In addition, they can be modified by heparanase and sulphatases, leading to altered ligand 
binding. Endocytosis, trafficking, and processing can lead to the release of exosomes bearing modified proteoglycans. These can interact 
with fibronectin in the extracellular environment and ultimately be bound and internalised by recipient cells. This signalling at a distance may 
be important in the regulation of tumour cell behaviour.
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formation. In turn, ALIX links to a multiprotein endosomal sort-
ing complex required for transport (ESCRT), with additional 
roles for the GTPase Arf6 and phospholipase D240. Exosomes 
are now recognised as important signalling vesicles, containing a 
number of proteins, lipids, and even nucleic acids such as RNAs 
and miRNAs. They are produced by most cells, including tumour 
cells, and interest in them from the tumour perspective focuses 
on whether they can be detectable biomarkers in fluids and their 
potential roles in regulating the tumour environment (Figure 1). 
Moreover, syntenin (MDA-9) was first identified in the context of 
melanoma but is upregulated in many tumours where experiments 
have shown that it supports cell migration or invasion37,41. It has 
many binding partners beyond syndecans, including the tetraspanin  
CD63, an exosome marker42, but what controls the selectivity of 
syntenin to interact with many different cell surface molecules is 
currently unclear. However, it has been suggested that this protein 
is a potential tumour target43.

Interestingly, similar to their roles in regulating tumour angiogen-
esis and metastasis, heparanase and syndecans also work together 
in regulating exosome secretion by tumour cells. Enhanced 
heparanase expression in tumour cells stimulates exosome biogen-
esis, alters exosome protein composition, and enhances the abil-
ity of exosomes to promote tumour cell spreading and endothelial 
cell migration44. In this instance, heparan sulphate chains of syn-
decans are essential for exosome formation within endosomal 
compartments, and trimming of heparan sulphate by heparanase 
activates the formation of an endosomal complex containing syn-
decan coupled to syntenin and ALIX35,45. This complex promotes 
endosomal membrane budding and drives exosome biogenesis. 
Following their secretion, exosomes exert their biological activ-
ity by docking with recipient cells and delivering cargo that can 
alter recipient cell behaviour. In this context, the heparan sulphate 
present on syndecan, which remains on the exosome surface fol-
lowing the biogenesis process, can interact with fibronectin via its 
Hep-II heparin-binding domain46. The fibronectin-coated exosomes 
subsequently dock by binding to the heparan sulphate of proteogly-
cans present on the recipient cell surface. At least in some cases, 
the heparan sulphate present on recipient cells can also act as an 
internalising receptor, thus facilitating the uptake of exosomes and 
subsequent delivery of exosome cargo within the cell47 (Figure 1).

Syndecans are not the only proteoglycans with potential impor-
tance to exosomes. In 2015, a very interesting report documented 
that circulating exosomes containing glypican-1 could potentially 
identify patients with pancreatic ductal adenocarcinoma, even 
at early stages of tumour development48. Whether the heparan 
sulphate chains were present and carrying important growth fac-
tors, cytokines, or chemokines remains speculative, but once more 
the connection between cell surface HSPGs and cancer is apparent.

Syndecans, cytoskeleton, adhesion, and migration
The four mammalian syndecans all interact with the actin cytoskel-
eton5. Much research has been devoted to understanding this 
relationship, and many reports have provided evidence that they 
contribute to microfilament organisation in adhesion and migration. 
Perhaps the best example in this regard is syndecan-4. It promotes 
the assembly of focal adhesions, junctions that form in response 

to cell adhesion to the extracellular matrix. They are integrin-
dependent organelles, but the mechanism by which syndecan 
influences the process has taken many years to unravel. Key to 
syndecan-4’s role are interactions with both the actin-associated 
protein α-actinin49–51 and protein kinase Cα, through which there 
are multiple potential pathways involving Rho family GTPases to 
the cytoskeleton52,53. The roles of RhoA, Rac, and cdc42 are well 
known in this regard54,55. Analysis of fibroblasts derived from syn-
decan-4 null mice show clear differences in microfilament organi-
sation, with much reduced focal adhesions and stress fibres51,56,57, 
for which RhoGTPase activities seem not to provide the whole 
explanation. Recent analysis has now shown that this altered adhe-
sion phenotype of S4KO cells relates to calcium channels of the 
TRPC (transient receptor potential canonical) family. Indeed, 
elimination of the TRPC7 channel (itself a focal adhesion com-
ponent) reverts the S4KO cells to wild-type in terms of adhesion, 
cytoskeleton, and junction formation58. This was accompanied by 
reductions in cytosolic calcium that were shown to be increased 
in the null cells compared to matching wild-type cells. Further 
work with epithelial cells and, moreover, genetic experiments with 
Caenorhabditis elegans (which possesses a single syndecan) show 
that this regulation of TRPC type channels by syndecans may be a 
highly conserved and important role for this proteoglycan family58.

The work with syndecans and channels has so far not embraced 
tumour cells. Since calcium is a potent regulator of the actin 
cytoskeleton, it may now be attractive to re-examine some of the 
previous observations on HSPGs and tumour cells. The literature is 
replete with studies showing that syndecans are often mis-expressed 
in solid tumours and in some cases relate to prognosis59–62. A good 
example is breast cancer, where high levels of syndecan-1 expres-
sion, particularly in the tumour stroma, are an indicator of poor 
prognosis63,64. In other studies, syndecan-2 upregulation has been 
shown to alter the adhesion and invasiveness of MDA-MB231 
breast carcinoma cells and colon carcinoma cells65,66. The difficulty 
with many studies is understanding whether syndecan expres-
sion merely correlates with or is functionally related to tumour 
progression. In some cases, however, the situation is clearer. A 
wealth of evidence now suggests that syndecan-1 expression in 
myeloma is related directly to disease severity and progression67,68. 
Moreover, it is not only syndecans that may influence tumour 
progression. Evidence has accumulated rapidly over the past few 
years showing a relationship between glypican-3 expression and 
the progression of hepatocellular carcinoma69–71. This HSPG is 
expressed in foetal liver, but levels subside in postnatal life72,73. 
However, in a large majority of cases, glypican-3 is re-expressed 
in hepatocellular carcinoma72,74. The excitement about this HSPG 
revolves around the possibility that it may serve as a prognos-
tic marker, but also a target for immunotherapy71. Early clinical 
trials have been reported, but clearly there is a long way to go. On 
a molecular level, it has been suggested that glypican-3 can bind 
both Wnt and Frizzled, the signalling receptor for Wnts, through 
its heparan sulphate chains70,71. However, the situation is com-
plex, since glypican-3 in normal tissue may be a growth inhibitor. 
Rare core protein mutations giving rise to the Simpson-Golabi- 
Behmel syndrome are characterised by overgrowth and many 
dysmorphisms in patients and a corresponding murine model75. In 
hepatocellular carcinoma, however, there is also upregulation 
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of Sulf-2. It now appears that selective removal of 6-O-sulphate 
residues from the glypican’s heparan sulphate chains leads to Wnt  
activation, possibly through its enhanced mobility, leading to  
Frizzled binding and signalling76. It is also possible that the heparan 
sulphate chains may bind hepatocyte growth factor and members  
of the FGF family77,78.

Conclusions
Recent developments have highlighted that both the heparan 
sulphate chains and the core proteins of cell surface HSPGs are 
highly and functionally relevant to tumour progression. Moreover,  
the increasingly recognised importance of the tumour cell 
niche79,80, which is rich in proteoglycans, and the emerging roles 
of proteoglycans in stem cell differentiation6,81 are areas for future  
development. Moreover, it is not only HSPGs that present as targets 
in tumours. The chondroitin sulphate proteoglycan 4 (also known 
as NG2) is recognised as a cell surface marker of pericytes in the  
vasculature but is also present more widely, for example on neuro-
nal and oligodendrocyte precursors82. It is also an emerging target  
for immunotherapy in a variety of tumour types, including 
melanoma, triple negative breast cancer, glioblastoma, mesothe-
lioma, and sarcomas83,84.

The potential for cell surface proteoglycans to be targets for inter-
vention are complicated by their multiple roles and ubiquity. It is 

perhaps likely that tumour cells, stromal/other host tissue, and the 
immune system utilise these proteoglycans and their downstream 
signalling in specific ways to regulate behaviour. Targeting will 
require detailed understanding, and therefore we can predict that 
new insights into the functions of proteoglycans will impact tumour 
biology for many years to come.
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