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Offline perceptions are self-generated sensations that do not involve physical stimulus.
These perceptions can be induced by external hallucinated objects or internal imagined
objects. However, how the brain dissociates these visual sensations remains unclear. We
aimed to map the brain areas involved in internal and external visual sensations induced
by intracranial electrical stimulation and further investigate their neural differences. In this
study, we collected subjective reports of internal and external visual sensations elicited
by electrical stimulation in 40 drug-refractory epilepsy during presurgical evaluation. The
response rate was calculated and compared to quantify the dissociated distribution of
visual responses. We found that internal and external visual sensations could be elicited
when different brain areas were stimulated, although there were more overlapping
brain areas. Specifically, stimulation of the hippocampus and inferior temporal cortex
primarily induces internal visual sensations. In contrast, stimulation of the occipital
visual cortex mainly triggers external visual sensations. Furthermore, compared to that
of the dorsal visual areas, the ventral visual areas show more overlap between the
two visual sensations. Our findings show that internal and external visual sensations
may rely on distinct neural representations of the visual pathway. This study indicated
that implantation of electrodes in ventral visual areas should be considered during the
evaluation of visual sensation aura epileptic seizures.

Keywords: offline perception, intracranial electrical stimulation, epilepsy, hippocampus, inferior temporal cortex

INTRODUCTION

Offline perception (Fazekas et al., 2021), such as those occurring during a hallucination,
imagery, mind-wandering, and dreaming, is self-generated sensations without physical stimuli,
yet their neural correlates are deceptively similar to those of stimulus-driven perception
(Mason et al., 2007; Horikawa et al., 2013; Pearson and Westbrook, 2015; Pearson et al.,
2016). Offline perception can be, but does not have to be, accompanied by the feeling of
presence (Fazekas et al., 2021). For example, individuals can be fooled into thinking that the
content of the offline perception is indeed in front of them, such as hallucination; in other
cases, individuals cannot be normally fooled into feelings of presence, such as imagery. This
raises the essential question of how the brain identifies whether the stimuli of the senses
exist in the external world. It is critical to explore the nature of conscious experiences and
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their important clinical implications for psychopathology. Offline
perception can involve any of the senses (Dijkstra et al., 2019;
Pearson, 2019), but here we focus on visual sensations given that
we, as humans, are intensely visual creatures.

One method that may provide useful insights into this issue
is intracranial electrical stimulation (iES) in awake neurosurgical
patients, such as patients with drug-resistant epilepsy and
implanted electrodes for seizure zone evaluation. IES probably
provides the best way of causally perturbing brain function in
humans, and it has long been known to induce various yet
replicable perceptual and behavioral phenomena (Selimbeyoglu
and Parvizi, 2010). For example, stimulations of the occipital,
occipitotemporal, occipitoparietal, inferior, and middle temporal
areas induce both the simple visual sensations, such as seeing
simple patterns, spots, shapes, a blob of flashing, light, colors,
movement, or phosphenes in the external world (Murphey et al.,
2009; Jonas et al., 2014a,b, 2018; Rangarajan et al., 2014; Winawer
and Parvizi, 2016; Bosking et al., 2017), and complex visual
sensations such as seeing people or scenes (Megevand et al.,
2014; Andelman-Gur et al., 2020). In contrast, stimulations of
the medial temporal lobe and middle or inferior frontal gyrus
are associated with a visual dreamy state (Blanke et al., 2000;
Vignal et al., 2007) and novel not-previously experienced imagery
(Lai et al., 2020).

Based on previous studies, we hypothesize that offline
perception may engage different neural networks when it is
accompanied by the feeling of presence or absence. Specifically,
external visual sensations involve a neural network within the
visual cortex, whereas internal visual sensations may engage the
medial temporal lobe. However, to the best of our knowledge,
no study has directly explored this issue by comparing neural
substrates between visual sensations accompanied by the feeling
of presence and those that are not.

Notably, a dreamy state and déjà vu are described primarily
as vivid mnemonic experiences. They are not only visually
imaged, but also (re)lived by the participants, sometimes with
emotional content. Briefly, a dreamy state and déjà vu are
richer experiences than that pure visual sensations. Hence, the
internal visual sensations in the current study encompassed only
imagery. Here, we investigated the neural substrates of external
and internal visual sensations by analyzing the effects of high-
frequency electrical stimulation and further compared the neural
differences between them.

MATERIALS AND METHODS

Participants
The inclusion criterion (CRI-1) to enter the study was
that at least one type of visual response (either external
or internal visual sensations) was elicited by electrical
stimulation. Forty patients (mean age 24.98 years; 15 females),
out of 144 patients (mean age 21.63 years; 54 females)
with focal drug-resistant epilepsy, met these criteria and
underwent video stereoelectroencephalography evaluation
to define the cerebral structures involved in the onset
and propagation of seizure activity from January 2017 to

December 2019 at the Sanbo Brain Hospital, Capital Medical
University, China.

Additionally, we adopted a stricter inclusion criterion (CRI-
2) as a control to validate the main results. To account for the
potential influence of epilepsy directly or indirectly on the visual
response to electric stimulation, patients were excluded: (1) if
they were in their second operation or reported hallucination
aura before the epileptic seizure and (2) if the implanted
electrodes were in the epileptogenic zone identified by the
neurologists (JW, MYW).

All the patients, or their guardians, provided informed
consent for the surgical procedure and the review of data for
scientific purposes. This study was approved by the Ethical
Committee of the Institute of Psychology, Chinese Academy of
Sciences (ID H20034).

Intracranial Electrical Stimulation
Procedure
Intracranial electrical stimulation was used to elicit some or all
of the electroclinical seizures and map the cortical functional
areas. IES was performed by delivering biphasic electrical stimuli
(Nicolet Cortical Stimulator, Wisconsin, United States) with a
pulse width of 0.3 ms and a duration of 5 s. IES frequency
was 50 Hz (high-frequency iES). Stimulation was stopped at
the onset of clinical response (e.g., preseizure aura and epileptic
seizure) or the appearance of electroencephalography (EEG)
after discharges. The stimulation intensity ranged from 0.5 to
6 mA. For each stereo-EEG electrode, contiguous couples of
contacts were tested according to a clinical inquiry using a bipolar
montage. The intensity of stimulation was raised in 0.5 mA steps.
The patients were “blind” to the timing and stimulated location.

After excluding electrodes without electric stimulation under
CRI-1, 110 ± 17.4 electrodes remained for each patient, with a
total of 6,272 stimulated contacts for the 40 patients (Figure 1).
Alternatively, 32 patients and approximately 102.4 ± 14.8
electrodes per patient (5,020 contacts in total) remained under
CRI-2 for each patient.

Operational Definition of External and
Internal Visual Sensations
We classified external and internal visual sensations based on
the subjective reports of the patients. If the patient reported
imagery of something/somebody or clearly informed seeing
something/somebody in his/her mind, we categorized them as
internal visual sensations. For example, we classified responses
such as “I saw something flashed in my mind” (Supplementary
Video 1) as internal visual imagery. Notably, we did not include
reports of vivid autobiographic memories or déjà vu. In contrast,
if patients reported seeing images using their eyes or in front
of them without physical stimuli (not a deformation of a real
object that was excluded in this study), we classified these
responses as external visual sensations. Furthermore, patients
reported seeing the images, as if they were in front of them.
Simultaneously, patients also realized that nothing was actually
presented; for example, “I saw something like a grain of water
in my right eye” (Supplementary Video 2). In the current
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FIGURE 1 | Cortical distribution of electrodes receiving intracranial electric stimulation. Electrodes were stimulated during the functional mapping sessions over all
the patients (n = 40 patients) pooled on the MNI152 brain surface. Blue dots indicate stimulated electrodes, which elicit no visual responses, while red dots indicate
stimulated electrodes, which elicit either internal or external visual responses for at least one patient. The structural modules are rendered on the brain’s surface with
different colors. dlPFC, dorsal lateral prefrontal cortex; HPC, hippocampus; ITC, inferior temporal cortex; PPC, posterior parietal cortex; and OVC,
occipital visual cortex.

retrospective study, despite the absence of structured interviews,
the clinician confirmed the contents of the oral report with the
patients during the iES.

In addition, we divided the external visual sensations into
simple or complex sensations based on the nature of the reported
visual stimuli (Selimbeyoglu and Parvizi, 2010). If the patients
reported that they perceived objects, animals, persons, or scenes,
we assigned these reports to complex external visual sensations.
In contrast, if the patients reported seeing something such as
phosphenes, shapes, colors, sizes, depths, flickers, and motions,
we assigned them to simple external visual sensations.

Stereotactic Implantation and Contact
Localization
All the patients were chronically implanted with depth electrodes
(0.8 mm in diameter; Beijing Huakehengsheng Healthcare
Corporation Ltd., Beijing, China), featuring 8 to 16 contacts,
2 mm long, and 1.5 mm apart. The number of electrodes and
sites of implantation were established based on the clinical
electroencephalographic features of the seizures recorded during
long-term video-EEG monitoring. To reach the clinically relevant
targets, the stereotactic coordinates of each electrode were
calculated preoperatively using individual MRI.

Electrodes’ coordinates in the individual volume space and
the Montreal Neurological Institute (MNI) 152 template spaces

were obtained using a semi-automated intracranial electrode
localization toolbox (Qin et al., 2017). Briefly, the patient’s
preoperative MRI was co-registered with the postoperative CT.
After the CT image was aligned to the MRI, the electrode clusters
were automatically detected and manually labeled according to
the clinically designed trajectories. Then, the spatial coordinates
of each contact were generated in the individual volume space.
To visualize the exact locations of the electrode contacts with
higher accuracy, we reconstructed the electrode trajectories on
the individual brain surface. To register the coordinates of all
the electrodes into a standard space, the patient’s MRI was
normalized to the standard MNI template using a combined
volumetric- and surface-based registration algorithm (Postelnicu
et al., 2009). The transformation was then applied to all
the contacts to generate electrodes’ coordinates in the MNI
standard space. Coordinates for the electrodes located in the
left hemisphere were mirrored in the right hemisphere for a
simplified display.

Structural Modules
To explore the spatial distribution of brain responses (external
and internal visual sensations) to electrical stimulation and draw
a general conclusion at the level of brain regions, this study
focused on several structural modules according to previous
studies, each of which comprised several structural regions
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identified by FreeSurfer software1: occipital visual cortex (lateral
occipital cortex, lingual, cuneus, and pericalcarine sulcus), dorsal
lateral prefrontal cortex (inferior frontal gyrus and middle frontal
gyrus), inferior temporal cortex (fusiform area and inferior
temporal gyrus), posterior parietal cortex (inferior parietal lobe
and superior parietal lobe), and hippocampus (Figure 1). To
determine which module an electrode contact belonged to, a
sphere with a radius of 8 mm was generated at the center
of the contact coordinate. The module-based distribution of
electrodes that were electrically stimulated and induced by either
type of visual response is shown in Table 1. Electrodes that
were not located in any of these modules were assigned to
“others.”

Response Rate to Electrical Stimulation
First, the response rate was calculated for separate visual response
types and pooled together on the cortical surfaces and in
different brain modules. For cortical surface-based calculations,
the cortical response rate at each vertex surrounding the
contact center with an 8 mm radius sphere was calculated
as the number of stimulated electrodes eliciting visual
responses divided by the number of all the stimulating
electrodes. For module-based calculations, a module’s response
rate was calculated as described above, but was limited
within each module.

Predominant Response in the Brain
Modules
A binomial test was used to perform a statistical test to
reveal the predominant module-specific visual response to
electrical stimulation. The ratio of the number of electrodes
inducing one specific response to the total number of response-
inducing electrodes [i.e., external visual sensations/(external
visual sensations + internal visual sensations)] within each
module was compared to the expected value calculated based on
the whole cerebral cortex.

1http://surfer.nmr.mgh.harvard.edu/

Overlapped Hierarchical Processing for
Internal and External Visual Sensations
We further studied whether the probability of detectable
perceptions of a visual area varied with the position of the area
in the visual cortical hierarchy for both the internal and external
sensations. Hence, the cortical surface was parcellated finely with
a recent cytoarchitecture-based atlas (Amunts et al., 2020); then,
the label of each contact was determined in the same manner as
that described above in the structural module section.

In addition, the Dice coefficient (Dice, 1945; Hoenig et al.,
2018) was adopted to calculate the spatial overlap between the
two different visual responses within a region of interest with
an 8 mm radius to test whether internal and external visual
sensations have more overlap in high-level areas. The volume
was measured from each of the two binarized images and the
region-wise Dice coefficient (D) was calculated as follows:

D =
2 × intersection volume size
internal sensation volume size
+ external sensation volume size

For brain areas that were involved in both the internal and
external visual sensations, we reordered D values based on their
hierarchical roles in the general visual pathway (Felleman and
Van Essen, 1991) to test whether there was a trend consistent
with our hypothesis.

Control Analysis
To ensure that the neural representations of internal and external
visual sensations were stable and replicable, we conducted a series
of reliability analyses. The specific operations are as follows: (1)
validation of the main analysis results for a stricter inclusion
criterion (CRI-2); (2) internal and external visual sensations
reproducibility for the same eloquent site; (3) whether and how
false-positive reports were identified when iES was performed
by delivering biphasic electrical stimuli at 1 Hz (low-frequency
iES); (4) cross-participant reliability, i.e., whether adjacent parts
of the cortex elicited similar types of external visual sensations
in different participants and if the cortical distribution of

TABLE 1 | Elicitation rates and current thresholds.

Regions Electrode contacts Stimulation current thresholds (mA)a

Total Visual
response

Mean minimum stimulation
current threshold mA (s.d.)

Mean maximum stimulation
current threshold mA (s.d.)

Occipital visual
cortex

506 252 (49.80%) 2.64 (2.05) 3.35 (2.18)

Inferior temporal
cortex

446 38 (8.52%) 3.99 (2.02) 4.61 (1.81)

Posterior parietal
cortex

542 73 (13.47%) 3.65 (2.14) 4.31 (1.95)

Hippocampus 438 46 (10.50%) 2.87 (1.83) 3.75 (1.94)

Dorsal lateral
prefrontal cortex

434 0 (0%) 4.52 (1.95) 5.21 (1.52)

Others 3,906 149 (2.37%) 3.58 (2.13) 4.25 (2.00)

Totals and
means

6,272 558 (8.91%) 3.55 (2.13) 4.24 (2.00)

aNote that the current threshold here is the threshold of current intensity used during iES, including both responsive and unresponsive contacts.
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electrodes that elicited internal visual sensations in different
participants were similar; and (5) whether complexity could
underlie the functional dissociation between internal and external
visual sensations.

RESULTS

Sex Difference
Among the 40 patients, there were 15 female patients. It is
important to consider this sex imbalance in the context of the
overall cohort. At least one type of visual response was elicited
in 40 (15 females) of 144 (54 females) patients. There were no
significant sex differences in the visual responses (chi-square = 0,
p = 1). External visual sensations were elicited in all the 40
patients, while internal visual sensations were elicited in 7 (2
females) patients. There was no significant sex difference in visual
sensation (chi-square = 0.29, p = 0.59).

Probability for Electrical Stimulation to
Elicit Visual Responses Varied Across
the Cortical Surfaces
We first investigated the visual responsiveness across the cortex
and modules for the two types of visual responses. The
current thresholds that induced internal visual sensations were
significantly greater than those that induced external visual
sensations (p < 0.001). In addition, a significantly unequal
probability across cortical modules was found as revealed by the
chi-squared test for each visual response. Regions involved in
the inferior and medial temporal cortex and posterior cingulate
cortex showed enhanced internal visual sensations compared to
that of the occipital visual cortex (Figure 2A). Regions with the
highest response probability were located in the visual cortex,
particularly in the medial part (Figure 2B). These results are
compatible with findings that induced external visual sensations
varied with the position of the area in the visual cortical hierarchy,
with much more effective stimulation of early visual areas than
that of stimulation of higher visual areas (Murphey et al., 2009).

At the module levels, normalized responsiveness in the
occipital visual area showed a predominance of external visual
sensations, while the hippocampus and inferior temporal cortex
played predominant roles in the internal visual sensations. Both
the types of visual response exhibited moderate responsiveness
in the posterior parietal region (Figure 2C). Notably, some
areas, such as the posterior inferior temporal gyrus and posterior
cingulate cortex, may exhibit visual phenomena either locally or
due to current propagation to the occipital cortices.

Neural Representations Dissociate
Internal and External Visual Sensations
Next, we targeted the differences in the brain modules that
contribute to internal and external visual sensations. We
employed a binomial test with a null distribution, in which
the visual response type predominance was evenly distributed
across brain modules. Module-specific visual response type was
observed. Specifically, external visual sensations dominated the

occipital visual area (p < 0.001, Figure 3A), while internal visual
sensations dominated the hippocampus and inferior temporal
cortex (p < 0.001 for the hippocampus; p = 0.002 for the inferior
temporal cortex; Figure 3B). No dominant visual response was
detected in the posterior parietal areas.

Given that a large proportion of patients (82.5%, 33 of
40) only reported external visual sensations, it might lead to
a biased module-based distribution for visual response-related
functional dissociation. Similar findings were reproduced in
seven participants who reported both the internal and external
visual sensations (p < 0.001 for external visual sensation
predominance in the occipital visual area, p < 0.001 and
p = 0.003 for internal visual sensation predominance in
the hippocampus and inferior temporal cortex, respectively;
binomial test), indicating that the dominant visual responses to
electrical stimulation were indeed module-dependent.

Hierarchy of Shared Neural Mechanisms
of Visual Imagery and Hallucination
Finally, we found an increasing overlap with ascension in the
visual processing hierarchy (Figure 4). Internal and external
visual sensations have greater overlap in high-level areas (e.g., the
hippocampus) than in low-level areas (e.g., V3).

Reproducibility
(1) We validated the dissociated brain module (p < 0.001 for

the visual area, hippocampus, and inferior temporal cortex;
binomial test) and increased overlap with ascension in
the visual processing hierarchy between the internal and
external visual sensations in a stricter inclusion criterion.
These findings were reproduced in CRI-2.

(2) We further investigated the reproducibility among
participants. Seven patients delivered electrical
stimulations by increasing the electrical current density
(less than 6 mA) after reporting visual imagery (16
repetitions) and/or hallucinations (145 repetitions).
Internal and external visual sensations were repeated at
rates as high as 100 and 91.8%, respectively.

(3) To control for demand characteristics and false-
positive reports, 1 Hz iES was delivered to eight
participants (20%). No reports of internal or external
visual sensations were identified even after numerous
low-frequency stimulations.

(4) We also investigated reproducibility across participants.
Stimulation of adjacent parts of the cortex elicited
similar external visual sensations in different participants
(Figure 5A, flickers, for example). In addition, we
also presented maps of the cortical distribution of
electrodes that elicited internal visual sensations in
different participants (Figure 5B), which also showed an
obvious aggregation effect, which mainly occurs in the
hippocampus and inferior temporal cortex.

(5) Finally, we compared neural differences between simple
and complex external visual sensations. No significant
predominance of simple or complex external visual
sensations was found in any of the structural modules,
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FIGURE 2 | Internal and external visual sensation probability across the cortical surfaces and structural modules. (A) Mean response probability for internal visual
sensations across the cortical surfaces. (B) Mean response probability for external visual sensations across the cortical surface. (C) Normalized response
percentage, normalized across modules, for each visual response type. Asterisks indicate regions in which the individual chi-square value exceeds a significant level
(p < 0.01, Bonferroni correction for multiple comparisons).

suggesting that distinct neural representations were caused
by the inherent differences between internal and external
visual sensations, regardless of perceptual complexity.

DISCUSSION

Understanding how the brain distinguishes an internal stimulus
sensation from an external stimulus is critical to understanding
the nature of consciousness (Dijkstra et al., 2019). To the best of
our knowledge, this is the first study to reveal that stimulating
the hippocampus and inferior temporal cortex primarily induces
internal visual sensations, while stimulating the occipital visual
cortex mainly triggers external visual sensations. Furthermore,
we found some overlap between sites that induced internal and
external visual sensations emerging as early as the occipital visual
cortex and this overlap increased at higher levels of the visual
processing hierarchy. This hierarchy of shared neural substrates
of internal and external visual sensations fits well with the
model of imagery dynamics proposed in a study by Pearson
(2019).

In addition, since subjective symptoms were reported
by different patients with degrees of differences in age,
psychometric, and cultural profiles, the underlying neural

mechanisms to dissociate between internal and external
visual sensations across different groups might be biased.
To minimize this factor, we reanalyzed the data from seven
participants who reported both the internal and external
visual sensations. The main findings were replicated for this
subgroup.

Visual Cortical Stream
Consistent with our results, the hippocampus has been suggested
to support complex or spatially distributed images (Bird et al.,
2010). Evidence from single-neuron recordings in humans has
revealed hippocampal correlates of internal visual sensations
(Kreiman et al., 2000). Internal visual sensations can be triggered
by combining different information stored in our memory and
it is difficult to imagine something that you have never been
exposed to. Thus, the hippocampus has been proposed to be
positioned at a location that forms the imagery content (Pearson,
2019). Further studies are needed to elucidate the exact roles of
the hippocampus in imagery.

Several internal visual sensation active sites were observed
in the occipital and temporal cortices, while external visual
sensation responses were found mostly in the occipital cortex.
Internal visual sensations seem to involve the corresponding
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FIGURE 3 | Dissociated brain module involvement in involuntary visual imagery and hallucination. (A) Global and module internal visual response percentage. The
orange line indicates the average proportion of internal visual responses relative to all the elicited visual responses. The blue line indicates the proportion of internal
visual responses within a specific module. (B) Global and module external visual response percentage. The orange line indicates the average proportion of external
visual responses relative to all the elicited visual responses. The blue line indicates the proportion of external visual response within a specific module. The dashed
black line indicates that the response percentage did not scale linearly for illustration. The modules with a filled large circle exhibit a significantly higher percentage
than that of the cortical average (p < 0.01, Binomial test, Bonferroni correction for multiple comparisons).

sensory cortex (Pearson and Westbrook, 2015; Pearson, 2019).
For example, a previous human imaging study found that color
imagery could be decoded in V1 and V4 (Bannert and Bartels,
2013). In contrast, previous anatomical studies have revealed that
external visual sensations are related to atrophy in the occipital
cortex (Carter and Ffytche, 2015). More importantly, a previous
study has shown that electrical stimulation of the primary visual
cortex can elicit phosphenes (Winawer and Parvizi, 2016). Our
results provide further evidence of the causal role of the occipital
cortex in different types of visual hallucinations.

In this study, the prefrontal cortex yielded no internal or
external visual sensations in response to electrical stimulation.
One possibility is that the frontal cortex is not involved in the
production of visual sensations. It cannot be ruled out that it is
difficult to directly elicit experiences from electrical stimulation
of frontal sites (Selimbeyoglu and Parvizi, 2010).

Theoretical Models of Internal and
External Visual Sensations
Internal visual sensations are believed to be based on
combinations of information retrieved from stored memory
(Pearson, 2019). To create internal visual sensations, the initial
imagery generation “begins” high in the cortical processing
hierarchy, first triggering a cascade of neural events in the
prefrontal cortex, then proceeding “backward” to retrieve stored
information from the hippocampus, finally forming sensory and

spatial representations of the imagery content that can emerge
as early as the primary visual cortex. In contrast, the perception
attentional dysfunction (PAD) model (Collerton et al., 2005) and
misattribution of the internal imagery model (Allen et al., 2008)
argue that unbalanced generative perceptions from a widespread
network cause external visual sensations.

As mentioned above, internal visual sensations are
conceptualized as top-down triggered instances of sensory-
memory recall. It naturally follows that higher-level visual
areas that are physically closer to the trigger source, such
as the hippocampus, would also have stronger perception-
like representations, such as external visual sensations,
than that of more distant areas, such as V1. We found
that internal and external visual sensations had increasing
spatial overlap at higher levels along the hierarchical visual
cortical stream.

One possibility is that the internal and external visual
sensations share common neural mechanisms, as it is more
efficient to use the same neural substrates for similar processes.
If the occipital visual cortex is hyperactivated, it might be
misinterpreted due to faulty interactions with frontoparietal
attention networks, whereby images may be perceived in
the absence of external stimuli, that is a reduced state of
consciousness. Stimulation of the occipital cortex may induce
an increase in low-frequency power and/or a decrease in high-
frequency power, which is believed to be a reliable neural
correlate of unconsciousness (Siclari et al., 2017; Vesuna et al.,
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FIGURE 4 | Increased spatial overlap between internal and external visual sensations in regions along the visual processing stream. (A) Spatial Dice coefficient
between the internal and external visual sensations at the ROI level rendered on the cortical surface based on a public cytoarchitecture atlas. (B) ROI-based Dice
coefficient along visual information processing stream defined generally. Bars indicate the extent of spatial overlap, displayed using the corresponding ROIs color on
the above surface. CalcS, calcarine sulcus; FusG, fusiform gyrus; IPL, inferior parietal lobule; IPS, intra-parietal sulcus; LingG, lingual gyrus; LOC, lateral occipital
cortex; and STG, superior temporal gyrus.

2020). Conversely, if the hippocampus and temporal visual
cortex in the network are stimulated, one may perceive visual
images in the mind (rather than being anchored to the external
environment). Future studies will be important to further
investigate whether and how specific rhythms contribute to these
two distinct processes.

LIMITATIONS

There are several limitations in the present study that need to
be considered. First, as mentioned above, the placement of all
the electrodes and electrical stimulations is strictly determined
according to clinical criteria. Hence, our retrospective analysis
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FIGURE 5 | Cross-participant reliability of elicited response to electrical stimulation. (A) Cortical distribution of electrodes that elicited external visual sensation of
flickers across different participants. (B) Cortical distribution of electrodes that elicited internal visual sensations by electrical stimulation. Different color-coded dots
encode different participants.

could not guarantee a complete sampling of the brain. Second,
some areas with greater current thresholds, such as the posterior
inferior temporal gyrus or posterior cingulate, elicit visual
phenomena that might be due to either local or current
propagation to the occipital cortices. Third, the fact that
current thresholds that elicited external visual sensations were
significantly greater than those of internal visual sensations,
reminded us to be cautious about the findings in this study.
Finally, there were some potential confounding factors such
as complexity and vividness, which may differ between visual
hallucination and involuntary imagery. Although there was no
significant complexity effect on external visual sensations in the
present study, a structured interview after reporting internal and
external visual sensations, including additional questions related
to the contents, would be helpful in future studies.
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