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Simple Summary: Fine-needle aspiration or surgical resection is used to determine whether thyroid
nodules (TNs) are benign or malignant, but there is a risk of overtreatment. Guidelines such as
the American College of Radiology thyroid imaging reporting and data system consider follow-up
for TNs < 1 cm, even with high-risk ultrasound features; therefore, for these TNs, an ultrasound
radiomics nomogram was developed for noninvasive assessment of benign and malignant TNs. In
addition, to assess the model’s diagnostic capabilities, the present study tested the model using
an external validation group. The test results suggest that ultrasound radiomics is an effective,
noninvasive method by which to diagnose noninvasive TNs.

Abstract: The aim of the present study was to develop a radiomics nomogram to assess whether
thyroid nodules (TNs) < 1 cm are benign or malignant. From March 2021 to March 2022, 156 patients
were admitted to the Affiliated Hospital of Nantong University, and from September 2017 to March
2022, 116 patients were retrospectively collected from the Jiangsu Provincial Hospital of Integrated
Traditional Chinese and Western Medicine. These patients were divided into a training group and an
external test group. A radiomics nomogram was established using multivariate logistics regression
analysis using the radiomics score and clinical data, including the ultrasound feature scoring terms
from the thyroid imaging reporting and data system (TI-RADS). The radiomics nomogram incor-
porated the correlated predictors, and compared with the clinical model (training set AUC: 0.795;
test set AUC: 0.783) and radiomics model (training set AUC: 0.774; test set AUC: 0.740), had better
discrimination performance and correction effects in both the training set (AUC: 0.866) and the test set
(AUC: 0.866). Both the decision curve analysis and clinical impact curve showed that the nomogram
had a high clinical application value. The nomogram constructed based on TI-RADS and radiomics
features had good results in predicting and distinguishing benign and malignant TNs < 1 cm.

Keywords: radiomics; thyroid nodules; thyroid imaging reporting and data system (TI-RADS);
ultrasound; nomogram

1. Introduction

The occurrence of thyroid nodules (TNs) has increased in recent years in several
countries throughout the world; however, this increase could be attributed to the avail-
ability of more accurate diagnostic and detection techniques [1]. The prevalence of TNs is
~30–67%, comprising mainly malignant and benign nodules [2], with ~7–15% being thyroid
cancer. Except for those individuals with higher risk factors, screening for thyroid cancer is
recommended. Routine screening for malignancy, such as fine-needle aspiration (FNA),
is not recommended, especially for TNs < 1 cm that were conservatively observed [3];
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however, 52.8% of patients already had cervical lymph node metastasis while having
papillary thyroid carcinoma (PTC) diagnosed [4]. TNs < 1 cm is now the most common
incidental nodule [5]. Although PT microcarcinoma (PTMC) < 1 cm usually progresses
slowly, cervical lymph node metastases may occur in 24–63% of patients [6]. Other studies
have found that a node > 7 mm is an independent risk factor for lymph node metastasis
(LNM) or distant metastasis [7]; therefore, it is necessary to accurately diagnose the benign
and malignant TNs in the early stages and formulate corresponding treatment measures.

Ultrasound plays an essential role as a screening tool in TN management [8]. Ul-
trasonography is the most common, useful, safe, and cost-effective method of thyroid
pathological imaging [9]. The widespread use of high-frequency ultrasound machines is
the main reason that the prevalence of thyroid cancer appears to be increasing [1]. The
American College of Radiology (ACR) published a white paper in 2017 on thyroid imaging
reporting and data systems (TI-RADS), in which different risk levels for TNs were proposed
and helpful for radiologists to standardize the description of the lesions. The TNs were
graded using scores for the following sonographic features: composition, shape, echo,
margins, and calcifications [10]. In their diagnoses, doctors are influenced by experience
when using ultrasound, and senior doctors have higher diagnostic accuracy than junior
doctors [11]. For TNs < 1 cm, the diagnosis using ultrasound images is more dependent
on the doctor’s experience. ACR guidelines state that FNA evaluation for TNs < 1 cm is
not recommended regardless of the ultrasound characteristics of the lesions [10]. There are
studies on the diagnosis of TNs < 1 cm using the features in conventional ultrasound and
contrast-enhanced modes [12]. Some researchers have suggested that the size of the nodule
will affect the diagnosis of benign and malignant, and have found that the incidence of
malignant tumors decreased with an increase in diameter, that the size of the nodule is
inversely proportional to the risk of a malignant tumor, and that nodule size should not be
regarded as an independent risk factor [13,14]. Therefore, a better, noninvasive diagnostic
and therapeutic approach was needed to assess the status of TNs < 1 cm and avoid missing
important diagnostic information.

Radiomics is a medical imaging diagnostic tool that has emerged in recent years. It
is applied in the clinic to improve the accuracy of a diagnosis, prognosis, and prediction
by extracting image feature data. Radiomics has become more and more important in
cancer research and is the bridge between imaging and patient medical individuation [15].
Many studies have combined radiomics with clinical characteristics to predict the lymph
node status in patients, the heterogeneity of the tumor, or the prognosis for a tumor
patient [16–18]. Some studies have suggested that the diagnosis of TN using a “Rad-score”
is better than that of primary doctors using ACR TI-RADS [19]. Studies are limited on
whether ultrasound radiomics techniques can help distinguish the benign and malignant
TNs < 1 cm.

The aim of the present study was to establish a model-visualized nomogram com-
prising radiomics combined with ACR TI-RADS to improve the diagnostic accuracy of
TNs < 1 cm.

2. Materials and Methods
2.1. Patients and Groups

The present study comprised TN patients admitted to the Affiliated Hospital of
Nantong University (training set) from March 2021 to March 2022 and to the Jiangsu
Provincial Hospital of Integrated Traditional Chinese and Western Medicine (test set) from
September 2017 to March 2022. The training set comprised 156 patients and the external test
set 116 patients. This retrospective study waived informed consent and was approved by
the hospital review board. The study inclusion criteria were as follows: (1) the maximum
diameter of the target nodule was <1 cm, (2) pathological results were obtained by FNA or
surgical resection, (3) ultrasonography was conducted within 2 weeks of FNA or surgery,
and (4) the clinical and ultrasound data on the patients were complete. The exclusion
criteria were as follows: (1) biopsy or resection had been conducted before ultrasonography,
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(2) thyroid inflammation, (3) other neoplastic diseases, (4) poor quality of ultrasound
images, or (5) unclear pathological results. Figure 1 shows the patient pathways that two
hospitals recruited according to the criteria of 272 patients. From the Affiliated Hospital of
Nantong University, 122 women and 34 men were divided into the training set. The mean
age was 45.64 ± 12.00 years and ranged from 18 to 76 years. From the Jiangsu Provincial
Hospital of Integrated Traditional Chinese and Western Medicine, 92 women and 24 men
were divided into the test set. The mean age was 47.47 ± 11.20 years and ranged from 20 to
77 years. More detailed selection steps can be obtained in Figure S2 in the Supplementary
Materials.
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Figure 1. Method flow chart of the present study.

2.2. Clinical Data and Ultrasound Images

Baseline clinicopathological information comprised sex, age, ultrasonographic appear-
ance (largest nodule diameter, location), and pathological results. The included ultrasound
images were collected using the Esaote Mylab Class_C (Esaote Group, Genoa, Italy, shallow
probe) and the HITACHI EUB-8500 (Hitachi, Tokyo, Japan, shallow probe) ultrasound
equipment. The dynamic images and the maximum-diameter tomographic images of the
nodules when scanning the lesions were retained and were stored in the picture archiving
and communication system workstation for later measurements and evaluations by the
doctors. The TI-RADS scoring items comprise composition, echo, shape, margin, and
calcification. Two senior radiologists with >8 years of work experience from each hospital
measured and scored the lesions in all patients. The four doctors were unaware of other as-
sessments and pathological results, and any differences were resolved through negotiation
to ensure the reliability of the data. Any histological and pathological findings of unclear
significance were discarded, and only accurate and undisputed reports were used.

2.3. Region of Interest Segmentation and Radiomics Feature Extraction

The ultrasound images of all patients from the two different hospitals were uniformly
formatted. Two radiologists (Doctor A and Doctor B) independently reviewed the ultra-
sound images. For each patient, a two-dimensional ultrasound image was selected that
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showed the maximum diameter of the nodule. The selected images were confirmed for
consistency by the two radiologists. The open-source software ITK-SNAP (version 3.8.0;
http://www.itksnap.org, accessed on 1 January 2022) was used to delineate and save the
region of interest (ROI) of the target nodule on the selected ultrasound image. The features
of the image, such as the first-order, morphology, gray histogram, and wavelet transform,
were extracted using the extension package SlicerRadiomics in the open-source software
3D-Slicer (version 4.13.0; https://www.slicer.org, accessed on 20 March 2022), and the data
were then stored. Intraclass and interclass correlation coefficients (ICC) were used to assess
the reproducibility of extracted radiomics features. The ultrasound images of the nodules
of 50 patients were randomly selected. Doctors A and B independently delineated the ROIs
of the selected images. Doctor A delineated the lesion image again 2 weeks later. ICC anal-
ysis was conducted on the three sets of data so that the intra-observer and inter-observer
reproducibility of features extracted by the two radiologists could be assessed. Features
with ICCs > 0.8 were considered excellent and reliable.

2.4. Feature Selection and Rad-Score Building

Redundancy analysis was used on the feature data extracted from the training set.
First, a normality test was conducted, and Pearson correlation analysis was used for normal
features and Spearman correlation analysis was used for non-normal features. Redundant
features were deleted with correlation coefficients > 0.9. The least absolute shrinkage
and selection operator (LASSO) logistics regression algorithm was used for the remaining
features, and five cross-validations were used to select the optimal penalty coefficient
lambda. The radiomics features with non-zero coefficients in the training set were obtained,
and these non-zero coefficients were weighted to form a Rad-score formula. This formula
was used to calculate the Rad-score for each patient in the training and test sets, and the
association between the Rad-score and TNs was assessed using the Mann–Whitney U-test.

2.5. Constructing Ultrasound Radiomics Nomogram

Taking p < 0.05 as the retention criterion and conducting a t-test for continuous
variables and a chi-squared test for categorical variables, a univariate analysis of the clinical
factors (including ACR TI-RADS score items) was conducted to determine risk factors
related to benign and malignant nodules. A multivariate logistics regression analysis was
conducted on the Rad-score and independent risk factors to determine the significant
variables for the evaluation of TNs. Based on the variables selected using multivariate
logistics regression analysis of the training set, a radiomics nomogram was established.
Additional predictive models were established based on clinical factors and radiomics
scores, respectively, to compare performance differences between models.

2.6. The Performance of Ultrasound Radiomics Nomogram

The nomogram calculated the total score of each patient by entering the corresponding
independent risk factor scores, and the best Nomo-score cutoff value was assessed by
maximizing the Youden index. The calibration curve and Hosmer–Lemeshow test were
used to evaluate the correction effect of the nomogram on the training and test sets. The
discriminative performance of the nomogram was evaluated using receiver operating
characteristic (ROC) curves. Differences in the area under the curve (AUC) among the
three models were compared using the DeLong test. A decision curve analysis (DCA)
and clinical impact curve (CIC) were used to evaluate the clinical application value of the
nomogram at different thresholds.

2.7. Statistical Analyses

R version 4.0.5 and SPSS version 24.0 (IBM Inc., Armonk, NY, USA) were used for
statistical analyses. MedCalcm version 20.1 was used to draw and analyze the ROC curves.
All statistical significance levels were two-sided, with p-values < 0.05 and a 95% confidence
interval (CI). R and the associated step algorithm are provided in Table S1.

http://www.itksnap.org
https://www.slicer.org


Cancers 2022, 14, 4826 5 of 14

3. Results
3.1. Clinical Information

The radiomics flow chart is shown in Figure 2. Clinical information on the training
set and external independent validation set is summarized in Table 1. Except for the three
features of shape, margin, and echogenicity that were significantly different in two datasets,
the remaining clinicopathological features were not significantly different. The pathological
results of the training and test datasets were not significantly different (p = 0.651). In the
training set, using univariate analysis for each clinical factor, four factors were significantly
different in the benign and malignant groups—margin, shape, calcification, and TI-RADS
classification (Table 2); therefore, multivariate logistic regression analysis was used to
construct a clinical model for predicting benign or malignant nodules based on these four
predictive risk factors. It should be noted that TI-RADS classification was excluded because
there was no significant difference in the regression analysis data (p = 0.1298).
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Figure 2. Flow chart showing the process of radiomics. One image from each of the two hospitals
was selected as a demonstration. Region of interest (ROI) segmentation was conducted on the largest
diameter of the nodule. Radiomics features were extracted from ROIs, including features such as
shape, grayscale, texture, and wavelets. The optimal penalty coefficient lambda in the least absolute
shrinkage and selection operator (LASSO) model was generated using five-fold cross-validation and
a minimum criteria procedure. Ultrasound image features were selected using LASSO.
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Table 1. Clinicopathological characteristics in the training and the test datasets.

Characteristic Training
Dataset No. (%)

Test Dataset
No. (%) p-Value

Sex 0.826
male 34 (21.8) 24 (20.7)

female 122 (78.2) 92 (79.3)
Age, mean ± SD, years 45.64 ± 12.00 47.47 ± 11.20 0.201

Pathology 0.651
benign 85 (54.5) 60 (51.7)

malignant 71 (45.5) 56 (48.3)
Tumor location 0.225

left 84 (53.8) 71 (61.2)
right 72 (46.2) 45 (38.8)

Tumor size, mean ± SD, mm 7.30 ± 1.73 7.41 ± 1.66 0.609
TI-RADS level 0.903

TR 3 1 (0.6) 6 (5.2)
TR 4 36 (23.1) 21 (18.1)
TR 5 119 (76.3) 89 (76.7)

Composition 0.119
solid 154 (98.7) 111 (95.7)

mixed cystic and solid 2 (0.3) 5 (4.3)
Echogenicity <0.001

hyperechoic or isoechoic 7 (4.5) 21 (18.1)
hypoechoic 139 (89.1) 93 (80.2)

very hypoechoic 10 (6.4) 2 (1.7)
Shape 0.005

wider-than-tall 90 (57.7) 47 (40.5)
taller-than-wide 66 (42.3) 69 (59.5)

Margin <0.001
smooth or ill-defined 82 (52.6) 23 (19.8)
lobulated or irregular 65 (41.7) 83 (71.6)

extra-thyroidal extension 9 (5.7) 10 (8.6)
Echogenic foci 0.206

none or large comet-tail artifacts 68 (43.6) 64 (55.2)
macrocalcifications 14 (9.0) 9 (7.8)

peripheral (rim) calculations 6 (3.8) 6 (5.1)
punctate echogenic foci 68 (43.6) 37 (31.9)

BMUS Rad-score, median (interquartile range) 0.40 (0.32–0.52) 0.41 (0.30–0.51) 0.358
Note: The capital initials in the first column of the table represent the variables included in the study that
correspond to the p-value. No capitalization indicates detailed sub-variables that correspond to frequencies and
percentages. Abbreviations: TI-RADS: thyroid imaging, reporting and data system; BMUS, B-model ultrasound;
Rad-score, radiomics score. Data are the number of patients and percentage if not specified.

3.2. Establishment of Radiomics Score

Radiomic features were extracted from the two-dimensional images of each patient
using 3D-Slicer with 464 features in each group. After random sampling for ICC analysis,
the results showed that intragroup ICCs ≥ 0.8 was 92.6% (430), and intergroup ICCs ≥ 0.8
was 89.6% (416). Both have good repeatability of intra-observer and inter-observer opera-
tions. As Figure S1 shows, ten features with non-zero coefficients were screened for the
construction of the radiomics score using LASSO regression on the training set. The relevant
features, weighting coefficients, and specific formulas are provided in the Supplementary
Materials. The Rad-score of the malignant nodule group was significantly higher than that
of the benign group in both training and test sets (Table 2).
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Table 2. Predictors for TN status in the training and the test datasets.

Characteristic
Training Dataset No. (%) Test Dataset No. (%)

Malignant Benign p-Value Malignant Benign p-Value

Sex 0.078 0.788
male 20 (28.2) 14 (16.5) 11(19.4) 13 (21.7)

female 51 (71.8) 71 (83.5) 45 (80.6) 47 (78.3)
Age, mean ± SD, years 44.01 ± 11.57 47.00 ± 12.25 0.122 46.13 ± 10.30 48.73 ± 11.92 0.211

Tumor location 0.372 0.782
left 41 (57.7) 43 (50.6) 35 (62.5) 36 (60.0)

right 30 (42.3) 42 (49.4) 21 (37.5) 24 (40.0)
Tumor size, mean ± SD, mm 7.20 ± 1.79 7.39 ± 1.69 0.5 7.76 ± 1.68 7.08 ± 1.59 0.027

TI-RADS level <0.001 <0.001
TR 3 0 1 (1.2) 0 6 (10.0)
TR 4 4 (5.6) 32 (37.6) 3 (5.4) 18 (30.0)
TR 5 67 (94.4) 52 (61.2) 53 (94.6) 36 (60.0)

Composition 0.193 0.196
solid 71 (100) 83 (97.6) 55 (98.2) 56 (93.3)

mixed cystic and solid 0 2 (2.4) 1 (1.8) 4 (6.7)
Echogenicity 0.077 0.046

hyperechoic or isoechoic 3 (4.2) 4 (4.7) 5 (8.9) 16 (26.7)
hypoechoic 60 (84.5) 79 (92.9) 50 (89.3) 43 (71.7)

very hypoechoic 8 (11.3) 2 (2.4) 1 (1.8) 1 (1.6)
Shape 0.01 0.076

wider-than-tall 33 (46.5) 57 (67.1) 18 (32.1) 29 (48.3)
taller-than-wide 38 (53.5) 28 (32.9) 38 (67.9) 31 (51.7)

Margin <0.001 <0.001
smooth or ill-defined 26 (36.6) 56 (65.9) 1 (1.8) 22 (36.7)
lobulated or irregular 37 (52.1) 28 (32.9) 45 (80.4) 38 (63.3)

extra-thyroidal extension 8 (11.3) 1 (1.2) 10 (17.8) 0
Echogenic foci 0.007 0.001

none or large comet-tail artifacts 24 (33.8) 44 (51.8) 30 (53.6) 34 (56.7)
macrocalcifications 3 (4.2) 11 (12.9) 1 (1.8) 8 (13.3)

peripheral (rim) calculations 3 (4.2) 3 (3.5) 0 6 (10.0)
punctate echogenic foci 41 (57.8) 27 (31.8) 25 (44.6) 12 (20.0)

BMUS Rad-score, median
(interquartile range)

0.50
(0.37–0.64)

0.36
(0.30–0.42) <0.001 0.46

(0.37–0.62)
0.33

(0.25–0.42) <0.001

Notes: The capital initials in the first column of the table represent the variables included in the study that
correspond to the p-value. No capitalization indicates detailed sub-variables that correspond to frequencies and
percentages. Data are number of patients and percentage if not specified.

3.3. Constructing and Evaluating Nomogram

Multivariate logistics regression analysis showed that four factors were significant—
margin, calcification, shape, and Rad-score—as independent risk predictors for TN patients
(Table 3). A radiomics nomogram was constructed with these four predictors (Figure 3a).
The calibration curves show the calibration effect of the nomogram of the training set and
test sets in predicting benign and malignant TNs (Figure 3b), and the Hosmer–Lemeshow
test was used to observe the p-values of the two calibration curves (training set: 0.588; test
set: 0.435).

Table 4 indicates the performance of the radiomics nomogram in predicting benign
and malignant TNs. The optimal threshold of the nomogram score for judging benign
and malignant TNs was determined by maximizing the Youden index of 0.486 (Figure 4).
The AUC value of the nomogram in the training set was 0.866 (95% confidence interval
(CI), 0.802–0.915), and the AUC value of the nomogram in the test set was 0.866 (95% CI,
0.790–0.922), both of which reflect that the nomogram has good discrimination ability. The
clinical and Rad-score models were performed separately for comparison (Figure 4). In
the training set (Figure 4c), the nomogram and clinical model AUCs were 0.866 and 0.795
(p = 0.0019), respectively, the nomogram and Rad-score model AUCs were 0.866 and 0.774
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(p = 0.0053), respectively, and the Rad-score and clinical model AUCs were 0.774 and 0.795
(p = 0.6748), respectively. In the test set (Figure 4d), the nomogram and clinical model
AUCs were 0.866 and 0.783 (p = 0.0099), respectively, the nomogram and Rad-score model
AUCs were 0.866 and 0.740 (p = 0.0006), respectively, and the Rad-score and clinical model
AUCs were 0.740 and 0.783 (p = 0.4835), respectively. It was observed that the radiomics
nomogram had better discrimination than the clinical model and the Rad-score model
(Table 5). In addition, the waterfall chart was predicted with a threshold score (0.486),
showing the predictions of the test set patients separately (Figure 5).

Figure 6a shows the DCA curves of all patients under the different models. When
thresholds were between 0.2 and 0.8, using the nomogram to diagnose TNs was more
accurate than using the clinical model or Rad-score alone. Figure 6b shows the CIC of
the radiomics nomogram and demonstrates the high clinical efficacy of the nomogram.
When the risk threshold probability was >70% of the predicted score probability value, the
malignant high-risk population and the actual malignant population had a high degree of
matching.

Table 3. Risk factors for malignant nodules in the training cohort.

Intercept and
Variable

Clinical Model BMUS Radiomics Nomogram

β Odds Ratio (95% CI) p-Value β Odds Ratio (95% CI) p-Value

Intercept −2.606 −5.867
Shape 1.493 4.452 (2.004–9.890) <0.001 1.489 4.431 (1.799–10.913) 0.001

Margin 0.842 2.322 (1.610–3.349) <0.001 0.646 1.909 (1.276–2.854) 0.002
Echogenic foci 0.595 1.813 (1.364–2.410) <0.001 0.614 1.847 (1.342–2.542) <0.001
TI-RADS level NA NA NA NA NA NA

BMUS Rad-score NA NA NA 8.079 2.243 (1.581–3.184) <0.001

Abbreviations: TI-RADS: thyroid imaging reporting and data system; BMUS, B-model ultrasound; Rad-score,
radiomics score; AUC: area under the curve.
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Cancers 2022, 14, 4826 9 of 14Cancers 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. The role of radiomics nomogram in predicting benign and malignant thyroid nodules 
(TNs). The violin plot shows the data distribution, including a box plot. The cutoff value for the 
Nomo-score is 0.486 in both training (a) and test (b) sets. The receiver operating characteristic curves 
of the clinical model, the radiomics model, and the nomogram are shown in the training (c) and test 
(d) sets, respectively. 

Figure 4. The role of radiomics nomogram in predicting benign and malignant thyroid nodules
(TNs). The violin plot shows the data distribution, including a box plot. The cutoff value for the
Nomo-score is 0.486 in both training (a) and test (b) sets. The receiver operating characteristic curves
of the clinical model, the radiomics model, and the nomogram are shown in the training (c) and test
(d) sets, respectively.
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Table 4. Performance of different models for evaluating thyroid nodule (TN) status.

Variable
Clinical Model (95% CI) Rad-Score (95% CI) BMUS Radiomics Nomogram (95% CI)

Training Cohort Test Cohort Training Cohort Test Cohort Training Cohort Test Cohort

Cutoff value 0.587 0.587 0.421 0.421 0.486 0.486

AUC 0.795
(0.723–0.855)

0.783
(0.697–0.854)

0.774
(0.700–0.837)

0.740
(0.651–0.817)

0.866
(0.802–0.915)

0.866
(0.790–0.922)

PLR 4.00
(2.57–6.24)

3.79
(2.25–6.41)

3.62
(2.35–5.57)

2.93
(1.84–4.67)

6.70
(3.83–11.73)

8.88
(3.82–20.64)

NLR 0.27
(0.17–0.43)

0.28
(0.17–0.47)

0.31
(0.20–0.47)

0.36
(0.22–0.56)

0.16
(0.09–0.29)

0.20
(0.11–0.34)

Sensitivity, % 78.26
(66.69–87.29)

77.19
(64.16–87.26)

75.71
(63.99–85.17)

73.21
(59.70–84.17)

85.71
(75.29–92.93)

82.26
(70.47–90.80)

Specificity, % 80.46
(70.56–88.18)

79.66
(67.17–89.02)

79.07
(68.95–87.10)

75.00
(62.14–85.28)

87.21
(78.26–93.44)

90.74
(79.70–96.92)

PPV, % 76.06
(67.08–83.20)

78.57
(68.46–86.10)

74.65
(65.66–81.93)

73.21
(63.17–81.33)

84.51
(75.70–90.52)

91.07
(81.45–95.95)

NPV, % 82.35
(74.67–88.08)

78.33
(68.79–85.57)

80.00
(72.28–85.98)

75.00
(65.51–82.57)

88.23
(80.77–93.05)

81.67
(72.14–88.46)

Diagnostic
accuracy, %

79.49
(72.29–85.53)

73.08
(65.40–79.86)

74.14
(65.18–81.82)

86.54
(80.16–91.47)

86.21
(78.57–91.91)

TP 51 31 43 36 54 43
TN 67 46 71 46 73 48
FP 18 14 14 14 12 12
FN 20 25 28 20 17 13

Brier score 0.181 0.181 0.186 0.209 0.144 0.153

AUC, the area under the receiver operating characteristic curve; PLR, positive likelihood ratio; NLR, negative
likelihood ratio; PPV, positive predictive value; NPV, negative predictive value; TP, true positive; TN, true negative;
FP, false positive; FN, false negative.

Table 5. Comparison of area under the curve (AUC) among different models.

Training Cohort (95% CI) Test Cohort (95% CI)

AUC p-Value AUC p-Value

Clinical vs. Rad-score 0.795 vs. 0.774 0.6748 0.783 vs. 0.740 0.4835
Clinical vs. Nomogram 0.795 vs. 0.866 0.0019 0.783 vs. 0.866 0.0099

Rad-score vs. Nomogram 0.774 vs. 0.866 0.0053 0.740 vs. 0.866 0.0006
Notes: The Delong test compared the models from the training cohort and the test cohort. Abbreviations:
Rad-score, radiomics score; AUC: area under the receiver operating characteristic curve.
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Figure 5. The waterfall chart shows the prediction of the test set patients (n = 116) at a threshold of
0.486, as well as the Nomo-score and pathological result for each patient. The two colors represent
different pathological results—purple for malignant nodules and orange for benign nodules.
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Figure 6. (a) Decision analysis curve (DCA) showing the role of different models in predicting
benign and malignant thyroid nodules (TNs). The vertical axis represents the net benefit, and
the horizontal axis represents different risk thresholds. (b) The clinical impact curve (CIC) of the
radiomics nomogram for predicting risk stratification in 1000 people, with predictive power at
different threshold probabilities.

4. Discussion

The present study focused mainly on the identification of benign and malignant
TNs < 1 cm. In the training set, univariate analysis was conducted on clinical factors,
including TI-RADS score items, to acquire significant variables, then combined them with
the radiomics features selected by LASSO regression. These variables were then subjected
to multivariate logistics regression to obtain a radiomics nomogram, which had excellent
performance in predicting benign and malignant TNs < 1 cm.

Imaging is crucial for early cancer detection, and radiomics is helped to build powerful
classifier models to improve cancer screening and early detection [20]. Constructing a Rad-
score by screening relevant radiomics features using LASSO has been widely used in the
research on related ultrasound radiomics [21–23]. LASSO finally screened out 10 features
with non-zero coefficients related to the TNs < 1 cm. The sphericity feature had the largest
weight coefficient. This feature is similar to the results of Dorota et al. [24] in evaluating the
relationship between TN shape and malignant nodules.

In the training dataset, four clinical features—margins, shape, calcification, and TI-
RADS grade—were selected using univariate analyses to be meaningful in distinguishing
between benign and malignant TNs < 1 cm (p < 0.001); however, the subsequent multivariate
logistics regression analysis showed insignificant differences in TI-RADS classification
(p = 0.1298). Thus, this factor was excluded. Constructing a nomogram with clinical
features and radiomics scores showed positive performance in the training and test sets.
Several studies have combined radiomics features with clinical factors to construct a model
to judge disease status [25,26]. Radiomics not only assesses the image features of the
patients but also takes other factors into account. The diagnosis and treatment of patients
are more individualized and comprehensive and used to resolve clinical issues [27].

Some studies on ACR TI-RADS have indicated that the diagnostic accuracy of TNs
corresponds highly with the experience of the radiologists and will be more dependent
on their overall experience [28]. Although guidelines recommend follow-up visits for
TNs < 1 cm, 72% of PTMC patients choose surgery rather than follow-up [29]. In addition,
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there remains a small number of significant cases of PTMC that exhibit more biologically
aggressive features, such as lymph node involvement and early metastases [30]. Ye et al. [31]
have shown that ~39.1% of patients with PTMC have developed central lymph node
metastases. Other studies have used 5 mm as the cutoff value to observe the differences
between PTMC and pathological features [32]. The results of the above studies may concern
many patients, intervening in micronodules with high-risk features.

Zhang et al. [33] have shown that the sensitivity of diagnosing TNs with ultrasound
alone was 77.14%, the specificity was 65.79%, and the AUC was 0.728. Ultrasound-guided
FNA, studied by Gao et al. [34] for the diagnosis of TNs < 1 cm, showed excellent diagnostic
performance (sensitivity, specificity, and AUC: 98.8%, 90.5%, and 0.947, respectively);
however, it was an invasive method. In the present study, the sensitivity, specificity, and
AUC of the nomogram constructed using clinical factors combined with radiomics were
78.87%, 85.88%, and 0.866, respectively. The results of the present study indicated that the
nomogram may be a better choice than ultrasonography alone or FNA invasive examination.
In addition, DCA and CIC curves are often used to evaluate the clinical value of various
models [35,36], showing the clinical reliability of the nomogram, and compared with the
clinical model and Rad-score, the nomogram has a greater improvement. The cutoff value
corresponding to the maximum Youden value can also help in clinical evaluation. When the
Nomo-score is >0.486, the TN < 1 cm is at high risk, and the patient can be given additional
examination or treatment.

This study had some limitations. First, it was a retrospective study; therefore, there
were some selection biases and imbalances in the data. The study included pathological
results of TN nodules, all graded above TR2, because FNA or surgical resection for benign
performance could not be implemented, which may have affected the results. More prospec-
tive studies are needed to verify the feasibility of using the nomogram in the future. Second,
radiomics features were extracted on two-dimensional ultrasound images. Compared with
three-dimensional images, some disease information may be missed using two-dimensional
images. In the future, software and hardware optimization may be required to observe
three-dimensional ultrasound images and obtain more information on diseases. In addition,
the ultrasound examination and the delineation of the radiomics ROI are manual, which
will inevitably lead to some mistakes; therefore, two experienced doctors were used in
the present study to conduct the operation and consistent tests to avoid adverse effects as
much as possible.

5. Conclusions

The present study proposed an ultrasound radiomics nomogram based on ACR TI-
RADS for noninvasively predicting benign and malignant TNs < 1 cm, which proved to be
superior to using the radiomics model alone or ACR TI-RADS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14194826/s1: Figure S1 shows 10 radiomics features with non-zero coefficients that
were selected in the redundancy analysis and LASSO logistics regression model. Figure S2 shows a
flow chart for selecting patients in more detail. Table S1 shows the major packages of R software used
in the present study.
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