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Abstract

Development and use of primer sets to amplify nucleic acid sequences of interest is fundamental to studies spanning many
life science disciplines. As such, the validation of primer sets is essential. Several computer programs have been created to
aid in the initial selection of primer sequences that may or may not require multiple nucleotide combinations (i.e.,
degeneracies). Conversely, validation of primer specificity has remained largely unchanged for several decades, and there
are currently few available programs that allows for an evaluation of primers containing degenerate nucleotide bases. To
alleviate this gap, we developed the program De-MetaST that performs an in silico amplification using user defined
nucleotide sequence dataset(s) and primer sequences that may contain degenerate bases. The program returns an output
file that contains the in silico amplicons. When De-MetaST is paired with NCBI’s BLAST (De-MetaST-BLAST), the program also
returns the top 10 nr NCBI database hits for each recovered in silico amplicon. While the original motivation for
development of this search tool was degenerate primer validation using the wealth of nucleotide sequences available in
environmental metagenome and metatranscriptome databases, this search tool has potential utility in many data mining
applications.
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Introduction

PCR is one of the most fundamental and powerful molecular

biology tools available. PCR primer sets that contain degenerate

bases allow for the amplification of homologous sequences and

have been used in various applications, including genetic diversity

analyses (e.g., [1–12]). Several software packages that use

a nucleotide or amino acid alignment of the genetic target are

available to aid in the initial development of degenerate primer

sets (e.g., Amplicon [13], CODEHOP [14–16], DEFOG [17],

DePiCt [18], HYDEN [19], MAD-DPD [20], PhiSiGns [21], and

Primaclade [22]). In addition, manual identification of conserved

regions from aligned sequences generated using software such as

ARB [23], ClustalX [24], and MEGA [25] is also common

practice (e.g., [26–31]). Once candidate primers are developed,

thermodynamic properties and self-complementarity tests can be

obtained using online tools (e.g., OligoCalc [32]).

Despite the utility and common use of degenerate primers, there

are no software programs specifically designed to facilitate

validation of their specificity. The most common practice for

initial validation of degenerate primers is by direct sequence

analysis of PCR amplicons (e.g., [33–37]). This can be both

laborious and costly, and does not take advantage of the ever-

increasing publicly available nucleotide data, including that

derived from natural samples. In fact, environmental metagen-

omes and metatranscriptomes are especially attractive reference

databases (e.g., CAMERA [38] [http://camera.calit2.net/] and

MG-RAST [http://metagenomics.anl.gov/]) to perform in silico

tests en masse to identify sequences a degenerate primer set might

amplify.

To address this gap in available bioinformatic tools, we have

developed a program termed De-MetaST. This program accepts

primers that are degenerate using a meta-genome and –

transcriptome search tool to retrieve in silico PCR amplicons.

When paired with BLAST [39], the output provides the most

homologous sequences in GenBank for each recovered in silico

amplicon. In this report, we provide an overview of the program

and outline its utility as a tool to validate the specificity of

degenerate primer sets. This program is designed to be user-

friendly for non-bioinformatics specialists and is publicly available;

as are screencast video tutorials demonstrating installation and

implementation.

Design and Program Overview

De-MetaST is written in C++ and is provided as an

executable wrapper to include BLAST (De-MetaST-BLAST)

as well as an independent executable (De-MetaST). The

function of De-MetaST is to implement a search routine based

on bitwise comparisons. Initial steps translate the degenerate

nucleotide sequences of each primer, as well as their reverse

complement sequences, into unique and specific binary

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e50362



representations. This approach facilitates rapid searches of large

databases that are also transformed into binary representations.

The specific computational steps of De-MetaST are outlined in

Figure S1.

How De-MetaST Works
The De-MetaST program initially converts the inputted

primer sequences into 4-digit binary code, where the 16 possible

combinations of nucleotides include: A, T, C, G, B, D, H, K,

M, N (or X), R, S, V, W, and Y (Figure 1). Then, each

sequence read within a user defined, FASTA formatted

database is converted to 4-digit binary codes and scanned

using a bitwise searching operation for the presence of both

primer sequences in the appropriate orientation. Limited

memory is necessary for this action because each sequence

read is individually transformed to binary and immediately

scanned for the presence of the primer sequences. The program

searches using both the original user inputted primers as well as

the reverse and complement of those sequences. This latter

search is done to insure identification of target sequences

regardless of whether the sense or antisense strand is

represented by the database sequence read scanned. The search

feature also allows a single primer to serve as both the forward

and reverse primer. When primers identify their respective

target(s) within a sequence read, the nucleotide sequence

delimited by the two primers, termed the in silico amplicon, is

retrieved. The primer(s) yielding each amplicon are reported in

the output. De-MetaST is written to parse in silico amplicons

.5000 bp into a separate FASTA formatted file that is not

subject to BLASTx; users can modify this length restriction by

editing the code. All in silico amplicons provided in the output

represent the sense strand in a 59 to 39 orientation. Thus, when

positive hits are made to reads representing antisense strands,

the complement and reverse of those reads are generated. Any

identifying features (e.g., unique read number) as well as the file

name for each predicted hit is recovered. Although developed to

accept degenerate primers, non-degenerate primers can also be

input into De-MetaST. Furthermore, the nucleotide query

database(s) themselves may contain sequence reads with de-

generate or ambiguous nucleotides (e.g., N). Finally, De-MetaST

accepts multiple primer sets as input; the in silico amplicons from

each set are output into separate FASTA files. As De-MetaST

accepts degeneracies in the input primer sequences, it requires

absolute conservation in the target sequences; it does not allow

for any mismatches between the primer sequence and target. In

this way, the user controls the level of primer specificity.

De-MetaST Paired with BLAST
Once the database sequence files have been queried for

predicted PCR amplicons, each in silico amplicon is subject to

Figure 1. De-MetaST transformation of nucleotide sequences into a binary representation. The binary representation for each of the 16
possible nucleotide character inputs is shown in the upper box. The lower box provides an example of the transformation using a mock primer
sequence. Spaced gaps are shown for instructional purposes and do not occur in the De-MetaST search routine.
doi:10.1371/journal.pone.0050362.g001
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a BLASTx analysis, which translates the nucleotide sequence in all

six frames and performs queries for each translation against the

non-redundant (nr) NCBI protein database. The top 10 BLASTx

hits for each amplicon are formatted as an XML file. The final

step of De-MetaST-BLAST compiles all of the meta-information

of the BLASTx results for each amplicon retrieved (e.g., hit

accession number, E-value, predicted function, nucleotide se-

quence, database file name, the primer combination that retrieved

the amplicon, unique read number) into a single, tab-delimited

TXT file. The BLASTx results file can also be exported as an XLS

file format for direct use in Microsoft Excel or other suitable

program. A graphical overview of the De-MetaST-BLAST

workflow is shown in Figure 2.

Results and Discussion

We have developed a computational method to generate in silico

amplifications from degenerate primer sets searched against user

defined nucleotide databases. To illustrate the utility of De-

MetaST-BLAST, we demonstrate its performance using a novel

degenerate primer set designed for use on environmental samples.

This primer set targets the bacterial boxB gene, which encodes the

oxygenase component of a multi-enzyme epoxidase (EC 1.14.13)

that is specific to a benzoate catabolic pathway [40]. Three

metagenome libraries representing different environments, library

size and DNA sequencing methods were searched and found to

contain putative boxB amplicons of the appropriate size (300 bp)

(Table 1). Figure 3 shows the typical output of De-MetaST-

BLAST for one of those database searches, which includes for

each in silico amplicon the top 10 BLASTx hits with their

corresponding E-value and GenBank accession number.

To retrieve an in silico amplicon, the program requires both

primers to match their respective targets in a single sequence read

or sequence assembly (contig). Thus, an important consideration

in terms of selection of appropriate searchable databases is the

average length of the sequence read or assembly contained within

it, as well as the desired amplicon size. This concern may be

alleviated as longer read sequencing technologies are developed

and/or as sequence coverage and assembly algorithms improve.

Interestingly, our analysis demonstrates that in silico amplicons of

Figure 2. Flowchart outlining De-MetaST-BLAST user actions and corresponding computational processes. Fwd, Forward; Rev, Reverse;
NCBI, National Center for Biotechnology Information.
doi:10.1371/journal.pone.0050362.g002
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,300 bp and ,190 bp, representing boxB and 16S rRNA gene

amplicons, respectively, can be readily recovered from databases

dominated by short read length sequences (e.g. AntarcticaAquatic;

Table 1). In fact, the 44 boxB amplicons derived from the

AntarcticaAquatic dataset were found in reads that ranged from

348–541 bp in length. This result suggests that sequence coverage,

or depth, is also a contributing factor to in silico amplicon recovery.

Incidentally, all of the in silico amplicons recovered in this

demonstration run were found to be homologous to the desired

target (E-value #1e24).

In terms of data mining, De-MetaST can provide complemen-

tary sequence data for gene diversity studies. As the De-MetaST

output provides the sequence from the same genetic positions as

that derived from a companion clone library, downstream

analysis, such as sequence alignment and subsequent phylogenetic

analysis, is streamlined. Thus, in silico amplicons retrieved from

existing sequence datasets can be readily compared to experimen-

tally derived clone library sequences. Furthermore, as the

nucleotide sequences targeted by the primers are returned in the

De-MetaST output, users can draw on that information to further

refine their primers according to a desired level of functional and/

or phylogenetic specificity. The program also has utility beyond

searches of environmental sequence databases. It can be used to

query any nucleotide dataset, including those derived from single

organisms. Thus, it has use in assessing the specificity of primers

targeting multi-copy or homologous genes within a single organ-

ism or group of organisms.

Benchmarks and System Requirements
De-MetaST-BLAST has been developed for the long-term

support (LTS) Ubuntu operating systems 10.04 LTS and 12.04

LTS. While De-MetaST does not make use of multi-core

processors, BLAST maintains that capability. Benchmarks were

performed on an Intel i7-2600 processor (3.4 GHz quad-core, 8-

thread) desktop using the developed degenerate boxB primer set

against the Waseca Farm Soil metagenome (AAFX01000000)

[41]. This search took approximately 11.7 s (Table 2). When the

database size was artificially and incrementally increased up to

five-fold (772 Mb) by replication of the original dataset, the

processing time remained ,1 min. Furthermore, to determine the

effect of increased numbers of positive hits on run time, the

libraries were seeded with additional sequences containing the

target. Doubling of targets within the databases had no effect on

run time (Table 2). In contrast to the relatively rapid processing

speed of De-MetaST, implementation of the BLAST function can

add significant processing time to the process, particularly if a local

custom database is used. As an example, for the initial benchmark

search against the locally installed Farm Soil metagenome that

recovered two hits, the BLASTx function added 39.3 s using two

threads. Thus, computational requirements and processing speed

are primarily dictated by BLAST. When BLAST is performed

remotely–the default setting (see below) –the return time is

dependent upon availability and processing speeds of the NCBI

servers.

Both De-MetaST and De-MetaST-BLAST can be run on any

operating system with a C++ compiler (e.g., standard Windows and

Mac OS). However, users would need to ensure the BLAST

installation is compatible with their processor.

Availability of De-MetaST-BLAST
The De-MetaST package and the De-MetaST-BLAST wrapper

are made freely available at http://sourceforge.net/p/de-metast-

blast/and http://code.google.com/p/de-metast-blast/. These files

are also provided as supplemental information to this publication
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(File S1 and File S2). Along with the program, screencast tutorial

videos describe how to install the necessary programs as well as

implement the software package with the example dataset

provided. The De-MetaST package is self-contained and has no

external dependencies, except a C++ compiler, such as g++. De-

MetaST-BLAST requires a local BLAST+ suite installation that

supports direct query of the NCBI nr protein database using NCBI

servers via the –remote option. However, the program can also be

configured to query a custom local database. Both approaches are

described in tutorial videos provided. Installation of the De-

MetaST program is estimated at 5 min, whereas installation of the

BLAST+ suite is estimated to take 3 min, excluding download and

extraction times, which are dependent on the user’s internet speed

and processing power.

Conclusions
It was recently predicted that the increasing amounts of

metagenome sequences will likely serve as a valuable resource in

evaluation of the coverage and specificity of previously developed

primer sets [42]. De-MetaST-BLAST will provide users with

a useful tool in such evaluations. De-MetaST is designed to

provide in silico amplicons generated by user defined degenerate

Figure 3. Example of De-MetaST-BLAST output. Text within the box denotes the spreadsheet output for a boxB primer set search against the
WASECA Farm Soil Metagenome (AAFX01000000) [41] that recovers two in silico amplicons. Column descriptors are shown in color; select columns
have been truncated due to space constraints. For the ‘‘excision info’’ column, the first alphanumeric character reports the ‘‘hit’’ number within a read
(i.e. ‘‘1’’ indicates it is the first in silico amplicon found within a single read). The subsequent alphanumeric characters denote the primer orientation
yielding the amplicon (F = forward, R = reverse). Whether a unique read identifier is returned is contingent upon the database itself.
doi:10.1371/journal.pone.0050362.g003

Table 2. Runtime duration of De-MetaST.

Files Input
Database size
[Mbytes]a

Sequences in
database [*105]

Nucleotides in
Database [Mbp] Hits Real Time [s] User Time [s]

System Time
[s]

1 206.1 1.4 154 2 11.7 11.7 0.02

2 412.2 2.8 309 4 23.5 23.4 0.05

3 618.3 4.2 463 6 35.2 35.1 0.07

4 824.4 5.5 618 8 47.6 47.5 0.10

5 1030.5 7.0 772 10 58.6 58.5 0.12

1 206.1 1.4 154 4 11.9 11.9 0.02

2 412.2 2.8 309 8 23.3 23.3 0.05

3 618.3 4.2 463 12 35.6 35.5 0.08

4 824.4 5.5 618 16 47.3 47.1 0.10

5 1030.5 7.0 772 20 58.2 58.0 0.12

aThe datasets used for benchmarking were manipulations of the Waseca Farm Soil metagenome (AAFX01000000); the average sequence read length in these datasets is
1117 bp.
doi:10.1371/journal.pone.0050362.t002
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primers found within a user defined nucleotide database. When

paired with BLAST, the program returns the most homologous

GenBank hits, which are useful in assessing the specificity of

degenerate primers. However, the program does not evaluate

PCR kinetics and efficiencies with degenerate primers. Thus, users

are encouraged to consult appropriate references on the use and

design of degenerate primers (e.g., [43–44]), including those that

discuss the merits of utilizing base analogs (e.g., inosine; [45]) that

can reduce the overall degeneracy of primers.

Supporting Information

Figure S1 Computational procedures of De-MetaST are
illustrated within the De-MetaST-BLAST wrapper.
(EPS)

File S1 Archive containing the source code for De-MetaST.

(GZ)

File S2 Archive containing the source code for De-MetaST-

BLAST.

(GZ)
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