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Background: Tumorigenesis and progression are intimately associated with

inflammation. However, the inflammatory landscape in soft tissue sarcoma (STS)

and its clinical consequences are yet unknown, and more investigation is needed.

Methods: RNA-seq expression data for STS and corresponding normal tissues

were downloaded from The Cancer Genome Atlas database and the

Genotype-Tissue Expression Portal. Differential and prognostic analyses were

performed based on known inflammatory response genes from Gene Set

Enrichment Analysis (GSEA). We utilized LASSO-Cox analysis to determine

hub genes and built an inflammatory score (INFscore) and risk stratification

model. Furthermore, a nomogram, including the risk stratification model, was

established to predict the prognosis. We further elucidated the characteristics

among different risk STS patients by GSEA, gene set variation analysis, and

detailed immune infiltration analysis. Finally, the INFscore and risk stratification

model in predicting prognosis and depicting immunemicroenvironment status

were verified by pan-cancer analysis.

Results: Five hub genes (HAS2, IL1R1, NMI, SERPINE1, and TACR1) were identified

and were used to develop the INFscore. The risk stratification model

distinguished the immune microenvironment status and evaluated the efficacy

of immunotherapy and chemotherapy in STS. The novel nomogram had good

efficacy in predicting the prognosis of STS patients. Finally, a pan-cancer

investigation verified the association of INFscore with prognosis and immunity.

Conclusions: According to the present study, the risk stratification model can be

used to evaluate STS prognosis, tumor microenvironment status, immunotherapy,
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and chemotherapy efficacy. The novel nomogram has an excellent predictive

value. Thus, the INFscore and risk stratification model has potential value in

assessing the prognosis and immune status of multiple malignancies.
KEYWORDS
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Introduction

Soft tissue sarcomas (STSs) are a heterogeneous group of

tumors originating from mesenchymal tissue. STS accounts for

approximately 0.8% of all adult malignancies, and there are over 70

histologic subtypes with the majority occurring in the trunk,

extremities, and retroperitoneum (1). According to American

Cancer Society data, 13,190 new STS cases and 5,130 fatalities

will occur in the United States in 2022 (2). Although the incidence

of STS is low, approximately 25-40% of STS patients will develop

local recurrence or distant metastases even after radical resection

(1). The 5-year survival rate for advanced STS is less than 20%, and

effective therapies are limited (3, 4). The U.S. Food and Drug

Administration (FDA) has approved inhibitors, such as regorafenib

and pazopanib, for the clinical treatment of STS patients. However,

the outcomes, such as objective remission rate (ORR), disease

control rate (DCR), progression-free survival (PFS), and overall

survival (OS), of inhibitors applied to the treatment of patients with

advanced disease are not satisfactory (5, 6).

The immune system plays a crucial role in anticancer activity.

However, immune escape has been identified in various

malignancies (7). Immune checkpoint inhibitors (ICIs) are a

promising therapy option for advanced malignancies (8, 9).

Recently, many clinical trials have explored the efficacy and

biomarkers of ICIs in treating STS. The SARC028 and Alliance

A091401 clinical trials have suggested that cancer immunotherapy

may improve the prognosis of STS patients (10, 11). ICIs for STS

have been tested in approximately 20 clinical trials (12).

Additionally, research on molecular indicators to forecast the

clinical effectiveness of ICIs for STSs is underway. The following

factors are expected to be biomarkers for predicting the efficacy of

ICI treatment: cytokines in the tumor microenvironment; tumor

infiltrating lymphocytes (TILs) and associated macrophages; and

immune checkpoint proteins, such as programmed cell death-1

(PD-1), programmed cell death ligand-1 (PD-L1), cytotoxic T-

lymphocyte associated protein 4 (CTLA-4), and major

histocompatibility complex (MHC) (12, 13). However, the

intricate and specific biological background of STS contributes

to the sluggish and inadequate development of novel treatments

(10, 14). As a result, it is important identify and develop novel

biomarkers to predict and assess the prognosis of STS patients.
02
Evidence has demonstrated that inflammatory response-

related genes can predict tumor prognosis and metastatic

potentials in lung cancer and hepatocellular carcinoma (15,

16). However, the relationship between inflammatory

response-related genes and STS has not been established.

Based on the inflammatory response-related genes, we

constructed a scoring system named inflammatory response-

related gene score (INFscore) to evaluate the prognosis and

immune status of STS. We developed and validated a novel

nomogram and risk stratification model that includes the

INFscore to evaluate STS patients. Furthermore, we

demonstrated that the INFscore can be used to predict the

efficacy of chemotherapy and immunotherapy in pan-

cancer analysis.
Patients and methods

Patients and datasets for processing

RNA-seq data and clinical data for STS patients were

downloaded from The Cancer Genome Atlas (TCGA)

database (https://www.cancer.gov/). TCGA gene expression

data were transformed into transcripts per kilobase million

(TPM) format. Gene expression data for muscle and fat tissue

samples (n=911) in Genotype-Tissue Expression (GTEx) Portal

were downloaded from the University of California Santa Cruz

(UCSC) Xena (https://xenabrowser.net/) for use as matched

controls. The UCSC Xena browser is a publicly available

browser for analysis and visualization of public datasets.

Inflammatory response-related genes were obtained from the

Gene Set Enrichment Analysis (GSEA) gene set (http://www.

gsea-msigdb.org/gsea/index.jsp) (17).
Patients and datasets for validation

We obtained gene expression profiles and clinical data from the

GSE63155 independent cohort from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). We collected

tissue samples from six STS patients admitted to the Tianjin
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Medical University’s Cancer Institute and Hospital between 2016

and 2019 to perform whole-exome sequencing (WES-seq) to

determine their immune status. The retrospective investigation

was performed in compliance with the Helsinki Declaration and

was authorized by the Tianjin Medical University Cancer Institute

and Hospital’s Ethics Committee (Approval No. E2019144). All

patients provided a written informed consent. Tissue samples from

six patients were genetically sequenced using WES-seq (the trial

registration was NCT04126993) (18) by the Yuce Biotechnology

Company. The exome sequencing process is described in detail in

Supplementary Data 1.
Acquisition of intersection genes and
enrichment analysis

The limma package in R was used to identify differentially

expressed genes (DEGs) between STS and normal tissue [with a

false discovery rate (FDR) filter of 0.05 and a log fold change (FC)

filter of 1]. Univariate Cox regression analysis was used to identify

prognostic genes. The intersection genes between prognostic

genes and DEGs were selected. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were used to explore the related signaling pathways.
Construction and validation of a
prognostic inflammatory response-
related gene signature and risk
stratification model

We divided all STS patients into a training and validation set at

a 1:1 ratio using the caret package in R.We performed least absolute

shrinkage and selection operator (LASSO)-Cox in the training set to

identify hub genes (19). We calculated the INFscore for each STS

patient based on the hub genes using the following formula:

INFscore =on
1coefficient(Genei)� expression(Genei)

We used receiver operating characteristic (ROC) curves and

the area under the curve (AUC) value to evaluate the sensitivity

and specificity of the INFscore in the training and validation sets.

We divided the STS patients into high- and low-risk groups based

on the median INFscore value. The overall survival was compared

between the two groups using the log-rank test, and we validated

the efficacy of the INFscore in the GSE16355 dataset.
Construction and validation of
the nomogram

Along with age, sex, tumor site, cancer type, margin status,

and metastasis status, we included the INFscore as a variable in

the univariate and multivariate Cox regression analyses. Based
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on the results of the independent prognostic factors from Cox

regression analysis, we built a prognostic nomogram model. We

generated ROC curves, estimated AUC values, and drew

calibration and decision curve analysis (DCA) to validate the

performance of the prognostic nomogram using the training and

validation sets.
Functional enrichment analysis

We performed Gene Set Variation Analysis (GSVA) (20)

and GSEA to further elucidate the biological process differences

between the high- and low-risk groups. The GSVA program in R

(with logFC filter > 0.1, p-value 0.05) was used to compare the

different biological processes between the two groups. GSEA is

used to evaluate the distribution trend of genes in a predefined

gene set in a gene table ranked by their relevance to phenotype,

thereby assessing their contribution to the phenotype (21). The

association between hub gene expression and the KEGG

enrichment analysis in high- and low-risk groups was

investigated using GSEA software (version 4.1.0). For the

operation, we used the genome “c2.cp.kegg.v7.2.symbols.gmt.”,

and nominal p-values of 0.05 and FDR q-values of 25% were

considered significant.
Immune microenvironment assessment

Because the INF-related genes were mainly enriched in the

immune signaling pathway, we focused on the relationship

between the INFscore and tumor immune microenvironment

(TIME) in STS patients. Firstly, we used the GSEABase and

GSVA packages in R to perform single-sample GSEA (ssGSEA)

for 16 immune cell infiltration scores and 13 immune-related

pathway scores in the high- and low-risk groups. The association

between INFscore and tumor-infiltrating immune cells was

examined by XCELL, TIMER, QUANTISEQ, MCPcounter,

EPIC, CIBERSORT, and CIBERSORT-ABS (22). We then

calculated and compared the stromal scores, immune scores,

and Estimation of Stromal and Immune Cells in Malignant

Tumor Tissues Using Expression Data (ESTIMATE) scores the

between high- and low-risk groups. The association between risk

assessment models and immune checkpoint-associated

biomarkers was also investigated. Six patients from Tianjin

Medical University Cancer Institute and Hospital were utilized

for external validation to further investigate and validate

immune cell infiltration in different risk strata in the real world.
INFscore and chemotherapy sensitivity

The pRRophetic package in R selected 138 kinds of drugs

from more than 700 cell lines in the Genomics of Drug
frontiersin.org
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Sensitivity in Cancer database (GDSC, https://www.

cancerrxgene.org/) and developed a ridge regression algorithm

to predict treatment responses. Semi-inhibitory concentrations

(IC50) were calculated using the pRRophetic package in R to

assess the sensitivity between high- and low-risk groups to

common chemotherapy agents (we defined significance at

p< 0.001).
Utility of INFscore in pan-cancer analysis

Data from the pan-cancer cohort, including RNA-seq data,

overall survival time, and survival status, were retrieved from

TCGA database. A total of 10,792 samples from 32 types of

malignancies were retrieved from TCGA database, and the

INFscore was calculated. We assessed the variability of the

INFscore in tumor tissue versus paraneoplastic tissue (or

normal tissue), and we then assessed the relationship of the

INFscore with the immune, stromal, and ESTIMATE scores.

Finally, we explored the relationship between the INFscore and

pan-cancer immune cell infiltration.
Statistical analysis

For the statistical analyses, t tests were used to evaluate

differences in quantitative data and regularly distributed

variables, while Wilcoxon rank-sum tests were used to analyze

differences in non-normally distributed variables. For

correlation analysis, Spearman’s analysis was employed. The

survival differences in the groups were compared using a log-

rank test and illustrated by a Kaplan-Meier (K-M) survival plot.

All statistical p-values were two-sided, and p< 0.05 indicated

statistical significance. All data were processed using R software

(version 4.1.1).
Results

In total, 259 STS patients from TCGA-SARC dataset were

included, and the clinicopathological characteristics are listed in

Table 1. A total of 911 RNA-seq data of muscle and adipose

tissue were downloaded from the GTEx database. Moreover, 200

inflammatory response-related genes were downloaded from the

GSEA database and are listed in Supplementary Table S1. The

GSE63157 dataset, including 46 sarcoma sample files, was used

as the validation dataset. Data from TCGA, GTEx, GSEA, and

GEO are all publicly available, and the datasets were used

following the data access policies and publishing standards.

Figure 1 depicts the flow chart for this study.
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Identification of inflammatory response-
related hub genes in STS patients

A total of 152 differentially expressed inflammatory response-

related genes were found (Supplementary Figures S1A, B), and

univariate Cox regression analysis indicated that 60 inflammatory

response-related genes were associated with the prognosis of STS

patients (Supplementary Figure S1C). Among them, 42 prognostic

DEGs were identified by the Venn diagram (Figure 2A). GO and

KEGG enrichment analyses showed that immune-related

biological functions and signaling pathways played an important

role in the inflammatory response process (Figures 2B, C). In

addition, 259 sarcoma patients were randomly separated into

training and validation sets at a 1:1 ratio. The expression profiles

of the above 42 genes were analyzed using LASSO-Cox regression

analysis in the training set. The following five hub genes were

identified: hyaluronan synthase 2 (HAS2), interleukin 1 receptor

type 1 (IL1R1), N-Myc and STAT interactor (NMI), serpin family

E member 1 (SERPINE1), and tachykinin receptor 1 (TACR1)

(Figures 2D–F).
Establishment of prognostic models by
the INFscore

The INFscore was calculated as follows: INFscore =

0.226 × Expression(HAS2) + (-0.459) × Expression(IL1R1) +

(-0.547) × Expression(NMI) + 0.188 × Expression(SERPINE1) +

(-2.868) × Expression(TACR1). The AUC values of the training

and validation sets were 0.841 and 0.705, respectively

(Figure 3A). According to the median cutoff point in the

training set (Median INFscore = 1.090), 259 STS patients were

used to establish a risk stratification model (high- and low-risk

groups). Survival analysis was performed using log-rank tests

and by plotting K-M survival curves (Figures 3B, C). The risk

score plots and survival status plots of the training and validation

sets illustrated that overall survival decreased with increasing

INFscore (Figures 3D, E). We then validated the risk

stratification model using the GSE63155 dataset as an external

database (Figure 3F).
Subgroup analyses

A survival analysis of different subgroups of STS patients

based on their clinicopathological characteristics was performed

to further validate the prognostic significance of high- and low-

risk groups. For STS patients with different clinicopathological

features, patients in the high-risk category had a worse outcome

(Supplementary Figure S2).
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Establishment and verification of
INF-related nomogram

Cox regression analysis indicated that the INFscore was an

independent predictive factor for STS patients in the training set

(Figures 4A, B), and the AUC value of the INFscore was higher

than those other clinicopathological features (Figure 4C). Other

independent prognostic factors in STS patients included age and

metastatic status (M1 vs. M0). We next established the

prognostic nomogram for STS patients (Figure 4D). As an

example, the total score for a 48year-old STS patient with

distant metastases and an INFscore of 10 was calculated by

summing the scores for each variable, resulting in a total score of

100 with 1-year, 3-year, and 5-year survival rates of 0.90, 0.59,

and 0.35, respectively. The ROC, calibration, and DCA curves

showed that the nomogram had good predictive ability in the

training set (Figures 4E–G). The ROC curves, calibration curves,

and DCA in the validation set also confirmed the predictive

ability of the nomogram (Figures 4H–J).
TME landscape between high- and low-
risk STS patients

We utilized GSVA to investigate the biological function

differences between high- and low-risk groups (Figure 5A). The
Frontiers in Oncology 05
high-risk group was mainly enriched in cell cycle regulation

(e.g., cell cycle and DNA replication), and the low-risk group

was related primarily to substance metabolism (e.g.,

arachidonic acid metabolism) and the chemokine signaling

pathway. We used GSEA to further evaluate the differences in

biological status between the high- and low-risk groups as well

as to separate the types of expression patterns of specific sets of

important genes (Figures 5B, C). Cell cycle regulation-related

signaling pathways (e.g., DNA replication and cell cycle) were

highly expressed in STS patients in the high-risk group,

whereas substance metabolism (e.g., arachidonic acid

metabolism and cytochrome p450 drug metabolism) and

signaling pathway transduction [e.g., Janus kinase-signal

transducer and activator of transcription (JAK-STAT)

signaling pathway] were highly expressed in STS patients in

the low-risk group.
Immune landscape between high- and
low-risk STS patients

Because the INF-related genes were mainly enriched in the

immune signaling pathway, we focused on the relationship

between the INFscore and TIME in STS patients. To assess the

abundance of immune cell infiltration between the high- and

low-risk groups, we analyzed 16 immune cells and 13 immune
TABLE 1 Clinicopathological features of 259 soft tissue sarcoma patients.

Total set (n = 259) Training set (n = 130) Validation set (n = 129) c2 P

Age, years 0.664 0.415

≤65 159 83 76

>65 100 47 53

Sex 0.309 0.578

Male 118 57 61

Female 141 73 68

Histological type 6.857 0.144

DLS 58 30 28

LMS 104 49 25

MFS 25 15 10

OTHER 51 30 21

UPS 21 6 15

Tumor site 1.994 0.158

Extremities 85 48 37

Other 174 82 92

Margin status 0.205 0.650

Negative or Unknown 186 95 91

Positive 73 35 38

Metastasis 1.361 0.243

M0 191 100 91

M1 68 30 38
frontiersi
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function scores using ssGSEA (Figures 6A, B). The results of

ssGSEA showed that dendritic cells (DCs), activated DCs

(aDCs), B cells, CD8+ T cells, immature DCs (iDCs), mast

cells, neutrophils, natural killer (NK) cells, plasmacytoid DCs

(pDCs), T helper cells, and TILs were higher in the low-risk

group than in the high-risk group (p < 0.05). The results of

ssGSEA also indicated that cytokine-cytokine receptor (CCR),

checkpoint, parainflammation, T cell costimulation, and type I/

II IFN response were higher in the low-risk group than in the

high-risk group (p < 0.05). At the same time, we applied seven

other methods to evaluate the relationship between immune cell

infiltration and the INFscore (Figure 6C; Supplementary Figure

S3). According to the results of the seven algorithms, the

INFscore had a negative association with the degree of

infiltration of most immune cells. From an overall perspective,

the Kruskal-Wallis test was used to assess the differences in

immune scores, stromal scores, and ESTIMATE scores between

the high- and low-risk STS patient groups. Compared to the
Frontiers in Oncology 06
high-risk group, the immune score (p = 0.037), stromal score (p<

0.001), and ESTIMATE score (p< 0.0001) were significantly

higher in the low-risk group than the high-risk group

(Figures 6D–F). We separated six patients from the Tianjin

Medical University Cancer Institute and Hospital into two

groups based on their INF scores, namely, low-risk (four

samples) and high-risk (two samples), and we generated an

immune cell infiltration heatmap using these samples

(Figure 6G). The real world data verified that the low-risk

group had more immune cell infiltration than the high-

risk group.
The role of the INFscore in predicting
immunotherapeutic benefits

Because the checkpoint immune function scores were higher

in the low-risk group than in the high-risk group, we analyzed
FIGURE 1

Design and workflow of the study. TCGA, The Cancer Genome Atlas; GTEX; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; LASSO, least absolute shrinkage and selection operator; STS, soft tissue sarcomas; GSVA, Gene Set Variation Analysis; ssGSEA, single-
sample GSEA; ROC, receiver operating characteristic; INFscore, inflammatory response-related gene score.
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the variability of 47 known immune checkpoint-associated genes

(Supplementary Table S2) in the high- and low-risk groups

(Figure 6H). The expression of B and T lymphocyte associated

(BTLA), TNF receptor superfamily member 8 (TNFRSF8),

TNFRSF14, TNFRSF25, CD27, CD28, CD40 ligand

(CD40LG), CD48, CD160, CD200 receptor 1 (CD200R1),

CD244, killer cell immunoglobulin like receptor (KIR3DL1),

galectin 9 (LGALS9), TNF superfamily member 14 (TNFSF14),

TNFSF15, indoleamine 2,3-dioxygenase 1 (IDO1), IDO2,

transmembrane and immunoglobulin domain containing 2

(TMIGD2), and butyrophilin like 2 (BTNL2) in the low-risk

group was higher than that in the high-risk group. The

expression levels of immune checkpoint-associated genes in
Frontiers in Oncology 07
the high- and low-risk groups in the GSE63155 validation set

followed a similar pattern (Figure 6I).
Risk classification and
chemotherapy sensitivity

The Wilcox test revealed significant differences (p < 0.001)

between the high and low-risk groups for 15 chemotherapeutic

medications when the IC50 levels of 138 medicines were measured

in STS patients (Figure 7). The data showed that the IC50 levels of

the following medicines were significantly higher in the high-risk

group than in the low-risk group: BMS.708163 (g secretase
A B

D

E F

C

FIGURE 2

Identification of Hub genes in STS. (A) Venn diagram showing 42 prognostic differentially expressed genes (DEGs). (B) Functional annotation of
intersection genes using Gene Ontology (GO) enrichment analysis. (C) Functional annotation of intersection genes using Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis. (D, E) The results of LASSO analysis. (F) univariate Cox regression analysis of 5 hub genes.
DEG: differentially expressed gene; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; LASSO: least absolute shrinkage
and selection operator; STS: soft tissue sarcomas.
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inhibitor, Figure 7A), CCT007093 [wild-type p53 inducible

phosphatase (WIP1) inhibitor, Figure 7B], DMOG

(dimethyloxalylglycine, Figure 7C), EHT.1864 (RAC inhibitor,

Figure 7D), gefitinib (Figure 7E), and lapatinib (Figure 7F). In

contrast, the IC50 levels of the following medicines were

significantly higher in the low-risk group than in the high-risk

group: BI.2536 [polo like kinase 1 (PLK1) inhibitors, Figure 7G],

BI-D1870 (pan-RSK inhibitor, Figure 7H), CMK (RSK2 inhibitor,

Figure 7I), docetaxel (Figure 7J), epothilone B (Figure 7K),

obatoclax mesylate (Figure 7L), parthenolide (Figure 7M), QS11

[ADP ribosylation factor GTPase activating protein 1 (ARFGAP1)

inhibitor, Figure 7N], and thapsigargin (Figure 7O).
Utility of the INFscore in
pan-cancer analysis

To further determine the role of the INFscore in various

cancer types, we calculated the INFscore for 10,792 samples

from 32 cancer types. We found higher INFscores in bladder

urothelial carcinoma (BLCA), breast invasive carcinoma

(BRCA), cholangiocarcinoma (CHOL), colon adenocarcinoma
Frontiers in Oncology 08
(COAD), head and neck squamous cell carcinoma (HNSC),

kidney chromophobe (KICH), kidney renal clear cell carcinoma

(KIRC), kidney renal papillary cell carcinoma (KIRP), liver

hepatocellular carcinoma (LIHC), lung adenocarcinoma

(LUAD), prostate adenocarcinoma (PRAD), rectum

adenocarcinoma (READ), stomach adenocarcinoma (STAD),

thyroid carcinoma (THCA), and uterine corpus endometrial

carcinoma (UCEC) than in paraneoplastic or normal tissues by

the Wilcox test (Figure 8A). K-M survival analysis showed that

in COAD (p = 0.037), KIRC (p < 0.001), KIRP (p = 0.015), brain

lower-grade glioma (LGG, p < 0.001), mesothelioma (MESO, p =

0.019), skin cutaneous melanoma (SKCM, p < 0.001), and uveal

melanoma (UVM, p = 0.010), the high INFscore group had a

worse prognosis than the low INFscore group (Figures 8B–H).

To further assess the relationship between the INFscore and

immunity in pan-cancer, we calculated the immune score,

stromal score, and ESTIMATE score, which indicated that the

INFscore was negatively correlated with the immune score,

stromal score, and ESTIMATE score in 32 different types of

tumors (Figure 8I). In addition, we further analyzed the

correlation between the degree of infiltration of 22 immune

cells and the INFscore in 32 types of cancer (Figure 8J).
A B

D E F

C

FIGURE 3

Development and validation of INFscore and risk stratification model. (A) ROC analysis of INFscore in predicting prognosis. The analysis of the
training set is marked in red and that of the validation set is marked by yellow. (B) Kaplan–Meier analysis of patients in the high risk and low risk
groups in the training set. (C) Kaplan–Meier analysis of patients in the high risk and low risk groups in the validation set. (D) Risk score plot,
survival status plot, and expression pattern of 5 hub genes between high and low-risk groups in the training set. (E) Risk score plot, survival
status plot, and expression pattern of 5 hub genes between high and low-risk groups in the validation set. (F) Kaplan–Meier analysis of patients
in the high risk and low risk groups in validation set GSE63155. ROC: receiver operating characteristic; INFscore: inflammatory response-related
gene score.
frontiersin.org

https://doi.org/10.3389/fonc.2022.990670
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.990670
Discussion

Several obstacles exist in the treatment of STS, including the

heterogeneity of STS (1), the presence of micrometastases in some

STS patients before resection (23), unresectable lesions (24), and

chemotherapy resistance (25). Therefore, novel molecular
Frontiers in Oncology 09
indicators are required to forecast STS patients’ prognosis and

create tailored treatment regimens that guide efficient antitumor

responses. Some inflammatory response markers have previously

been used to predict prognosis in STS patients (26, 27). The

prognosis of retroperitoneal sarcoma can be determined by serum

markers of the innate inflammatory response [e.g., neutrophil-to-
I
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FIGURE 4

Construction and verification of Nomogram. (A) The results of univariate Cox regression analysis. (B) The results of multivariate Cox regression
analysis. (C) Comparison of INFscore and other clinicopathological features predicting prognosis by ROC analysis. (D) The nomogram included
age, INFscore, and metastasis status for predicting the 1-, 3-, and 5-year survival rates of STS patients. (E) ROC curves of nomogram for
predicting 1-, 3-, and 5-year prognosis in the training set. (F) Calibration curves of the nomogram 1-, 3-, and 5-year prognosis in the training
set. (G) DCA of the nomogram 1-, 3-, and 5-year prognosis in the training set. (H) ROC curves of nomogram for predicting 1-, 3-, and 5-year
prognosis in the validation set. (I) Calibration curves of the nomogram 1-, 3-, and 5-year prognosis in the validation set. (J) DCA of the
nomogram 1-, 3-, and 5-year prognosis in the validation set. DCA: Decision curve analysis; ROC: receiver operating characteristic; STS: soft
tissue sarcomas.
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lymphocyte ratio (NLR) and C-reactive protein (CRP)] (26).

Moreover, Kobayashi et al. confirmed that NLR values can be

used to predict the response to pazopanib and the prognosis in

STS patients (27). However, studies on the inflammatory

response-related gene markers as prognostic biomarkers in STS

patients have not been reported. In the present study, we found

that inflammatory response hub genes regulated metabolism, cell

cycle, and the immune microenvironment in STS.

Firstly, we identified five hub genes (HAS2, IL1R1, NMI,

SERPINE1, and TACR1) and calculated the INFscore for each

patient, and multivariate Cox regression analysis indicated that

the INFscore was an independent prognostic factor. Finally, to

better generalize the INFscore to the clinic, we created an

inflammatory response-related nomogram based on the

independent prognostic factors in the training set for the first

time. Thus, using the nomogram, clinicians can provide

potential guidance and value for clinical work through

stratum-by-stratum analysis and validation.

In oncology and immunology, the association among

inflammation, immunity, and tumorigenesis has been
Frontiers in Oncology 10
investigated in recent years (28, 29). GO and KEGG analyses

showed that inflammatory response-related prognostic DEGs

were closely related to immunity in STS patients. To further

explore the relationship between them, we analyzed the immune

landscape in STS patients with different risk stratification.

Immunogenic tumors are known as “hot tumors,” and non-

immunogenic tumors are known as “cold tumors.” A “hot

tumor” is defined as one in which the cancer cells are

surrounded by a high number of immune cells that can

recognize the cancer cells, while the contrary is valid for a

“cold tumor” (30). The present study identified high and low

INFscore risk groups with specific patterns associated with

different anticancer immunity. The low-risk STS patients were

characterized by immune activation and infiltrated immune

cells, corresponding to a “hot tumor.” STS is considered a

“cold tumor” with relative immunogenicity (31); however,

there are still patients who benefit from immunotherapy, and

the present study investigated such patients for potential

benefits. Patients with STS in the high-risk group were

characterized by immunosuppression, corresponding to a
A

B C

FIGURE 5

Gene set variation analysis (GSVA) and Gene set enrichment analysis (GSEA). (A) The results of the heat map are presented by GSVA scores,
demonstrating the characteristic signaling pathways that differ in high and low-risk groups. (B) GSEA plot showing signaling pathways activated
in the high-risk group. (C) GSEA plot showing signaling pathways activated in the low-risk group. GSVA, Gene set variation analysis; GSEA, Gene
set enrichment analysis.
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“cold tumor.” We utilized the six patients to corroborate the

inherent variability and confirmed that the patients in the high-

risk group were immune deserts while the patients in the low-

risk group had “hot tumors”. Previous studies have confirmed

that hot tumors can benefit from immunotherapy (30, 32). Thus,

these results suggested that patients in the low-risk group may

respond to immunotherapy based on the results of the immune
Frontiers in Oncology 11
landscape study. Surprisingly, the immune cell function score

analysis revealed that the checkpoint score was higher in the

low-risk group compared to the high-risk group. In addition,

differential analysis of the 47 known immune checkpoint-

associated genes in the risk groups indicated that 19 immune

checkpoint-associated genes were highly expressed in the low-

risk group, which verified that STS patients in the low-risk
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FIGURE 6

Immune Landscape Characteristics. (A) The box plot of immunologic cell analysis between high and low-risk group. (B) The box plot of
immunologic function analysis between high and low-risk group. (C) The results of Spearman correlation analysis showed a negative correlation
between INFscore and immune cell infiltration in STS patients. (D–F) Immune score, Stromal score, and ESTIMATE score in high and low-risk
group. (G) Immune cells infiltration heat map of the six patients from Tianjin Medical University Cancer Institute and Hospital. (H) Comparison of
immune checkpoint blockade–related genes expression levels in STS patients with the high and low-risk group. (I) The expression levels of
immune checkpoint associated genes in the high-risk and low-risk groups in the validation set gse63155 followed the same pattern. Asterisks
represent the statistical P‐values (*P< 0.05; **P< 0.01; ***P< 0.001). STS: soft tissue sarcomas.
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category were more sensitive to ICIs. These tendencies were

consistent with the GSE61355 dataset.

To date, chemotherapy is a cornerstone in treating STS.

However, chemotherapy-resistance and toxic side effects have

become major obstacles for the use of chemotherapy (33, 34).

Because STS has a high degree of heterogeneity (1), selecting

appropriate and sensitive chemotherapeutic agents is especially

important. The present study found that patients in the low-risk

group were more sensitive to tyrosine kinase inhibitors but that

patients in the high-risk group were more sensitive to paclitaxel-

like drugs, which induce and promote the polymerization of
Frontiers in Oncology 12
microtubule proteins. Interestingly, chemotherapy sensitivity

was associated with high expression of signaling pathways in

different risk groups. Both GSVA and GSEA confirmed that cell

cycle-related signaling pathways were more highly expressed in

the high-risk group than the low-risk group. Therefore, we

inferred that patients in the high-risk group were more

sensitive to cell cycle-specific agents (CCSAs). GSEA and

GSVA indicated that the JAK-STAT signaling pathway was

highly expressed in the low-risk group. JAK-STAT consists of

three components, namely, tyrosine kinase-associated receptors

receiving the signal, tyrosine kinases delivering the signal, and
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FIGURE 7

Correlation between risk stratification models and chemotherapy sensitivity in STS. The IC50 of (A) BMS.708163; (B) CCT007093; (C) DMOG
(D) EHT.1864; (E) Gefitinib; (F) Lapatinib; (G) BI.2536; (H) BI.D1870; (I) CMK (J) Docetaxel; (K) Epothilone. B; (L) Obatoclax. Mesylate; (M)
Parthenolide; (N) QS11; and (O) Thapsigargin in the high-risk and low-risk groups. BMS.708163: g secretase inhibitor; CCT007093: Wild type
p53 inducible phosphatase (WIP1) inhibitor; DMOG: Dimethyloxalylglycine; EHT.1864: RAC inhibitor; BI.2536: Polo Like Kinase 1 (PLK1) inhibitors;
BI.D1870: pan-RSK inhibitor; CMK: RSK2 inhibitor; QS11: ADP Ribosylation Factor GTPase Activating Protein 1 (ARFGAP1) inhibitor.
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FIGURE 8

The utility of INFscore and risk stratification models in pan-cancer. (A) Differential INFscore between tumor and normal tissues in The Cancer
Genome Atlas (TCGA) database. Red color represents cancer samples and blue color represents normal samples. (B–H) Association of INFscore
with patient overall survival in pan-cancer. High INFscore predicts poor overall survival of (B) Colon adenocarcinoma (COAD), (C) Kidney renal
clear cell carcinoma (KIRC), (D) Kidney renal papillary cell carcinoma (KIRP), (E) Brain Lower Grade Glioma (LGG), (F) Mesothelioma (MESO), (G)
Skin Cutaneous Melanoma (SKCM), and (H) Uveal Melanoma (UVM). (I) Immune score, Stromal score, and ESTIMATE score in 32 different types
of tumors. (J) the correlation between the degree of 22 immune cell infiltration and INFscore in 32 types of cancer. Asterisks represent the
statistical P‐values (*P< 0.05; **P< 0.01; ***P< 0.001). TCGA, The Cancer Genome Atlas; INFscore, inflammatory response-related gene score;
ACC, Adrenocortical carcinoma; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CHOL, Cholangiocarcinoma; COAD,
Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma
multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP,
Kidney renal papillary cell carcinoma; LAML, Acute Myeloid Leukemia; LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma;
LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD,
Pancreatic adenocarcinoma; PCGC, Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum
adenocarcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; SKCM, Skin Cutaneous Melanoma; STAD,
Stomach adenocarcinoma; TGCT, Testicular Germ Cell Tumors; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine Corpus
Endometrial Carcinoma; UCS, Uterine Carcinosarcoma; UVM, Uveal Melanoma.
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transcription factors producing the effect (35). Previous studies

have confirmed that differentiation of sarcoma disease

characteristics and subtype classification facilitate the selection

of appropriate targeted agents, thereby improving patient

prognosis (36, 37). In the present study, gefitinib and

lapatinib, which target tyrosine kinases, were the more

sensitive chemotherapeutic agents in the low-risk group.

Therefore, the risk stratification model in the present study is

an excellent candidate to predict chemotherapy sensitivity.

Finally, we elaborated the prognostic significance of the

INFscore in other cancer types. The findings of the pan-cancer

analysis further confirmed that the INFscore is closely associated

with immunity in other cancers.

The present study had several limitations. Although the

present findings were based on publicly available databases

that have been validated using various internal and external

datasets, external validation with a large sample is still

required. The hub genes in the present study were based

on TCGA-SCAR database, and the INFscore was calculated

in pan-cancer, which only obtained the general direction

and a rough assessment of the relationship between

inflammation and immunity in pan-cancer. This method

had certain shortcomings and requires further analysis

and validation.
Conclusion

In the present study, we comprehensively evaluated the

prognosis of 259 STS patients based on validation of INF-

related genes. We established a nomogram with good

predictive power by internal validation. In addition, we

analyzed the TIME landscape, immune landscape, and

chemotherapy drug sensitivity of patients with different risks

for STS by a risk stratification model, providing a reference value

for selecting appropriate and more effective treatment

modalities. Finally, we further explored the value of the

INFscore in pan-cancer.
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SUPPLEMENTARY FIGURE 1

Expression difference analysis and univariate Cox prognostic analysis. (A)
Heat map of inflammatory response-related genes with significant
differences. (B) Volcano plot of inflammatory response-related genes,

green indicates downregulated genes, and red indicates upregulated
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genes. Black dots represent genes that are not differentially expressed in
STS tissues and normal tissues, while green dots and red dots represent

genes that are down- and up-regulated in cancer samples, respectively.
(C) The forest plot shows 60 prognostic inflammatory response-related

genes in terms of p-value, odds ratio (OR), and 95% confidence interval
(CI). OR: odds ratio; CI: confidence interval.

SUPPLEMENTARY FIGURE 2

Prognostic value of risk stratification models in multiple subgroups of soft

tissue sarcoma (STS) patients. (A) STS patient with age less than or equal to
65 years old, (B) STS patient with age more than 65 years old, (C) STS
patient with histological type of DLS, (D) STS patient with histological type
of LMS, (E) STS patient with histological type of MFS, (F) STS patient with

other histological types, (G) STS patient with histological type of UPS, (H)
STS patients with negative margin status, (I) STS patients with positive

margin status, (J) STS patients without metastasis, (K) STS patients with

distant metastasis, (L) STS patients with other Races, (M) STS patients with
Frontiers in Oncology 15
White, (N) STS patients with female, (O) STS patients with male, (P) STS
patients with tumor sites in the extremities, (Q) STS patients with other

tumor sites. LMS: leiomyosarcoma; UPS: undifferentiated pleomorphic
sarcoma; LPS: Liposarcoma; MFS: Myxofibrosarcoma; STS: soft

tissue sarcomas.

SUPPLEMENTARY FIGURE 3

The correlation between INFscore and immune cell infiltration.

(A1–A19) Results of XCELL algorithm analysis of immune cell

infiltration. (B) Results of TIMER algorithm analysis of immune
cel l infi l t rat ion, (C1–C8) Results of QUANTISEQ algor i thm

ana l y s i s o f immune ce l l i nfi l t r a t ion , (D1–D7) Resu l t s o f
MCPcounter algorithm analysis of immune cell infiltration, (E1–
E4) Results of EPIC algorithm analysis of immune cell infiltration,
(F1–F12) Results of CIBERSORT algorithm analysis of immune cell

infi l t rat ion, (G1–G11) Results of CIBERSORT-ABS algori thm

analysis of immune cell infiltration.
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