
Ecology and Evolution. 2020;10:11237–11250.     |  11237www.ecolevol.org

 

Received: 17 May 2020  |  Revised: 14 August 2020  |  Accepted: 20 August 2020

DOI: 10.1002/ece3.6763  

O R I G I N A L  R E S E A R C H

Lake productivity and waterbird functional diversity across 
geographic and environmental gradients in temperate China

Yamian Zhang1,2  |   Wenzhuo Tan1 |   Qing Zeng1 |   Haitao Tian1 |   Yifei Jia1 |   
Guangchun Lei1  |   Li Wen3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1School of Ecology and Nature 
Conservation, Beijing Forestry University, 
Beijing, China
2College of the Environment & Ecology, 
Xiamen University, Xiamen, China
3Science, Economics and Insights Division, 
Department of Planning, Industry and 
Environment, Lidcombe, NSW, Australia

Correspondence
Guangchun Lei, School of Ecology and 
Nature Conservation, Beijing Forestry 
University, Beijing, China.
Email: guangchun.lei@foxmail.com

Li Wen, Science, Economics and Insights 
Division, Department of Planning, Industry 
and Environment, Lidcombe, NSW 2141, 
Australia.
Email: li.wen@environment.nsw.gov.au

Funding information
Special Foundation for Basic Scientific and 
Technological Research Program, Grant/
Award Number: 2013FY111800

Abstract
Geographical gradients in species diversity have long fascinated biogeographers and 
ecologists. However, the extent and generality of the effects of the important fac-
tors governing functional diversity (FD) patterns are still debated, especially for the 
freshwater domain. We examined the relationship between lake productivity and 
functional diversity of waterbirds sampled from 35 lakes and reservoirs in northern 
China with a geographic coverage of over 5 million km2. We used structural equa-
tion modeling (SEM) to explore the causal relationships between geographic position, 
climate, lake productivity, and waterbird FD. We found unambiguous altitudinal and 
longitudinal gradients in lake productivity and waterbird FD, which were strongly 
mediated by local environmental factors. Specifically, we found (a) lake productivity 
increased northeast and decreased with altitude. The observed geographic and alti-
tudinal gradients were driven by climatic conditions and nutrient availability, which 
collectively explained 93% of the variations in lake productivity; (b) waterbird FD 
showed similar geographic and altitudinal gradients; the environmental factors which 
had direct and/or indirect effects on these gradients included climate and lake area, 
which collectively explained more than 39% of the variation in waterbird FD; and 3) 
a significant (p = .029) causality between lake productivity and waterbird FD was 
confirmed. Nevertheless, the causality link was relatively weak in comparison with 
climate and lake area (the standardized path coefficient was 0.55, 0.23, and 0.03 for 
climate, lake area, and productivity, respectively). Our study demonstrates how the 
application of multivariate technique (e.g., SEM) enables the illustration of complex 
causal paths in ecosystems, enhancing mechanistic explanations that underlie the 
observed broadscale biodiversity gradients.
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1  | INTRODUC TION

The planet Earth shows striking gradients in the diversity of plants 
and animals, from high biodiversity in the tropics to low biodiversity in 
polar and high-mountain regions (Gaston, 2000; Rosenzweig, 1995; 
Whittaker, Nogues-Bravo, & Araujo, 2007; Willig, Kaufman, & 
Stevens, 2003). Due to the alarming rate of biodiversity loss in 
the last decades caused by anthropogenic interruption (Prescott 
et al., 2016; Waide et al., 1999), renewed interests in taxonomic 
diversity patterns are likely to contribute to important insights for 
developing a more general theory of species diversity (Castro-Insua, 
Gómez-Rodríguez, & Baselga, 2016). Studies in the past decades 
have explored the mechanisms for such patterns, leading to con-
ceptual insights on the biogeographical variation of species diversity 
(Devictor et al., 2010; Field et al., 2009; Gaston, 2000). For example, 
diversity is often highest at intermediate levels of ecosystem pro-
ductivity (Grime, 1973; Mittelbach et al., 2001; Waide et al., 1999), 
and species diversity increases with habitat area (MacArthur & 
Wilson, 1967; Rosenzweig, 1995) and/or habitat patches, for en-
vironmental heterogeneity is considered as a key driver of species 
diversity across taxa, biomes, and spatial scales (Stein, Gerstner, & 
Kreft, 2014). In addition, both theoretical considerations and empir-
ical analyses suggest that the spatial patterns of species diversity 
are likely scale dependent (Field et al., 2009; Mittelbach et al., 2001; 
Mouchet et al., 2015).

Most macroecology research has been focused on terrestrial 
ecosystems (Currie & Paquin, 1987; Qian, Ricklefs, & White, 2005), 
and relative fewer studies have explored geographic biodiversity 
gradients and the underling mechanisms for aquatic ecosystems 
(Astorga, Heino, Luoto, & Muotka, 2011; Barbour & Brown, 1974; 
Heino, 2002, 2011; Irz, Argillier, & Thierry, 2004; Jacobsen, 2004), 
especially the aquatic ecosystems in the arid and semi-arid region, 
which provide important habitats for diverse species and water re-
sources for human living (Williams, 1999). Moreover, the geograph-
ical distribution of study sites is strongly biased toward Europe 
and North America, with particularly poor coverage in Asia (Field 
et al., 2009; Fu, Wu, Wang, Lei, & Chen, 2004). Study of species 
diversity in aquatic ecosystems is as essential as in their terrestrial 
counterparts (Stendera et al., 2012). Declines in biodiversity are 
far greater in freshwaters than in most terrestrial ecosystems (Sala 
et al., 2000). Freshwater ecosystems are one of the most endan-
gered ecosystems in the world (Dudgeon et al., 2006; Millennium 
Ecosystem Assessment, 2005), and the actual rates of freshwater 
species extinction due to human interruptions are much higher than 
natural extinction rates (Naiman & Dudgeon, 2011). Therefore, a bet-
ter understanding of the global freshwater diversity gradients and 
the major environmental drivers remains a major topic (Heino, 2011); 
and such studies serve to address some fundamental questions for 
the conservation of freshwater taxa (Tisseuil et al., 2013).

Waterbirds are ubiquitous components of freshwater systems, 
and their diversity and abundance have long been recognized as suit-
able bioindicators of environmental change in aquatic systems (Caro 
& O'Doherty, 1999; Wen, Saintilan, Reid, & Colloff, 2016) and serve 

multiple significant functional roles in ecosystems (Barbet-Massin 
& Jetz, 2015) (Figure 1). Worldwide, strong geographic differences 
exist in the ecological attributes of birds (Kissling, Sekercioglu, & 
Jetz, 2012). However, as with other freshwater biota, macroecolog-
ical studies of environmental drivers of waterbird diversity are rare 
(Shah, Domisch, Pauls, Haase, & Jähnig, 2014; Stendera et al., 2012; 
Zeng et al., 2019). It is unclear whether similar latitudinal and other 
broad geographical gradients (e.g., altitudinal) apply to waterbirds 
as well. In a recent review, Heino (2011) found no clear latitudinal 
gradients at regional scale while species richness typically attains 
highest levels in mountainous regions. Using river basins as the 
spatial unit, however, Tisseuil et al. (2013) found that the ‘climate/
productivity’ hypothesis (Field et al., 2009) explained large portion 
of geographic variance in waterbird richness, which is consistent to 
land avian species (Storch et al., 2006). Several factors are known 
to affect waterbird diversity at a local scale, such as lake produc-
tivity, lake size, and habitat heterogeneity (Barbour & Brown, 1974; 
Cintra, 2015; Xia et al., 2016). For example, lake productivity is often 
a strong predictor of freshwater biodiversity (Dodson, Arnott, & 
Cottingham, 2000), including aquatic animals (and zooplankton as 
well) (Chase & Leibold, 2002) and phytoplankton (Stomp, Huisman, 
Mittelbach, Litchman, & Klausmeier, 2011). But its effect on water-
birds has rarely been tested. The productivity–diversity hypothesis 
suggests a positive effect of primary productivity on species diver-
sity by allowing larger populations to persist, thereby reducing ex-
tinction risk and supporting a higher diversity of niche specialists 
(Tittensor et al., 2010; Willig et al., 2003). Linking these local scale 
variables with broadscale geographical variations in an integrative 
analysis framework could potentially articulate the leading processes 
underlying the regional and global waterbird diversity patterns.

Biodiversity assessment is an important component of con-
servation planning and increasingly used to identify land-use 
management practices that maximize both evolutionary value 
and ecosystem function (Chapman, Tobias, Edwards, Davies, & 
Vamosi, 2018). Key requirements are to maintain community re-
silience to environmental disturbance and to preserve ecosystem 
functions and services across time and space (Socolar, Gilroy, 

F I G U R E  1   A pair of Mute Swans (Cygnus olor) inhabits in 
Wuliangsuhai Lake, Inner Mongolia
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Kunin, & Edwards, 2016). Consequently, it is often proposed that 
we need to look beyond merely conserving species richness to-
ward maintaining the maximum diversity of evolutionary lineages 
and associated ecological functions (Bregman et al., 2016). The 
idea that functional diversity (FD) or functional complementarity 
performs better than species richness as predictors of ecosystem 
functions are supported by a range of empirical studies (Flynn, 
Mirotchnick, Jain, Palmer, & Naeem, 2011; Fründ, Dormann, 
Holzschuh, & Tscharntke, 2013; Petchey & Gaston, 2007). FD is 
a biodiversity component that represents the extent of the func-
tional differences among species based on the distinction of their 
morphological, physiological, and ecological traits (Petchey & 
Gaston, 2006). Species loss may lead to a reduction in FD depend-
ing on the intrinsic redundancy of assemblages (Flynn et al., 2009; 
Petchey, Evans, Fishburn, & Gaston, 2007). A decrease on the 
FD of local and regional assemblages could have dramatic conse-
quences for ecosystem functioning because the traits of species, 
not just the number of taxonomic units, ultimately drive biodiver-
sity–ecosystem functioning relationships (Dı ́az & Cabido, 2001; 
Hooper et al., 2005).

In this case, we applied FD metrics to waterbird communities 
sampled in 35 lakes across the entire temperate arid and semi-arid 
northern China to (a) explore the geographical patterns of waterbird 
diversity and lake productivity, and their influencing factors; (b) test 
the productivity–diversity hypothesis; and more importantly, (c) fill 
in the gaps in our understanding of ecological patterns in aquatic 
ecosystems across a large geographical scale.

2  | MATERIAL S AND METHODS

2.1 | Study sites

We sampled a total of 35 lakes and reservoirs across the temper-
ate zone of China (latitude 34.60° to 46.06°, longitude 85.69° to 
124.29°, Figure 2). The study area covers more than 5 million km2, 
including a range of landforms such as mountains, hills, plateaus, and 
plains, with altitude ranging from 22.61 m to 4,818.10 m. This area 
has large precipitation and temperature gradients. The surveyed 
waterbodies show a range of physical, chemical, and topographic 
characteristics (Table S1). Most of the lakes are located in the arid 
and semi-arid region of China, providing critical habitats for diverse 
species including waterbirds. Human uses of the lakes mainly include 
fishery, tourism, water source for irrigation, and reed harvest.

2.2 | Data collection

Data were collected from 35 lakes and reservoirs during the sum-
mers of 2011–2016. The lakes were sampled one to three times, with 
most of them sampled once in summer. In each lake, water samples 
were taken on the same day as waterbird survey during daylight 
hours.

2.2.1 | Waterbird surveys

Waterbirds were surveyed using transect line method to maximize 
the spatial coverage of the lakes. Most of the transects were set in 
the lake shore, while in some lakes with larger area (e.g., Boston Lake 
in Xinjiang Province and Wuliangsuhai Lake in Inner Mongolia), tran-
sects were also set in lakes (open water area). Fixed transects with 
variable lengths were established in each lake and reservoir. Based 
on the size of each study site, the transect length varied from 1 to 
5 km for the lake shore transects and 8 to 13 km for transects in lakes. 
The perpendicular searching distance varied from 0.1 to 0.6 km. 
We surveyed the lake shore transects on foot at a constant speed, 
whereas boats with low and constant velocity were used for the 
transects in lakes. All the transect lines were surveyed by using bin-
oculars (8 × 42) and telescopes (Swarovski ATS 80 HD 20–60 × 80). 
To increase detectability, the surveys were carried out on clear days 
during daytime and there were at least two fully trained observers 
for each transect. Visual and/or verbal communication enabled us 
to avoid duplicate recordings of the same flock of waterbirds by the 
observers. Waterbirds were all identified to species level.

We acknowledge that the above surveys may be insufficient to 
detect all species in a site because of the high mobility of water-
birds. Thus, historical waterbird surveys, either by the nature re-
serves or published, studies were also collected and incorporated. 
On 31 December 2017, we conducted a search of all peer-reviewed 
indexed in the scientific database ISI Web of Science-SCI-Expanded 
and CNKI (for Chinese publications). The keywords used include the 
names of each lake and reservoir (e.g., Wuliangsuhai) and the names 
of the study regions (e.g., Beijing, Inner Mongolia, respectively) plus 

F I G U R E  2   Locations of the 35 surveyed lakes and reservoirs in 
North China. Elevation gradient is used as background
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“bird*” or “waterbird*” or “waterfowl*” or “avian*”. In addition, other 
gray literatures like books and reports were collected. Information 
of waterbird species at each study site was extracted from the pub-
lications. Waterbird lists from each nature reserve were carefully 
checked and consulted with ornithologists, and nature reserve staffs 
when necessary to make sure the records are correct. To incorporate 
those data with our survey results, only waterbird species that re-
corded during 2011 to 2016 (our sampling period) were used.

2.2.2 | Functional trait data

To estimate functional diversity, we collected biometric trait data 
that describe key ecological attributes of species from published 
literature for all 148 species. We collected 16 traits for each bird 
species, including generation length (the average age of breeding 
individuals), clutch size (number of eggs), incubation times, body 
size, body mass, wingspan, migratory types (full migration, alti-
tudinal migration, and not migration), breeding habitat range, diet 
(percentage of scavenger, and invertebrate, fish, seed, fruit, and 
other plant materials), habitat mode (percentage usage of water, ri-
parian, and ground), and pelagic species (0/1) (Table 1). These se-
lected traits measure many aspects of resource used by birds, such 
as the quantity and the quality of resource consumed (Petchey 
& Gaston, 2007), as well as the fitness of the species such as 

reproduction strategies and generation length (Luck, Andrew, Lisa, 
& Davies, 2013). For example, body mass is highly related to birds’ 
energy requirements (Blendinger & Villegas, 2011). Diet is related to 
ecosystem functions such as seed dispersal and food-web structure 
(Sekercioglu, 2006). The main sources of the trait measurements are 
Planet of Birds, BirdLife International, and a database compiled by 
Wilman et al. (2014) (Table 1). Any missing data were filled based on 
information in the ornithological literature, such as the Handbook of 
the Birds of the World (http://www.hbw.com/). A brief summary is 
available in Table S2.

We used functional richness (FRic) and functional dispersion 
(FDis) as the measure of functional diversity. FRic represents the 
amount of functional space filled by the community (Villéger, Mason, 
& Mouillot, 2008). A community with high FRic would be one with 
many traits (and potentially high utilization of resources), whereas 
one with lower FRic might indicate that some niches are not available 
in the ecosystem (Prescott et al., 2016). FDis is the mean distance in 
multidimensional trait space of individual species to the centroid of 
all species (Laliberté & Legendre, 2010), which is influenced both by 
the range of trait values and the distribution of individuals within 
trait space (Prescott et al., 2016) but not related mathematically with 
species richness (Laliberté & Legendre, 2010). Large values of FDis 
imply that many species have long distances to the community cen-
troid, indicating communities with many specialist species and high 
potential for species’ complementarity (Laliberté & Legendre, 2010).

Type Trait Mean SD Sources

Resource quantity Size (cm) 48.48 31.65 a and b

Mass (g) 1,078.07 1912.80 a and b

Wingspan (cm) 89.86 52.22 a

Migration – – b

Pelagic – – b

Breeding range (km2, 
log-transformed)

7.24 0.71 b

Life history Generation (year) 8.07 2.85 a

Reproduction Clutch size (no. of eggs) 4.55 2.17 a and b

Incubation (day) 24.89 4.63 c

Diet Diet-Inv (% of 
invertebrate)

49.53 31.84 c

Diet-V (% of vertebrate) 22.84 28.17 c

Diet-Scav (% of 
scavenger)

0.88 3.84 c

Diet-Plant (% of plant 
materials)

26.76 31.97 c

Habitat Hab-W (% of time on 
water surface)

15.20 30.87 c

Hab-Rip (% of time on 
riparian area)

40.34 28.88 c

Hab-G (% of time on 
ground)

41.91 32.51 c

Note: (a) Planet of Birds, website visited 23 June 2016: http://www.plane tofbi rds.com/. (b) BirdLife 
International, website visited 28 June 2016: http://dataz one.birdl ife.org/. (c) Wilman et al., 2014.

TA B L E  1   The five trait types and 
16 specific traits used to characterize 
waterbird functional diversity in lakes and 
reservoirs located in North China

http://www.hbw.com/
http://www.planetofbirds.com/
http://datazone.birdlife.org/
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2.2.3 | Lake chemical characteristics and size

Indicators for lake chemical characteristics include total nitrogen 
(TN), total phosphorus (TP), and chlorophyll a (Chl-a). Water sam-
ples for TN and TP in each lake were collected and preserved using 
100-ml jars on the same day with waterbirds surveys. All the water 
samples were sent to and processed in laboratory by using Ultrospec 
6300 pro spectrophotometer (GE Healthcare, America). Water sam-
ples for chlorophyll a (Chl-a) concentration were collected synchro-
nously on site. We used 2-liter bottles to collect water samples in 
each lake and reservoir and then filtered the water by using GF/C 
filter membrane, each filter membrane was filtered with 500 ml 
water, and three filter membranes (3 × 500 ml) were requested for 
every sampling point. All water samples and filter membranes were 
preserved in <5℃ refrigerator and sent to laboratory for further test 
by using Ultrospec 6300 pro spectrophotometer (GE Healthcare, 
America). Sample size ranges from 3 to 18 based on the area of lake. 
We set three, six, nine, 12, and 18 sampling points for lakes with 
area <10,000 ha, 10,000–20,000 ha, 20,001–30,000 ha, 30,001–
50,000 ha, and >50,000 ha, respectively. Surface area of each lake 
and reservoir was calculated from remote sensing interpretation by 
using Google Earth images from year 2013 to 2016.

2.2.4 | Climatic and geographical variables

To define the climate of the lakes, we used the 30 s WorldClim bio-
climatic variables, which were downloaded from WorldClim website, 
publicly available at https://www.world clim.org/data/world clim21.
html. The following bioclimatic variables were included in the study 
based on collinearity test (see below): mean diurnal range (T1, mean 
of monthly (max temp-min temp)), mean temperature of the wettest 
quarter (T2), mean temperature of the warmest quarter (T3), annual 
total precipitation (P1), precipitation of the driest month (P2), precip-
itation of the warmest quarter (P3), and precipitation of the coldest 
quarter (P4). The variables of climate are spatial means of each lake. 
Altitudes of the sampled lakes were retrieved from GPS Visualizer 
on site. Mean geographical coordinates of each site were calculated 
from remote sensing interpretation by using Google Earth images of 
each lake and reservoir between years 2013 to 2016.

2.3 | Data analyses

2.3.1 | Data preparation

We combined our own survey data and historical records to compile 
a waterbird community dataset for each lake. FD was then calcu-
lated based on the compiled community dataset. It is necessary to 
have several years of observation because the species observed in 
a lake could vary from year to year. In addition, we used the total 
chlorophyll a proxy of primary productivity (Eppley, Stewart, Abbott, 
& Heyman, 1985; Falkowski & Raven, 2013).

Environmental variables were log10-transformed if this resulted 
in a more uniform spread of data points. We checked the collinearity 
of all environmental variables based on variance inflation factor by 
using the VIF function in R package “car” (Fox et al., 2012). All vari-
ables with VIF greater than 10 were excluded.

2.3.2 | Structural equation modeling—
exploring the drivers of lake productivity and 
waterbird functional diversity

We used the structural equation modeling (SEM) framework to in-
vestigate the causal links between environmental gradients, lake 
productivity, and waterbird FD. SEM is a collection of procedures 
whereby complex hypotheses, particularly those involving net-
works of path relations, are evaluated against multivariate data 
(Grace, 2006). The resulting estimates for path coefficients in SEM 
represent the implied sensitivities of response variables to variations 
in individual predictors (Grace et al., 2012). It is a system of linear 
equations among several unobservable variables (latent factors) and 
observed variables (indicator variables). The latent factors are vari-
ables that are unobserved, but whose influence can be summarized 
through one or more indicator variables. They are useful for captur-
ing complex or conceptual properties of a system that difficult to 
quantify or measure directly. We started with an SEM that included 
all plausible pathways between waterbird FD, the selected set of 
local environmental variables, and the geographical coordinates of 
the lakes (Figure S1). Our initial attempt revealed that the model 
was under-identified, meaning that there was some redundancy 
such that it was not possible to estimate all the model's parameters. 
We therefore investigated the statistical relationships among the 
variables included in the model to identify possible redundancies. 
Subsequently, we fitted two individual SEMs separately for lake pro-
ductivity and waterbird FD, and an integrated SEM to explore the 
causal link between lake productivity and waterbird FD.

These SEMs had similar hierarchical structure, in which the 
responsible variable (i.e., lake productivity or waterbird FD) was 
modeled by a few latent factors. These latent factors were in term 
defined by the observed variables. In all models, two latent factors 
were common: geographic position and climate. The geographic 
position was measured by the latitude and longitude of the central 
point of the lake and its average elevation. The climate was defined 
by using spatial mean of the selected bioclimatic variables. A cau-
sality from geographic position to climate condition was specified 
in all SEMs. In addition, in the productivity SEM, nutrient level (de-
fined by TN and TP) was also included in the model as latent variable; 
while in the waterbird FD SEM, lake size (defined solely by lake area) 
was analyzed as lake surface area plays an important role in driving 
waterbird diversity (Murphy & Dinsmore, 2018; Pescador, Díaz, & 
Peris, 2012; Zhao & Zhou, 2018).

We tested the significance of each path coefficient using 1,000 
bootstrapped resamples and reported the standardized path co-
efficients that can be directly compared to make inferences about 

https://www.worldclim.org/data/worldclim21.html
https://www.worldclim.org/data/worldclim21.html
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the relative strength of relationships (Grace & Bollen, 2005). The 
structural equation analyses were performed using R version 3.6.1 
(R Development Core Team, 2019) with package “Lavaan” version 
3.1-3 (Rosseel, 2012).

3  | RESULTS

3.1 | Spatial patterns of waterbird communities and 
lake productivity

A total of 148 species, belonging to six orders and 19 families, were 
recorded in this study (Figure S2). The highest number of species 
was from the family Scolopacidae (37 species), followed by Anatidae 
(34 species). Families of Phalacrocoracidae, Threskiornithidae, and 
Rostratulidae only had one species each. Waterbird richness varied 
greatly among the 35 lakes and reservoirs surveyed, ranging from 4 
to 113 species (Figure 3a).

Generally, the higher species richness was recorded in lakes and 
reservoirs located in the more humid northern China Plain (e.g., 
Hubei Province and Beijing) than in the drier western China such 
as Inner Mongolia and Qinghai Province. Also, an overall decreas-
ing altitudinal gradient in species richness was observed (Figure 3a). 

While waterbird FRic showed similar pattern as species richness 
(Figure 3b), FDis had no clear spatial pattern and was not correlated 
with species richness (Figure 3c). Like waterbird richness and FRic, 
lake productivity showed a clear altitudinal gradient. However, the 
latitudinal and longitudinal gradients were more obscure (Figure 3d).

3.2 | Determinates of lake productivity

Three latent factors (i.e., geographic position, climate, and nutrient 
level) were all included in the SEMs. The three factors collectively 
explained 93% of the variation in lake productivity (Figure 4). Lake 
nutrient level, which was defined by water TP and TN concentration, 
had the largest effects on productivity, followed by climate (stand-
ardized path coefficient = 0.93 and 0.77 for nutrient and climate, 
respectively, Figure 4). The effects of geographic position on lake 
productivity were indirect and realized through its influence on cli-
matic condition, which had a standardized path coefficient of 0.16 
(0.77 × 0.21).

Lake productivity decreased with elevation (path coefficient 
= −0.93 × 0.77 × 0.07 = −019) and increased with both latitude 
and longitude with comparable path coefficient (0.12 and 0.13 for 
latitude and longitude, respectively, Figure 4). For the measured 

F I G U R E  3   Map of the 35 surveyed 
lakes and reservoirs in North China 
showing (a) waterbird species richness, 
(b) functional richness, (c) functional 
dispersion, and (d) lake productivity (mg/
m3)
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bioclimatic variables, while all variables related to precipitation as 
well as T2 and T3 had positive effect on lake productivity, the impact 
of temperature diurnal range (T1) was negative with a path coeffi-
cient of −0.22 (−0.83 × 0.27). Lake productivity was positively re-
lated with nutrient; and the effect of TP level was slightly larger than 
that of TN (standardized path coefficient = 0.52 and 0.40 for TP and 
TN, respectively, Figure 4).

3.3 | Determinates of waterbird functional diversity

Similar to the lake productivity model, the three latent factors 
(geographic position, climate, and lake size) were all included in the 

SEM, collectively explaining 39% of the variation in waterbird FD 
(Figure 5). In comparison with lake size, climate had higher effects 
on waterbird FD (path coefficient = 0.57 and 0.24 for climate and 
area, respectively, Figure 5). The effects of geographic position on 
waterbird distribution were indirect through climate with an effect 
of 0.46 (0.80 × 0.57 = 0.46). Based on the standardized model coef-
ficients, climate had the strongest effects on waterbird FD, followed 
by geographic position and lake size (the coefficients are 0.57, 0.46, 
and 0.24 for climate, geographic position, and lake size, respectively, 
Figure 5).

Waterbird FD decreased with elevation (path coefficient 
= −0.57 × 0.80 × 0.57 =−0.26) and increased with both latitude 
and longitude, with longitude showing much stronger effect than 

F I G U R E  4   SEM for lake productivity. 
Latent variables are in ovals and measured 
variables in rectangles. The strength 
of the causality (standardized path 
coefficient) is indicated by the width 
of the line. Black lines indicate positive 
effects, while red lines mean negative 
impacts. T1: mean diurnal range, T2: 
mean temperature of the wettest quarter, 
T3: mean temperature of the warmest 
quarter, P1: annual total precipitation, 
P2: precipitation of the driest month, P3: 
precipitation of the warmest quarter, and 
P4: precipitation of the coldest quarter

F I G U R E  5   SEM model for waterbird 
functional diversity. Latent variables 
in ovals and measured variables in 
rectangles. The strength of the causality 
(standardized path coefficient for direct 
comparison) was indicated by the width 
of the link. Black lines indicate positive 
effects, while red lines mean negative 
impacts. T1: mean diurnal range, T2: 
mean temperature of the wettest quarter, 
T3: mean temperature of the warmest 
quarter, P1: annual total precipitation, 
P2: precipitation of the driest month, P3: 
precipitation of the warmest quarter, and 
P4: precipitation of the coldest quarter
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latitude (path coefficient = 0.50 and 0.18, respectively, Figure 5). 
For the measured bioclimatic variables, similar to the productivity 
model, while all precipitation variables ad well as T2 and T3 had 
positive effects on waterbird FD, the impact of temperature diurnal 
range (T1) was negative. In addition, the four precipitation variables 
had comparable effects on FD (Figure 5).

3.4 | Relationship between waterbird functional 
diversity and lake productivity

The final integrated SEM combined lake productivity and waterbird 
FD together and included an explicit pathway from productivity to 
waterbird FD (Figure 6). The model had reasonably adequate ex-
planation power for the three key latent variables (R2 for climate, 
waterbird FD, and lake productivity was 0.71, 0.37, and 0.95, re-
spectively. Figure 6). From the fitted path coefficients, climate 
had the greatest effect on waterbird FD (0.55), which were similar 
to that of the waterbird FD model (Figure 5). The effects of geo-
graphic position (0.47) were relatively strong, while the effects of 
other variables, including lake size (0.23), lake productivity (0.03), 
and nutrient (0.03, indirectly via its effect on lake productivity), 
were relatively weak.

4  | DISCUSSION

In this study, we applied integrated modeling procedures (SEM) to 
lake productivity and waterbird FD data collected from lakes and 
reservoirs in the arid and semi-arid northern China covering over 5 
million km2 with the aim to explore the mechanisms underlying geo-
graphic gradients in inland aquatic systems. Both lake productivity 
and waterbird FD displayed strong geographical variations across 
northern China (Figure 3). We found that the geographic position 
exerted effects on lake productivity and waterbird FD in a similar 
way, that is, through its influences on climatic conditions, which was 
defined by seven bioclimatic variables in this study. This causality 
from geographic position to climatic conditions was significant and 
consistent in all three SEMs. Specifically, our analyses showed an un-
ambiguous decreasing altitudinal gradient for both lake productivity 
and waterbird FD (Herzog, Kessler, & Bach, 2005; Rahbek, 1995). An 
increasing gradient with location coordinates was also obvious; and 
the effects of latitude (through its effects on climate) on both lake 
productivity and waterbird FD were relatively weaker than those of 
longitude. Moreover, the ‘‘latitudinal gradient,’’ which predicts spe-
cies diversity decreases when moving away from the equator toward 
northern latitudes (Jetz, Thomas, Joy, Hartmann, & Mooers, 2012), 
was not supported. Instead, we found evidence of a reverse trend in 

F I G U R E  6   Integrated SEM model in which waterbird functional diversity is linked with lake productivity. Latent variables are in ovals and 
measured variables in rectangles. The strength of the causality (standardized path coefficient) was indicated by the width of the link. Black 
lines indicate positive effects, while red lines mean negative impacts. T1: mean diurnal range, T2: mean temperature of the wettest quarter, 
T3: mean temperature of the warmest quarter, P1: annual total precipitation, P2: precipitation of the driest month, P3: precipitation of the 
warmest quarter, and P4: precipitation of the coldest quarter
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our analyses. The opposite latitudinal gradient in this study should 
be treated with cautions as the study focused on the temperate 
zone that have a rather narrow latitudinal range and strong nega-
tive effects of elevation might obscure the real latitudinal pattern. 
Nevertheless, our analysis results supported some hypotheses un-
derlying the geographic gradients by Field et al. (2009): (a) climate 
and (b) productivity. More importantly, our results revealed that 
both geographical and environmental factors regulate the observed 
biodiversity and productivity patterns (Macneil et al., 2009).

4.1 | Drivers of geographic and altitudinal 
patterns of lake productivity

The lake productivity model had relatively high performance in ex-
plaining the observed geographic and altitudinal gradients (R2 for 
separated and integrated models was 0.93 and 0.95, respectively, 
Figures 4 and 6), which showing both direct and indirect (through 
its effect on the climatic conditions) effects on lake productivity. 
Structural equation modeling (Figures 4 and 6) showed that lake 
productivity was positively related with water TN and TP concen-
tration. Compared with other factors, nutrient had the strongest 
effects on lake productivity in our study. The close relationship be-
tween nutrient, lake chlorophyll a concentration, and lake produc-
tivity (Jeppesen et al., 2005; Smith, 1979) was expected because 
nitrogen and phosphorus are important limiting nutrients in fresh-
water ecosystems (Elser et al., 2007; Schindler, 1974). Lake produc-
tivity depends on the supply of nutrients, especially phosphorus 
(Wetzel, 2001). According to previous studies, phosphorus loading 
alone could explain 79%–95% of the variances in lake chlorophyll a 
concentration (Schindler, 1978).

Climatic conditions, measured mainly by temperature and pre-
cipitation variables including mean temperature of the wettest 
quarter, mean temperature of the warmest quarter, annual total 
precipitation, precipitation of driest month, and precipitation of 
the warmest quarter also had positive effects on lake productivity, 
except for mean diurnal range which showed the opposite trend 
(Figures 4 and 6). Climatic variation has been found to influence the 
magnitude of chlorophyll a concentration (O'Reilly, Alin, Plisnier, 
Cohen, & Mckee, 2003). Lake productivity increased with air tem-
perature, which is the function of solar energy input (Danilov & 
Ekelund, 2001). Warner and Lesht (2015) reported that air tempera-
ture and precipitation were identified as important predictors, which 
had positive effects on chlorophyll a. Our results are consistent with 
those studies, although the mechanisms are not clear. One possibil-
ity is that higher air temperature reduces ice cover, which facilitates 
wind-induced mixing and nutrient resuspension (Nicholls, 1998; 
Schwab, Eadie, Assel, & Roebber, 2009), and then having an impact 
on lake productivity (Warner & Lesht, 2015); inversely, ice cover 
shading has an effect on the benthic habitat of lakes, which reduces 
primary production (Toro, Granados, Robles, & Montes, 2006). In 
addition, air temperature could impact lake productivity through in-
creasing water discharge or hydrograph fluctuations. For example, 

Toro et al. (2006) revealed that due to the increased air temperature 
and day/night temperature difference (mean diurnal range), water 
discharge from the snowpack to the high-mountain lakes and hydro-
graph fluctuations increased, which in turn impacted lake environ-
ment including productivity. Increases in the form of rain would also 
cause increased runoff, which could bring more nutrients to the lakes 
from nonmonitored or diffuse nonpoint sources, thus increase the 
concentration of chlorophyll a (Dillon & Rigler, 1974). Rather, in our 
study, besides mean diurnal range, it was mean temperature of the 
wettest quarter, mean temperature of the warmest quarter showed 
significant effects on lake productivity. For which, it may due to the 
sampling time (i.e., we monitored lake chl-a in summer). Our results 
indicate that further research will be required to understand more 
completely the underlining mechanisms by which climate influences 
lake productivity.

4.2 | Drivers of geographic and altitudinal 
patterns of waterbird functional diversity

The waterbird FD SEMs achieved relatively sufficient performance 
in explaining the spatial variations in waterbird FD (R2 for both 
separated and integrated models was 0.39 and 0.37, respectively, 
Figures 5 and 6). Geographic position, defined by latitude, longi-
tude, and altitude, had dominating effect on waterbird FD through 
its influence on climate. Climate is typically a strong descriptor of 
broadscale richness patterns (Hawkins et al., 2003), and the theory 
that climate's control of energy drives the global richness gradi-
ent has generated an extensive literature quantifying the relation-
ship between species richness and climatic variables (Whittaker 
et al., 2007). Our results demonstrated that waterbird FD increased 
with temperature, giving empirical affirmation to the species–energy 
hypothesis in that species diversity increases with environmental 
temperature (Allen, Brown, & Gillooly, 2002). Temperature is one of 
major determinants of latitudinal and altitudinal gradients in animal 
diversity (Allen et al., 2002; Rohde, 1992), which may be explained 
by energy hypothesis, although the underlying mechanism remains 
unknown (Hawkins et al., 2003). The model results also showed that 
waterbird FD increased significantly with precipitation. Furthermore, 
the modeled path coefficients indicated that precipitation was more 
important than that of temperature in our system. Precipitation is 
one of the resource-based estimates of available energy, especially 
in arid and semi-arid ecosystems (Brown & Davidson, 1977), where 
biodiversity patterns are strongly related to precipitation amount 
(Waide et al., 1999). This is particularly true for waterbirds, whose 
distribution is generally determined by rainfall (Wen et al., 2016) 
through changing habitat availability, like water depth, habitat area, 
and habitat diversity (Canepuccia, Isacch, Gagliardini, Escalante, & 
Iribarne, 2007). Water depth is paramount in determining whether 
or not habitat is available (Bolduc & Afton, 2008). As most of the 
lakes included in our study are located in the arid and semi-arid re-
gion of China, precipitation is critical to maintain enough habitat area 
for waterbirds.
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Lake size, as expected, had a positive effect on waterbird FD. 
This pattern resembles the common species–area relationship ob-
served in many ecosystems (Arrhenius, 1921; Guadagnin, Maltchik, & 
Fonseca, 2009; Keil, Storch, & Jetz, 2015; MacArthur & Wilson, 1967; 
Nogues-Bravo & Araujo, 2006; Rosenzweig, 1995). According to the 
theory of island biogeography (MacArthur & Wilson, 1967), large and 
more diverse ecosystems are likely to harbor more species due to 
higher immigration rates and lower extinction rates. Indeed, lakes in 
arid and semi-arid zones can be regarded as aquatic islands in a ter-
restrial world, offering an explanation for the positive species–area 
relation in our analysis. This finding is consistent with other studies 
(Froneman, Mangnall, Little, & Crowe, 2001; Guadagnin et al., 2009; 
Suter, 1994), which all reported a positive species–area relationship.

4.3 | Relationship between waterbird functional 
diversity and lake productivity

Many studies revealed that productivity affects diversity (Carpenter 
et al., 1987; Dodson et al., 2000; Mittelbach et al., 2001), especially 
for plants (Chase & Leibold, 2002). Nonetheless, no general con-
sensus concerning the form of the pattern has emerged based on 
theoretical considerations or empirical findings (Waide et al., 1999). 
Positive, negative, and hump-shaped patterns were common at 
most spatial scales and no one pattern predominated (Mittelbach 
et al., 2001). For avian species, particularly waterbirds, there are 
only a few studies presented the relationship between diversity and 
productivity (Hawkins et al., 2003; Hurlbert, 2004). Results of our 
integrated SEM gave evidence to support the causality from lake 
productivity to waterbird FD albeit the relationship was weak in 
comparison with other factors. The weak causality is also reflected 
in that the explained variations in waterbird FD were not improved 
by the inclusion of lake productivity in the SEM. In this study, the 
majority of waterbirds forage on the riparian zone of lakes (mean 
trait value of foraging at ground was greater than 55% for all lakes, 
Figure S2) and have plants as their major diets (Figure S3), suggest-
ing that the composition of waterbird communities could be more 
affected by riparian areas than by lake productivity per se. Because 
lake productivity was measured solely by water column chlorophyll 
a in this study, this weak causality is expected. A broader definition 
of lake productivity, that is, incorporating factors operating outside 
of water column (e.g., riparian meadows and mudflats), would result 
in a closer relationship and higher model performance.

4.4 | Conclusions and caveats

A major contribution of this study is that our findings reveal the 
key environmental drivers of large-scale patterns in lake productiv-
ity and waterbird FD in the arid and semi-arid region of northern 
China using advanced statistical techniques (i.e., SEM). This ap-
proach showed that the observed geographical and altitudinal gra-
dients in lake productivity and waterbird FD (Figure 3) can be partly 

explicated by the gradients in climatic conditions, which is in term 
significantly related to the geographic position of the lakes on the 
earth surface. As the relationship between productivity and water-
bird FD in arid and semi-arid ecosystems has not been addressed, our 
study could contribute to the mechanistic explanations underlying 
the observed broadscale biodiversity gradients in arid and semi-arid 
region. However, site-specific factors, such as lake size (for water-
birds) and nutrients (for productivity), impose their effects indepen-
dently (Figures 4–6), and their effects could be more important than 
climatic variables (e.g., for lake productivity). These results, although 
supporting some primary macroecological biodiversity theories such 
as species–energy and species–resource hypothesis, could not lead 
to a mechanism that unifies these theories (Mcgill, 2010), exemplify-
ing one key limitation of statistical analyses: statistical relationships 
do not necessarily reveal the underlying mechanisms regulating 
waterbird biodiversity (Stomp et al., 2011). For example, the SEM in-
dicates that altitude has a strong negative effect (indirectly through 
climate and lake productivity, Figure 6) on waterbird FD. However, 
these causal paths could be driven by other environmental variables 
that covary with altitude but were not measured in our study. For 
instance, seasonal variation in environmental conditions increases at 
higher elevation, which could reduce species diversity by excluding 
sensitive species with a narrow tolerance range (Currie et al., 2004). 
Nevertheless, through articulating the dominant processes, our re-
sults could contribute to future studies seeking mechanistic explana-
tions underlying the observed macroecological phenomena.
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