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Abstract

Embryo cryopreservation remains an important technique to enhance the reconstitution
and distribution of animal populations with high genetic merit. One of the major detrimental
factors to this technique is the damage caused by oxidative stress. Melatonin is widely
known as an antioxidant with multi-faceted ways to counteract the oxidative stress. In this
paper, we investigated the role of melatonin in protecting rabbit embryos during preimplan-
tation development from the potential harmful effects of oxidative stress induced by in vitro
culture or vitrification. Rabbit embryos at morula stages were cultured for 2 hr with 0 or 1072
M melatonin (C or M groups). Embryos of each group were either transferred to fresh culture
media (CF and MF groups) or vitrified/devitrified (CV and MV groups), then cultured in vitro
for 48 hr until the blastocyst stage. The culture media were used to measure the activity of
antioxidant enzymes: glutathione-s-transferase (GST) and superoxide dismutase (SOD),
as well as the levels of two oxidative substrates: lipid peroxidation (LPO) and nitric oxide
(NO). The blastocysts from each group were used to measure the expression of develop-
mental-related genes (GJA1, POU5F1 and Nanog) and oxidative-stress-response-related
genes (NFE2L2, SOD1 and GPX1). The data showed that melatonin promoted significantly
(P<0.05) the blastocyst rate by 17% and 12% in MF and MV groups compared to their con-
trols (CF and CV groups). The GST and SOD activity significantly increased by the treat-
ment of melatonin in fresh or vitrified embryos, while the levels of LPO and NO decreased
(P<0.05). Additionally, melatonin considerably stimulated the relative expression of GJA1,
NFE2L2 and SOD1 genes in MF and MV embryos compared to CF group. Furthermore,
melatonin significantly ameliorated the reduction of POU5F1 and GPX1 expression induced
by vitrification. The results obtained from the current investigation provide new and clear
molecular aspects regarding the mechanisms by which melatonin promotes development
of both fresh and vitrified rabbit embryos.
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Introduction

Livestock systems occupy about 30% of the planet's ice-free terrestrial surface area [1] and are a
significant global asset with a value of at least $1.4 trillion. Several disease outbreaks and cli-
mate challenges threaten livestock permanence. Embryo cryopreservation is an essential tool
that could be used to reconstitute livestock populations, particularly in endangered species
and/or spread valuable genetic resources. Vitrification is an economical method for embryo
cryopreservation that permits the rapid cooling without ice crystal formation [2-5]. However,
vitrification carries the risk of exposure to oxidative stress derived by excessive free radicals [6—
8]. The oxidative stress induced by vitrification could be due to suppression of embryos’ a
defensive capacity against reactive oxygen species (ROS) [9]. Normally, the production of oxi-
dant molecules like ROS is counterbalanced by antioxidants such as glutathione and vitamins
C and E, as well as by enzymes such as catalase, superoxide dismutase, and glutathione peroxi-
dase that convert ROS to less-damaging molecules [10]. Overproduction of ROS induced by
vitrification is detrimental for the embryos due to different types of cell injuries, including
membrane lipid peroxidation, impaired intracellular milieu, disturbed metabolism, amino acid
and nucleic acid oxidation, adenosine triphosphate (ATP) depletion, mitochondrial dysfunc-
tion, apoptosis and necrosis [11-14]. These negative consequences of oxidative stress sup-
pressed gene expression involved in in vitro embryo development. Expression of genes
responsible for compaction and cell-to-cell adhesion, such as GJA1 (CX43), were found to be
decreased when embryos produced in vitro compared with in vivo [15,16]. Also, low expression
of GJA1 in blastocyst was associated with the low quality and survival after cryopreservation
[17]. It was evidenced that POU5F1/Oct4 is essential for early development of mouse and
human embryos [18,19]. Low expression of OCT3/4 genes in in vitro-produced blastocysts is
associated with the low pluripotency [20] and/or reduction in ICM cells [21]. It was also
reported that POU5F1 and Nanog genes are key regulators in proliferation and differentiation
in preimplantation embryos [22]. Nanog gene was also reported to be an important gene for
pluripotency and maintaining the stem cell state in rodent embryonic stem cells [23,24].

Melatonin (N-aceyl-5-methoxytryptamine) is produced mainly by the pineal gland and has
an important role in controlling ROS [25]. One reason melatonin is such an effective antioxi-
dant is that it does not act through a single mechanism, instead functions in a multifactorial
manner to counteract oxidative stress. For example, melatonin acts as a direct scavenger of
toxic oxygen derivatives and has the ability to reduce the formation of reactive species [26,27].
It also stimulates the gene expression or activity of other antioxidant enzymes and thus pre-
vents the damage that may occur as a result of oxidative stress [28]. Many researchers con-
firmed that melatonin enhances in vitro development of embryos in mouse [29-32], porcine
[33-35], ovine [14,36], bovine [37-39], buffalo [40] and rabbits [41]. The beneficial effects of
melatonin on embryonic development were attributed to its ability to down regulate the
expression of pro-apoptic genes (BAX and Caspase-3), up regulate the expression of an anti-
apoptic gene (Bcl-2), and neutralize the effects of ROS [26,42,43]. In addition, it was found
that treatment with melatonin in porcine parthenogenetic blastocysts increased the expression
of OCT4 gene [44].

Few studies were carried out concerning protective effects of melatonin on cryopreserved
and thawed embryos. For example, Abecia et al. [36] reported that melatonin improved the
survival of thawed ovine embryos, increased the rate of hatched embryos and reduced the rate
of degenerated embryos at the end of in vitro culture. Recently, Succu et al. [14] found a posi-
tive effect for 10~ M melatonin on the development of vitrified ovine embryos during post-
warming culture. In addition, Dehghani-Mohammadabadi et al. [13] concluded that melatonin
at 1072 M increased the cleavage rate, blastulation, and number of ICM and TE cells, and in
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contrast, decreased the apoptic index in mice vitrified embryos. These data suggest that melato-
nin may be particularly effective for increasing cryotolerance of vitrified embryos during thaw-
ing and in vitro manipulation. However, most of these studies focused on morphological
aspects of embryo development and gaps remain to understand the extraordinary effect of mel-
atonin at intracellular or molecular levels. Therefore, this study was carried out to investigate
the beneficial effects of melatonin on preimplantation development of fresh and vitrified rabbit
embryos at morphological and molecular levels.

Materials and Methods
Chemicals

Except when mentioned specifically, melatonin and other experimental reagents were pur-
chased from Sigma-Aldrich (S.A., Egypt).

Animals and ethics statement

A total of 30 nulliparous rabbit does and 10 bucks belonging to the Red Baladi breed [45] were
purchased from the rabbit farm stations of Animal Production Research Institute (APRI,
Cairo, Egypt). All does and bucks were housed during the study period in a semi-closed rab-
bitry housing system (Agricultural Experiment Station, Faculty of Agriculture, Cairo Univer-
sity) and kept in batteries of individual cages (60x50x35 cm), supplied with feeding hoppers
made of galvanized steel sheets and nipples for automatic drinker. They were maintained
under the same standard environmental conditions with light alternating on a cycle of 16 light
hours and 8 dark hours, fed with the same commercial diet (18.4% CP, 3.1% ether extract,
12.7% crude fibre and 2.600 kcal DE/kg) and had free access to water. All the experimental pro-
tocols were approved by the Research Ethics Committee at the Faculty of Agriculture, Cairo
University.

Embryo recovery

Females were synchronized for the receptivity by an intramuscular injection with 20 IU eCG
(Folligon, Intervet, Netherland) 60 hr before insemination. Does were inseminated with semen
from adult males of the same breed as described by Lavara et al. [46]. Seventy two hours later,
does were sacrificed by intravenous injection of a 1% solution of sodium thiobarbital and
embryos were immediately collected by uterine flushing at room temperature (20-25°C).
Flushing media consisted of DPBSCa (0.132 g calcium chloride/ 1 liter of Dulbecco’s phos-
phate-buffered saline), supplemented with 2 g Bovine Serum Albumin (BSA) and 10 ml antibi-
otics (10,000 units penicillin-G and 10 mg streptomycin per ml, penicillin-streptomycin
solution 100X, BioShop Canada Inc.).

Treatments and embryo culture

Only normal recovered embryos (compact morula with intact mucin coat and zona pellucida)
from each female were cultured in vitro for 2 hr in a one-well embryo culture dish (NUNC A/
S, Thermo Fischer Scientific, Roskilde Site, Denmark), containing 3 ml culture media
(TCM199 + 20% fetal bovine serum + 1% antibiotics) supplemented with 107> M of melatonin
(M) or without melatonin supplementation to serve as control (C). Afterwards, embryos of
each group were either transferred to fresh culture media and collected as fresh blastocysts (CF
and MF groups), or directly vitrified/devitrified according to the methodology previously
described by Mehaisen et al. [5] and cultured in vitro until blastocyst stage (CV and MV
groups). Embryo culture was conducted in a 4-well embryo culture dish (10 embryos per well
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contained 1 ml of culture media; NUNC A/S, Thermo Fischer Scientific, Roskilde Site, Den-
mark) at 38.5°C, 5% CO2 and saturated humidity. Following 48 hr in culture media, the devel-
opmental ability of each group was calculated as the percentage of embryos that reached either
the hatched or expanded blastocyst stages. Thereafter, developed blastocysts from each group
were directly collected for evaluating gene expression profile, while the remaining culture
media were used for measuring the activity of antioxidant enzymes and the levels of oxidative
substrates released by the embryos.

Antioxidant enzymes activity and oxidative substrates levels

After embryo culture, 4 samples of culture media, 1 ml each, from each group were immedi-
ately frozen at -20°C for later analysis. The activity of two antioxidant enzymes: glutathione-s-
transferase (GST) and superoxide dismutase (SOD), as well as levels of two oxidative sub-
strates: lipid peroxidation (LPO) and nitric oxide (NO), were analyzed using colorimetric assay
kits (K263-100 for GST, K335-100 for SOD, K739-100 for LPO and K262-200 for NO; BioVi-
sion, Inc., Milpitas, USA). The standard curves and calculations were performed following the
kits protocol for each analysis then all values were related to the number of embryos developed
to blastocyst stage in each sample.

The activity of GST enzyme was determined according to methods described by Habig et al.
[47]. Briefly, 50 pl of each sample was added to 55 pl reaction mixture contained 49 pl GST
assay buffer (pH 6.5), 1 ul 1-chloro-2,4-dinitrobenzene (CDNB) solution and 5 pl glutathione
(GSH). The increase in absorbance at 340 nm was recorded for 5 min using automatic scanning
spectrophotometer. The SOD enzyme activity was assayed by monitoring the inhibition of
photochemical reduction of xanthine oxidase (XO) according Beyer and Fridovich [48]
approach. In brief, Samples of 20 ul were mixed with 200 pl of WST-1 working solution and
20 pl of enzyme working solution then incubated at 37°C for 20 min. One unit of SOD activity
was defined as the amount of enzyme required to cause 50% inhibition of the reduction of XO
as monitored at 450 nm.

The LPO levels were determined by measuring the level of thiobarbituric acid reacting sub-
stances (TBARS) according to methods described by Farombi et al. [49] with modification.
Briefly, 10 pl of sample was mixed with 500 pl of 10% trichloroacetic acid (TCA) containing
0.01 ml 5% (w/v) butylatedhydroxytoluene (BHT) and 500 ul of 0.75% TBA in 0.1 M HCI. The
mixture was heated at 95°C for 60 min and after cooling centrifuged for 10 min at 10,000 g.
The absorbance of Malondialdehyde (MDA) in the supernatant was determined using an auto-
matic scanning spectrophotometer at 532 nm. The levels of NO were detected by colorimetric
analysis in a simple two-step process [50]. In the first step, 85 pl of the sample was mixed with
5 ul of the Nitrate Reductase and 5 pl of the enzyme cofactor then incubated at room tempera-
ture for 1 hr to convert nitrate to nitrite. In the second step, 5 pl of the enhancer was added to
each sample and incubated for 10 min, followed by 50 ul Griess Reagent R1 (containing phos-
phoric acid) and 50 pl Griess Reagent R2 (containing NED, N-(1-Naphthyl)ethylenediamine
dihydrochloride). The azochromophore color amount developed from the last step was
detected using automatic scanning spectrophotometer at 540 nm.

RNA isolation and quantitative real-time PCR

At the end of embryo culture, 30 blastocysts from each group (three replicates, 10 embryos
each) were transferred from culture media into cryogenic vials (Corning Incorporated, Corn-
ing, NY, USA) and directly plunged into liquid nitrogen (LN,) for later analysis. Total RNA
isolation was performed using the Arcturs™ PicoPure™ RNA isolation kit (Applied Biosys-
tems, Carlsbad, USA) per manufacturer's instruction. Genomic DNA contamination was
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Table 1. Details of primers used for real-time PCR quantitative analysis.

Gene symbol

GJAT

POUSF1

Nanog

NFE2L2

SOD1

GPX1

GAPDH

H2A

Gene full name

Gap Junction Protein, Alpha 1

POU Class 5 Homeobox 1

Nanog Homeobox

Nuclear Factor, Erythroid 2-Like 2

Superoxide Dismutase 1

Glutathione Peroxidase 1

Glyceraldehyde-3-Phosphate
Dehydrogenase

Histone H2A. F/Z variant

doi:10.1371/journal.pone.0139814.t001

GenBank accession
number
NM_001198948

NM_001099957

XM_002712762

XM_002712305

NM_001082627

NM_001085444

NM_001082253

NM_001170941

Primer sequences

F:atgagcagtctgcctttcgt
R:cgttgacaccatcagtttgg
F:gagatttgcaaagcggagac

R:
cggttacagaaccacacacg

F:gccagtcgtggagtaaccat
R:tgtgctgtgttctggcettic
F:tgaaatcctcccaattcage
R:gtgaagactgggctctcgac

F:
cacttcgagcagaagggaac

R:cgtgcctctcticatectic
F:gcttcgagaagttcctggtg
R:gcgttcctccatttgtttic
F:aggtcatccacgaccacttc

R:gtgagtttccegttcagete
F:cgcttccaaggatctcaaag
R:
acaatgatggggagaacgag

Annealing
temperature (°C)
55

55

55

55

54

53

57

56

Product size
(bp)
228

188

196

228

184

218

202

211

removed by performing column DNA digestion using RNase-free DNase (Qiagen GmbH, Hil-
den, Germany). RNA was eluted in 11 pl of elution buffer. The RNA from each replicate was
reverse transcribed using 1 mM oligo (dT) primers and the Rever-AidcDNA synthesis kit
(Thermo Fisher Scientific, Heidelberg, Germany) per manufacturer’s recommendations.
Sequence-specific primers (Table 1) for the real-time PCR were designed using the Primer-
blast web interface (http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi) and each pair
of primers was tested to achieve efficiencies close to 1.

qRT-PCR for the 3 replicates of each group has been done in 20 pl reaction volume contain-
ing Maxima SYBR Green qPCR Master Mixes with ROX (Thermo Fisher Scientific, Heidel-
berg, Germany), the cDNA samples and the specific forward and reverse primers in Mx3000P™
real time PCR system (Stratagene). The thermal cycling parameter was set to 95°C for 3 min,
40 cycles at 95°C for 15 s and 60°C for 1 min. After the end of the last cycle, melting curve was
generated by starting the fluorescence acquisition at 60°C and taking measurements every 7 s
interval until the temperature reached 95°C (S1 Fig). The comparative cycle threshold (CT)
method was used to quantify expression levels as described by Bermejo-Alvarez [51].

Statistical analysis

All statistical analyses were performed using IBM SPSS 22.0 Software Package (IBM corp., NY,
USA, 2013). A generalized linear model was performed using a binary probit model with bino-
mial distribution to analyze differences in the in vitro development rates in embryo groups
(CF, CV, MF and MV). One-way ANOV A was used to determine statistical differences in anti-
oxidant enzymatic activity between embryo groups followed by a multiple pair wise compari-
son (Duncan’s test). Gene expression data between embryo groups were analyzed using one-
way ANOVA, followed by a multiple pairwise comparison using t-tests. Results are expressed
as means + S.E.M. and the significance level was set at P<0.05.
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Results
Embryo culture and in vitro development rates

A total of 197 normal embryos at morula stage were recovered and randomly allocated for the
treatment groups. Overall data and in vitro developmental rates of fresh and vitrified embryos
treated or not treated with melatonin are presented in Table 2. Supplementation of culture
media with melatonin for 2 hr significantly promoted the blastocyst rate when compared with
fresh control embryos (93% vs. 76% for MF vs. CF, P<0.05). It tended to boost the blastocyst
rate in vitrified embryos previously treated with melatonin in comparison with control vitrified
embryos (81% blastocyst rate in MV group vs. 69% in CV group, P>0.05). In addition, melato-
nin enhanced the expanding rate of fresh and vitrified embryos even though improvement was
not significant, while vitrification significantly increased the expanding rate in CV and MV
groups when compared with CF group (64% and 70% vs. 32%, respectively, P<0.05). On the
other hand, the hatchability rate was significantly lower in vitrified embryos compared to fresh
embryos (4% and 11% for CV and MV groups vs. 44% for both CF and MF groups, respec-
tively, P<0.05).

Antioxidant enzymes activity and oxidative substrates levels

Results of antioxidant enzymes activity and the levels of oxidative substrates in culture media
of fresh and vitrified embryos supplemented with or without melatonin are shown in Table 3.
Melatonin promoted the activation of the antioxidant enzymes in fresh embryos (6.7 vs.

5.1 uM GST/embryo, and 2.1 vs. 0.7 units SOD/embryo in MF vs. CF groups, respectively,
P<0.05) and in vitrified embryos (6.3 vs. 4.3 uM GST/embryo, and 1.7 vs. 0.6 units SOD/
embryo in MV vs. CV groups, respectively, P<0.05). On the contrary, the levels of oxidative
substrates considerably decreased in fresh or vitrified embryo groups treated with melatonin
when compared with their controls (LPO: 0.3 vs. 0.7 and 0.5 vs. 1.0 nM/embryo; NO: 0.7 vs.
1.1 and 0.6 vs. 1.4 uM/embryo for MF vs. CF and MV vs. CV groups, respectively, P<0.05).

Gene expression analysis

Results of quantitative real-time PCR for the examined developmental-related genes GJA1,
POUS5F1 and Nanog in fresh and vitrified embryos after melatonin supplementation to culture
media are illustrated in Fig 1. Vitrification induced significant high expression of GJA1 gene by
3.67 fold (P<0.05) compared to fresh embryos (CF). Furthermore, media supplemented with
melatonin resulted in significant stimulation of the GJA1 gene expression in fresh and vitrified

Table 2. In vitro development rates of fresh and vitrified rabbit embryos previously cultured with 0 or 10~ M melatonin.

Embryo groups N *Blastocyst rate (Means * SE) *Expanding rate (Means * SE) *Hatchability rate (Means * SE)
CF 50 0.76+0.060 ° 0.32+0.066 °© 0.44+0.070 2
MF 55 0.93+0.035 2 0.49+0.067 ° 0.44+0.067 2
cv 45 0.690.069 ° 0.64£0.071 2 0.04£0.031°
MV 47 0.81+0.057 2° 0.70+0.067 2 0.11£0.045 °

a b yalues with different letters in the same column are significantly different (P<0.05).

N: number of cultured embryos.

* Calculated as a percentage of cultured embryos.

CF: fresh embryos without melatonin, MF: fresh embryos treated with melatonin, CV: vitrified embryos without melatonin, and MV: vitrified embryos
treated with melatonin.

doi:10.1371/journal.pone.0139814.t1002
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Table 3. Antioxidant enzymes activity and oxidative substrates levels in culture media of fresh and vitrified rabbit embryos previously cultured
with 0 or 1072 M melatonin.

Embryo groups GST pM/embryo SOD Unit/embryo LPO nM/embryo NO pM/embryo
CF 5.1+0.50 © 0.7+0.13 ¢ 0.7+0.05 © 1.120.06 @
MF 6.7+0.38 2 2.1+0.12 2 0.3+0.03 ¢ 0.7+0.07 ®
cv 4.3+0.28 ° 0.60.06 ° 1.0+0.03 2 1.4+0.15 2
MV 6.3+0.22 2 1.7+0.15° 0.5+0.04 © 0.6+0.09 ®

a b ¢ yalyes with different letters in the same column are significantly different (P<0.05).

CF: fresh embryos without melatonin, MF: fresh embryos treated with melatonin, CV: vitrified embryos without melatonin, and MV: vitrified embryos
treated with melatonin.

GST: glutathione-s-transferase, SOD: superoxide dismutase, LPO: lipid peroxidation, and NO: nitric oxide.

doi:10.1371/journal.pone.0139814.t003

embryos (P<0.05). The GJA1 gene was highly expressed in MV (8.72-fold), CV (3.67-fold),
and MF (2.79-fold) groups compared to the CF group. The current data shows that the expres-
sion of POU5F1 and Nanog genes exibits different patterns. POU5F1 gene expression
increased by 3.88 fold in MF embryos group while it decreased by 4.31 and 1.07 fold in CV and
MV embryo groups compared to CF group (P<0.05). On the other hand, the expression of
Nanog gene was considerably higher in MV group (7.32-fold, P<0.05) than in other embryo
groups, while MF or CV groups did not show any significant difference in Nanog gene expres-
sion compared to CF embryos group (Fig 1).

J

10.00
8.00 - a
6.00 -

4.00 - OCF
b BCV

[ aMV

Nanog

2.00 -

Fold Change

0.00

GJA1

1

-2.00

-4.00

1

-6.00 -

Fig 1. Expression of developmental-related genes in fresh and vitrified rabbit embryos previously cultured with 0 or 10~ M melatonin. CF: fresh
embryos without melatonin, MF: fresh embryos treated with melatonin, CV: vitrified embryos without melatonin, and MV: vitrified embryos treated with
melatonin; ® ® ¢ Bars with different superscripts are significantly different (P< 0.05).

doi:10.1371/journal.pone.0139814.g001
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15.00

12.00

9.00

Fold Change
S
=
S

-3.00

-6.00

-9.00

-12.00

-15.00

NFE2L2

a
ab b
a OCF
c b —&
—= O MF
SOD1 G BCv
c MV

Fig 2. Expression of oxidative-stress-response-related genes in fresh and vitrified rabbit embryos previously cultured with 0 or 10~ M melatonin.
CF: fresh embryos without melatonin, MF: fresh embryos treated with melatonin, CV: vitrified embryos without melatonin, and MV: vitrified embryos treated
with melatonin; @  © 9 Bars with different superscripts are significantly different (P< 0.05).

doi:10.1371/journal.pone.0139814.g002

The expression of oxidative-stress-response-related genes NFE2L2, SOD1 and GPX1 by
qRT-PCR in fresh and vitrified embryos after melatonin supplementation to culture media are
represented in Fig 2. In general, fresh embryos cultured in media supplemented with melatonin
showed a significant high expression of NFE2L2, SOD1 and GPXI1 genes in comparison with
control embryos (P<0.05). Furthermore, NFE2L2 and SOD1 genes display similar pattern in
responding to vitrification or melatonin treatment. A substantial increase in NFE2L2 expres-
sion was found in MF, CV and MV groups (1.86, 8.03, and 12.65 fold, respectively) when com-
pared to CF group (P<0.05). Also, the expression of SOD1 gene significantly increased in MF,
CV and MV groups by 4.45, 4.05, and 6.87 fold, respectively, compared to CF group (P<0.05).
A total of 2.12 fold increase was observed in expression of GPX1 gene in MF embryos in com-
parison with CF embryos. While a reduction in GPX1 expression was observed in both vitrified
embryo groups in comparison with CF group (P<0.05); the decrease was markedly observed in
CV and MV groups (10.78 and 2.05 fold, respectively) compared to CF group (Fig 2).

Discussion

Previous studies mainly discussed the melatonin’s effects on the morphological variations
regarding the in vitro embryo development, such as cleavage rate, blastocyst rate, hatched blas-
tocyst rate and blastocyst cell number [26,36,52], while few studies were carried out to investi-
gate melatonin effects at cellular and molecular levels in fresh and vitrified embryos, and
rabbits were rarely used as animal models. The clear description of embryo development and
functional genomic tools in rabbits make them particularly suitable and an important animal
model for research for humans and other species [53].
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The physiological concentrations of melatonin in plasma of rabbits were previously esti-
mated by radioimmunoassay (RIA) as 22.7 pg/ml [54], that is approximately equivalent to
107" M. In our previous work [41], we used a concentration of melatonin close to physiologi-
cal levels (107 M) and higher concentrations (10°°* M and 107> M) to study its effect on devel-
opment of rabbit embryos recovered at different stages. It is concluded from this study that a
107> M concentration of melatonin for morulae embryos recovered from rabbit does at 72 hr
post-insemination is optimal. In the present study, supplementation of culture media with 107>
M melatonin also improved the in vitro development rate of rabbit embryos (Table 2). We
found that blastocyst rate significantly increased by 17% to reach 93% in the MF group com-
pared to 76% in the CF group. The positive effects of the lower doses (1077-10""> M) of melato-
nin on blastocyst formation and in vitro development were also observed in embryos of other
species [14,26,32,35,38]. When embryos vitrified, the blastocyst rate decreased to 69% but it
tended to increase again to 81% when vitrified embryos were previously treated with melato-
nin, even though the difference were not statistically significant (Table 2). However, the current
study showed that melatonin treatment did not affect the hatchability or expanding of blasto-
cysts like vitrification did itself; hatchability rates ranged between 4-11% vs. 44% and expand-
ing rates ranged between 64-70% vs. 32-49% in vitrified vs. fresh embryos, respectively
(P<0.05). The results of the current study are consistent with previous findings which indi-
cated that timing of blastocoel cavity re-expansion after vitrification/warming and in vitro cul-
ture is associated with the capacity of embryos to restore vitrification injuries, and it is a
reliable marker of the development capacity of vitrified embryos [55].

A primary function of melatonin is to serve as a potent-free radical scavenger and a broad-
spectrum antioxidant [42,56-58]. The current research extended the points of melatonin
investigation on embryo in vitro development to include the activity of many antioxidant
enzymes. Therefore, LPO and NO levels as oxidative substrates, as well as the activity of GST
and SOD as antioxidant enzymes, were evaluated in all experimental groups. In the CV group,
low blastocyst rate synchronized with low hatchability was observed after thawing and culture
(Table 2). In the same group, the highest level of LPO was recorded (P<0.05), indicating that
these embryos were extremely sensitive to damage induced by vitrification and the high forma-
tion of LPO and NO released from damaged cells [59]. As shown in Table 3, melatonin signifi-
cantly increased the activities of GST by 1.6 and 2.0 pM/embryo and SOD by 1.4 and 1.1 unit/
embryo in MF and MV groups (P<0.05), respectively, compared to their controls. On the con-
trary, melatonin significantly diminished LPO by 0.4 and 0.5 nM/embryo and reduced NO by
0.4 and 0.8 uM/embryo in culture media of fresh and vitrified groups (P<0.05) compared to
their controls, respectively. It has been known that SOD and GST antioxidant enzymes have an
important role in catalyzing the conversion of superoxide to hydrogen peroxide (H,0,) and
catalyzing the reduction of peroxide-containing compounds that may otherwise be toxic to the
embryos, resulting in reduction of LPO and NO [60,61]. These observations could explain the
damage reduction in embryos cultured with melatonin in MF and MV groups, showing a
higher competence of these embryos for development to blastocyst stage than CF and CV
embryos (Table 2).

Under conditions of cryopreservation, embryos that be blastulae or expand early, show a
higher survival and probability of producing live births and therefore are considered to be
more viable than embryos showing delayed blastulation or expanding [20]. When an expres-
sion analysis covering genes representative of essential events during development was applied,
these embryos differed in expression of developmentally important genes [20,62]. The quanti-
tative real-time PCR for examined developmental-related genes in our experimental groups
were also studied and revealed important indications. The relative expression of GJA1 gene
(known as Connexin CX43 gene) was significantly up-regulated by treatment of melatonin in
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fresh (2.79-fold in MF vs. 1-fold in CF) and vitrified (8.72-fold in MV vs. 3.67-fold in CV)
embryos (Fig 1). However, we observed that GJA1 gene was over expressed in vitrified
embryos, showing the highest expression in MV group when compared with other groups
(Fig 1). Referring to differences in morphological aspects between embryo groups (Table 2),
the expression of GJA1 seems to be inconsistent with the blastocyst formation and hatchability
rates in the current study. These results are in line with Cruz et al. [63] finding, who reported
that lower expression of GJA1 gene (CX43) does not correspond to morphological or func-
tional differences of blastocyst types. In addition, Houghton et al. [64] concluded that the
absence of Cx43 does not prevent implantation or disrupt prenatal development, and the
capacity of preimplantation embryos to develop in the absence of Cx43 could be explained by
the presence of any of the additional connexins, such as Cx30, Cx31, Cx40 and Cx45 [65].
These data raise the possibility that gap junctional coupling is not an essential aspect of preim-
plantation development, despite indication from other study that gap junction assembly is
developmentally a regulated event [66]. The high expression of GJA1 gene in the MV group
could be explained by the role of gap junctional coupling in amplifying the effects of oxidative
stress, especially during vitrification and post-warming in vitro culture, and its role in transmis-
sion of cell death signals [67]. Alternatively, the supplementation of melatonin itself to the MV
group may be another reason for the high incidence of GJA1 gene expression which is neces-
sary in protecting cells from apoptotic cell death [68]. On the other hand, previous reports indi-
cated that POUSF1 (also known as Oct4 gene) has a role in pluripotency and developmental
competence of preimplantation embryos [20]. In the present study, a significant reduction in
expression of POU5F1 was found in vitrified embryos compared to fresh embryos. However,
previous culture of these embryos with melatonin significantly improved the relative expres-
sion of POUS5F1 by 3.88-fold in fresh embryos and ameliorated the reduction induced by vitri-
fication by 3.24-fold in vitrified embryos when compared to their controls (Fig 1). The over-
expression of POU5F1 gene occurred by melatonin in the MF and MV groups was consistently
correlated with a high expression in blastocyst rates in the same groups compared to the other
groups (Table 2). The beneficial effects of melatonin on cleavage and blastocyst formation
rates, and the total cell numbers in blastocysts were previously demonstrated in porcine
embryos [44]. They also found a positive correlation of melatonin with expression of pluripo-
tency marker (Oct4 gene). Our results also agree with recent results obtained by Wang et al.
[38] who concluded that melatonin promoted blastocyst yield and accelerated in vitro bovine
embryo development. They also added that melatonin improved the quality of blastocysts that
was indexed by an elevated cryotolerance and the up-regulated expressions of developmentally
important genes. Nanog is one of the earliest expressed set of genes known to control stemness,
self-renewal and development of embryonic cells [69], however, Nanog expression could be
detected only in inner-cell mass (ICM) of expanded blastocysts [70]. In the present study, the
expression of Nanog gene was significantly higher in the MV group (7.32-fold, P<0.05) than
in other embryo groups (Fig 1). The highest expanding rates recorded in vitrified embryos
treated with melatonin in our study (Table 2) may explain why Nanog expression was higher
in MV embryos when compared to the other groups [70]. While vitrification inflicted selective
damage to the inner cell mass of embryos and decreased viability after transfer to recipients
[71], the presence of melatonin increased the embryo cryotolerance to vitrification deleterious
effects [38] as revealed in our study by enhancing the expression of GJA1 and Nanog genes as
well as ameliorating the reduction of POU5F1 gene expression in MV group in comparison
with CV group (Fig 1).

The previously reported increase in antioxidant enzyme activity caused by melatonin in our
study could be explained by the increased levels of mRNA for the examined oxidative-stress-
response-related genes. In fresh embryos, the treatment with melatonin significantly increased
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the relative expression of NFE2L2 (1.86-fold), SOD1 (4.45-fold) and GPX1 (2.12-fold) when
compared to control embryos (Fig 2). Our results are in agreement with that obtained by
Wang et al. [39] who reported that SOD1 and GPX4 mRNAs were significantly higher in mela-
tonin-treated bovine embryos than that in controls. Similar results of SOD up-regulation
expression by melatonin treatment of murine embryos were also previously reported [32].
According to previous reports [72,73], an inactive form of the NFE2L2 (also known as Nrf2)
gene is abundant and sequestered to cytoplasm of blastocysts under low oxidative stress condi-
tions. During vitrification, embryos are exposed to severe oxidative stress and have been more
sensitive to oxidative stress [8,74]. Under such high oxidative conditions, an inactive form of
Nrf2 is released from the cytoplasm into the nucleus where it can activate its target antioxidant
genes by binding to their antioxidant response elements [72,73]. In the present study, embryo
vitrification induced a significant increase in expression of NFE2L2 to 8.03-fold and 12.65-fold
in CV and MV groups, respectively (Fig 2). The up-regulation increase of NFE2L2 transcript
during vitrification was reported to protect embryo from induced oxidative stress through
preservation of intracellular redox states and is essential to maintain normal embryonic devel-
opment [75]. Therefore, the transcript abundance of NFE2L2 with the low hatchability rate in
vitrified embryos in the present study may be attributed to the high apoptosis induced in vitri-
fied embryos [76]. However, NFE2L2 profile significantly increased in the presence of melato-
nin in vitrified embryos, indicating the importance of NFE2L2 to restore embryos to be more
tolerant to oxidative stress and more competent for development [73]. In parallel to NFE2L2,
the SOD1 gene continued to be highly expressed in vitrified embryos (4.05-fold and 6.87-fold
in CV and MV groups, respectively). Similar results were obtained by Jahromi et al. [77] who
reported an increase in Mn-SOD expression in vitrified/thawed mouse oocytes compared with
the control. The enrichment of nuclear Nrf2 protein is accompanied by more abundant antiox-
idant gene transcripts including SOD1 in competent blastocysts, and subsequently resulted in
reduced ROS accumulation [73]. On the other hand, the relative expression of GPX1 signifi-
cantly decreased after vitrification to 10.78-fold and 2.05-fold in CV and MV groups, respec-
tively (Fig 2). GPX enzymes are essential for the glutathione redox cycle as a major source of
protection against low levels of oxidant stress, whereas other antioxidant enzymes, such as cat-
alase, become more significant in protecting against severe oxidant stress [78]. The high affinity
and saturation of H,O, that have GPX than other antioxidant enzymes [79,80] may explain the
low expression of GPX1 in the CV group and the way it restores to higher levels in the MV and
MF groups. We also observed that reduction in GPX1 and POUS5F1 expression in vitrified
groups (Figs 1 and 2) could be related to the lower hatchability rate in vitrified embryos than
fresh embryos (Table 2). This result suggests that although GPX has a pivotal role in cell anti-
oxidant protection during high O, tension [81], its expression may decrease due to the decrease
in embryo quality and developmental potential [82].

In conclusion, the current data of the present study show that exogenous melatonin
enhances the blastocysts rate in fresh and vitrified embryos with multiple mechanisms of
improving the embryonic development. One of the most important mechanisms is to modify
the expressions of several embryo-developmentally key genes such as GJA1, POUS5FI and
Nanog. Another mechanism could use melatonin to induce changes in the production of anti-
oxidant enzymes and oxidative substrates, or to regulate the expression of oxidative-stress-
response-related genes such as NFE2L2, SOD1 and GPX1. Thus, the use of melatonin could be
a supportive tool, particularly when embryo development is affected by negative factors.
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