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Diagnostic blood RNA profiles for human acute
spinal cord injury
Nikos Kyritsis1,2,3, Abel Torres-Esṕın1,2,3, Patrick G. Schupp2,4, J. Russell Huie1,2,3, Austin Chou1,2,3, Xuan Duong-Fernandez1,2,3,
Leigh H. Thomas1,2,3, Rachel E. Tsolinas1,2,3, Debra D. Hemmerle1,2,3, Lisa U. Pascual5, Vineeta Singh1,6, Jonathan Z. Pan1,7,
Jason F. Talbott3,8, William D. Whetstone9, John F. Burke2, Anthony M. DiGiorgio1,2,3, Philip R. Weinstein2,6,10, Geoffrey T. Manley1,2,3,
Sanjay S. Dhall1,2,3, Adam R. Ferguson1,2,3,11, Michael C. Oldham2,4, Jacqueline C. Bresnahan1,2,3, and Michael S. Beattie1,2,3,11

Diagnosis of spinal cord injury (SCI) severity at the ultra-acute stage is of great importance for emergency clinical care of
patients as well as for potential enrollment into clinical trials. The lack of a diagnostic biomarker for SCI has played a major role
in the poor results of clinical trials. We analyzed global gene expression in peripheral white blood cells during the acute injury
phase and identified 197 genes whose expression changed after SCI compared with healthy and trauma controls and in direct
relation to SCI severity. Unsupervised coexpression network analysis identified several gene modules that predicted injury
severity (AIS grades) with an overall accuracy of 72.7% and included signatures of immune cell subtypes. Specifically, for
complete SCIs (AIS A), ROC analysis showed impressive specificity and sensitivity (AUC: 0.865). Similar precision was also
shown for AIS D SCIs (AUC: 0.938). Our findings indicate that global transcriptomic changes in peripheral blood cells have
diagnostic and potentially prognostic value for SCI severity.

Introduction
Precision or “personalized” medicine promises to optimize in-
dividualized treatment options based on demographic and ge-
netic characteristics as well as the specific biological features of
the presenting disorder. Cancer therapy has already benefited
greatly from this approach (Nature Cancer, 2020), where blood-
and tissue-based bioassays are now routinely used for treatment
planning (Lim et al., 2019). Here, we present a strategy for ex-
tending this approach to the diagnosis and treatment of human
spinal cord injury (SCI), a devastating and heretofore intractable
condition characterized by injury heterogeneity and highly
variable outcomes. Currently, SCI prognostics are based prin-
cipally on acute evaluation of neurological status using sensory
and motor exams, including the American Spinal Injury Asso-
ciation (ASIA) grading system (Roberts et al., 2017), which in the
acute phase can be unstable and difficult to obtain, especially
when patients are unresponsive or obtunded (Elizei and Kwon,
2017). Magnetic resonance imaging provides invaluable infor-
mation on severity and spinal cord level of injury but is not al-
ways available and may be contraindicated for certain patients,
e.g., those injuries with penetrating metal.

The first attempts to discover SCI biomarkers of initial injury
severity and long-term outcomes date back four decades
(Norris-Baker et al., 1981). Progress has been slow due at least in
part to the diffuse regional presentation of acute SCIs and the
difficulty of obtaining ultra-acute samples and patient data.
Most attempts have used proteomics to identify serum and
cerebrospinal fluid (CSF) biomarkers associated with injury
severity. This approach depends upon measuring proteins as-
sociated with central nervous system (CNS) damage (e.g., glial
fibrillary acidic protein [GFAP], neurofilament protein) released
into the bloodstream, or on the peripheral cytokine response to
CNS injury–induced chemokines (Hulme et al., 2017; Kwon et al.,
2017). Recent work shows promise, with several target mole-
cules providing some useful predictive value (Kwon et al., 2019;
Leister et al., 2020; Tigchelaar et al., 2019); however, these cir-
culating protein (and recently, RNA) markers are difficult to
measure and subject to degradation. An alternative approach is
to consider that circulating immune cells represent “sensors” of
CNS injury–induced molecules, and that white blood cell (WBC)
transcriptomic changes provide a readout of the complex
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peripheral immune response to the totality of signals associated
with SCI over time. A recent study of WBCs in people with
chronic SCI, for example, found reduced expression of genes
associated with natural killer (NK) cell activity and increased
expression of Toll-like receptor and inflammatory cytokine
genes (Herman et al., 2018). These preliminary findings, al-
though limited by a small number of cases, are consistent with
observations that people with chronic SCI have suppressed
immune responses and are more susceptible to infections
(Prüss et al., 2017).

TRACK-SCI (Transforming Research and Clinical Knowledge-
SCI) is a multicenter prospective clinical study focused on acute
critical care variables (e.g., magnetic resonance imaging, mul-
tiple physiological variables, time to surgery) and blood tran-
scriptomics as indices of severity and predictors of outcome
(Dhall et al., 2018; Ehsanian et al., 2020; McCoy et al., 2019;
Talbott et al., 2015). SCI has a profound impact on circulating
WBCs, inducing peripheral inflammation and WBC phenotypic
changes in a dynamic cascade that is likely to reflect the bio-
logical features of the evolving CNS lesion (Bloom et al., 2020;
Marbourg et al., 2017). TRACK-SCI provides a large WBC tran-
scriptomic dataset that will be useful for developing RNA-based
blood biomarkers of injury and recovery that can be related to
patient characteristics and multivariate outcomes. Using ad-
vanced analytic methods, these blood biomarkers, along with
other critical care variables, may be instrumental in the de-
velopment of predictive algorithms for acute SCI treatment
planning, to stratify patients for clinical trials, and to predict
long-term outcomes.

We are using deep RNA sequencing (RNA-seq) and advanced
analytics to develop a blood RNAbiomarker profile for acute SCI.
Here, we report that early WBC transcriptomic signatures alone
can accurately predict injury severity on the ASIA Impairment
Scale (AIS). Further, these signatures provide novel biological
data that should be useful in understanding mechanisms of in-
jury and repair. Our findings provide proof of concept for the
development of an accurate blood RNA biomarker of acute SCI
severity. These data provide a strong rationale for expanding
this work to include longitudinal multivariate analysis of gene
expression patterns across injury severities, individual patient
characteristics, and time, in order to provide a comprehensive
description of evolving WBC gene expression patterns and their
relationships to long-term outcomes.

Results and discussion
TRACK-SCI protocols for patient enrollment and data collection
have been described recently (Tsolinas et al., 2020). Patients
admitted to the emergency department at the Zuckerberg San
Francisco General Hospital and Trauma Center are recruited to
the study and consented as soon as possible after admission. The
TRACK-SCI protocol includes rapid preoperative imaging,
emergent transfer to the operating room for decompression
surgery as indicated, and immediate blood collection and pro-
cessing, followed by high-density intensive care unit monitoring
of vitals and daily sensorimotor and International Standards for
the Neurological Classification of Spinal Cord Injury (ISNCSCI)

exams (Fig. S1). To date, 179 participants with SCI have been
enrolled. The current report is based on deep sequencing of RNA
from acute blood samples from 38 subjects with SCI, 10 healthy
uninjured controls (HC), and 10 trauma controls with non-CNS
injuries (TC).

We isolated 4 ml of peripheral blood from 38 enrolled pa-
tients within a few hours (Fig. S1 and Table S1) after SCI. The
blood was immediately processed, and total RNA was isolated
fromWBCs. The same procedure was followed for 10 TCs and 10
HCs. After RNA-seq (the raw sequencing data and the normal-
ized expression matrix can be found at the Gene Expression
Omnibus database with accession no. GSE151371), raw counts
were produced and normalized, and a T-distributed stochastic
neighbor embedding plot was created using the principal com-
ponents responsible for 90% of the variance (Fig. 1 A). The three
groups are clearly separated based on their transcriptomic status
at the time of the blood draw. These results support our hy-
pothesis that the transcriptomes of WBCs contain valuable in-
formation about the pathophysiological status of the patients
and warrant a more sophisticated and deeper analysis to reveal
more details. Next, we performed differential gene expression
analysis among the three groups, revealing 2,096 genes that
were significantly altered (greater than twofold change; adjusted
P value <0.05) only in the SCI population (Figs. 1 B and S2). We
then queried how many of those genes display an expression
pattern that follows the injury severity levels of the AIS grade.
Among the 2,096 genes that were differentially expressed after
SCI, 197 of them showed directional expression patterns with
SCI severity (Table S2). 117 of them increased their expression
with injury severity, and 80 decreased their expression with
injury severity (Fig. 1 C). Gene ontology (GO) enrichment
analysis showed that processes involved in the immune re-
sponse and cellular secretion and localization were the most
highly enriched, as expected (Fig. S3).

Variation in the abundance of cell types and cell states in
heterogeneous samples has been shown to drive covariation of
gene expression patterns in a variety of biological systems
(Langfelder and Horvath, 2007; Oldham et al., 2006; Oldham
et al., 2008; Oldham et al., 2012). Therefore, we performed un-
supervised gene coexpression network analysis (Kelley et al.,
2018) and identified 16 modules (arbitrarily designated M1–M16)
for which SCI patients’ combined expression was significantly
different from both TCs and HCs (Fig. 2 A). These modules rep-
resent coherent transcriptomic signatures in WBCs that covary
specifically as a result of SCI and are therefore targets for bio-
marker generation as well as potential indicators of underlying
pathology and recovery. Among these, M13 exhibited the highest
correlation with AIS grade (Spearman ρ = 0.82; P value = 1.56 ×
10−14). Fig. 2, B and C, shows the details of top gene coexpression
patterns for this module.

Next, we wanted to determine whether any of these 16
modules, alone or in combination, could predict the initial SCI
severity as indicated by the AIS grade assigned between days 3
and 10 after SCI. We therefore performed multinomial logistic
regression with least absolute shrinkage and selection operator
regularization (Friedman et al., 2010) to predict AIS grade using
all 16 module eigengenes. We identified one gene module (M12;
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Fig. 3) that predicted AIS A patients with 83.3% accuracy and a
combination of five modules (M1, M5, M10, M13, and M16) that
predicted AIS D patients with 90.9% accuracy (Fig. 3, Table S3,
and Table S4). Our cohort included too few patients with B or C
classifications (n = 4 and 6, respectively) to provide useful pre-
dictors of these grades (Table S5). Overall, our model shows
72.7% accuracy (P = 2.35 × 10−5). We proceeded to test the di-
agnostic value of the identified modules to detect AIS A and D
patients in our cohort using a receiver operating characteristic
(ROC) analysis. The areas under the curve for AIS A patients and
AIS D patients were 0.865 and 0.938, respectively, confirming
that our model can predict these two injury severities with high
sensitivity and specificity, despite small sample sizes (Fig. 2 D).

To determine whether cellular composition varied among
WBCs from our sample cohorts, we performed cell-type decon-
volution using CIBERSORTx (Newman et al., 2015; Newman

et al., 2019), which infers cell-type proportions in bulk tissues
from global gene expression patterns. Applying this method to
our samples revealed the estimated relative proportions of 22
leukocyte subtypes. These “digital cell types” were then com-
pared across groups (HC, TC, and SCI) and AIS grade levels
(Fig. 4, A and B). Five cell types (neutrophils, resting NK cells,
resting CD4, naive CD4, and γδ T cells) exhibited significantly
different proportions among the three groups (Fig. 4 C), but
none of these were significantly different between AIS grades.
We also used these inferred proportions to calculate leukocyte
ratios, which have been proven clinically useful in multiple
diseases and traumas (Choi et al., 2020; Quan et al., 2020; Zhao
et al., 2020). The neutrophil-to-lymphocyte and the lympho-
cyte-to-monocyte ratios were both significantly different be-
tween the three groups (one-way ANOVA P values 0.0009 and
0.0273, respectively; Fig. 4 D) but did not differ across AIS

Figure 1. SCI induces transcriptomic changes in WBCs compared with healthy and non-CNS TCs. (A) three-dimensional T-distributed stochastic
neighbor embedding plot. Each point on the plot represents one patient. The gene expression values of 17,500 transcripts were used in a principal component
analysis, and the components that account for 90% of the variance were collapsed in the three dimensions of the T-distributed stochastic neighbor embedding
plot. The three groups (HC, TC, and SCI) occupy different locations in the three-dimensional space, indicating that the transcriptomic signature alone is
sufficient to separate them (HC = 10, TC = 10, SCI = 38). (B) Differential gene expression analysis. The Venn diagram shows the intersection between dif-
ferentially expressed genes for all three comparisons between HC, TC, and SCI patients (fold-change >2, adjusted P value < 0.05). (C) From the Venn diagram,
we selected the genes that are only significantly changed after SCI and not in the event of trauma (1,424 + 424 + 248 = 2,096). Out of those 2,096 genes, 197
exhibit changes according to the AIS grade. The heatmap shows the expression pattern of these 197 genes. The genes were selected based on their expression
only in the SCI group, but the heatmap includes the levels of these genes also in HCs and TCs. The upper part shows 117 genes whose expression increases as
SCI severity increases, and the bottom part shows 80 genes whose expression decreases as SCI severity increases (HC = 10, TC = 10, AIS D = 11, C = 6, B = 4, A =
12; AIS grade evaluated between 3 and 10 d after SCI, and five patients did not receive an examination during that timeframe).
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grades. Thus, changes in leukocyte ratios were indicators of the
presence of SCI, but by themselves were not sufficient to predict
injury severity.

To clarify which cell types contributed to the coexpression
modules that predict SCI severity, we cross-referenced module
composition with cell type–specific gene sets from published
RNA-seq datasets (Newman et al., 2015; Watkins et al., 2009).
The M12 module, which predicted AIS A injury severity, was
significantly enriched with genes expressed by resting NK cells,
mast cells, and CD66+ granulocytes (Fisher’s exact test P values
of 2.9 × 10−7, 5.19 × 10−7, and 7.81 × 10−6, respectively). The M13
module, which predicted AIS D severity, was also significantly
enriched with CD66+ granulocytes (P = 1.45 × 10−8). These data
suggest that expression changes in WBCs associated with SCI
can be further subdivided into specific contributions from dis-
tinct cell types, which could lead to refined assays and
predictors.

AIS grades of severity by themselves do not indicate neuro-
logical levels of injury (NLI), although NLIs are clearly critical
for determining functional outcomes. Therefore, we wanted to
test whether the NLI in our SCI cohort could have affected the

predictability of our model. This is especially important taking
into consideration the imbalance of our cohort in the NLI (>50%
are in the cervical region, <10% lumbar; Table S5). Although
sample size restrictions do not allow us to evaluate the NLI as a
confounding variable, we sought to analyze their distribution
against the predicted AIS grades. The results showed that no NLI
level is significantly responsible for the predicted AIS grades and
that they are relatively evenly spread across them (Fig. 5 A). This
result does not mean that the NLI could not be a confounding
variable, but it rather shows that our predictive model is not
affected by the cohort NLI imbalance.

While we showed that the NLI probably does not affect the
predictability of ourmodel, that does not preclude the possibility
that WBC transcriptomes may be affected by it. Indeed, there is
strong evidence in the literature suggesting that different im-
munological responses can be induced in cervical vs. thoracic or
lumbar SCI (Hong et al., 2018). Using our CIBERSORTx esti-
mates, we were able to verify the differential digital immuno-
logical phenotypes resulting from SCI in the cervical (n = 18),
thoracic (n = 10), and lumbar (n = 2) regions (Fig. 5 B). In par-
ticular, we could see that the proportions of neutrophils, monocytes,

Figure 2. Gene coexpression network analysis reveals transcriptional modules in peripheral WBCs that predict SCI severity. (A) Analysis of module
eigengene (PC1) scores by patient cohort reveals 16 SCI-specific gene coexpression modules following unsupervised gene coexpression network analysis (one-
way ANOVA, adjusted P value <0.05, Tukey’s P value < 0.05 for each comparison). Some modules (e.g., M4) display a gradual change in gene expression,
whereas in others (e.g., M1, M5), HCs and TCs are very similar to each other but different from SCIs. n = 10 for HCs and TCs and 38 for SCIs. (B and C) The M13
module has the highest correlation to SCI severity (Spearman ρ = 0.82). In B is the heatmap of the top-seeded genes for this module (top), and the eigengene
score for each one of the patients and controls (bottom). The graph in C shows the expression levels of the top 15 genes of the M13 module across all 58
samples. As expected from the analysis, these top genes of the module exhibit a strong coexpression pattern. (D) Receiver operating characteristic plots for the
AIS A against the remaining SCIs (left) and the AIS D against the remaining SCIs (right). These plots show the strong predictive ability of our model for SCI
patients with AIS A and D. The area under the curve (AUC) is 0.865 for A and 0.938 for D. n = 12 A vs. 21 SCIs and 11 D vs. 22 SCIs (color scheme in x-axis labels
in B is as follows: blue = HC, green = TC, brown = AIS D, purple = AIS C, salmon = AIS B, and red = AIS A).
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Figure 3. Multinomial logistic regression identifies specific genemodules with the capacity to accurately predict AIS A and AIS D SCI patients. For AIS
A SCI patients, one gene module (M12) is sufficient to predict the injury class with 83.3% accuracy. Interestingly, five gene modules (M13 in Fig. 2, B and C; M1,
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M0 macrophages, and activated mast cells are significantly
different across the three NLI levels (Fig. 5 C). Continuing to
explore the relationship between NLI andWBC transcriptomes,
we sought to discover if the 16 SCI-induced modules we iden-
tified (Fig. 2 A) could be used to predict whether the SCI is in
the cervical region. Again, using logistic regression with least
absolute shrinkage and selection operator regularization, we
identified a combination of three modules (M10, M12, and M16)
that could predict whether the SCI is cervical with 73.6% ac-
curacy (P value = 0.04352; Table S6 and Table S7). These data
offer a first glimpse of the possibilities emerging from our
analytical pipeline. With a larger sample size, it is likely that we
will not only identify diagnostic severity biomarkers but also
get insights on specific anatomical and biological character-
istics of the injury in addition to the peripheral immune
molecular response.

Early biomarkers of SCI could enable more efficient and
personalized clinical treatments, as well as better stratification
of patients for clinical trials, since early clinical evaluations of-
ten lack reliability (Hulme et al., 2017; Kwon et al., 2019). In
contrast to existing biomarkers that require rapid access to
complex machinery (e.g., magnetic resonance scanning), fluid
biomarkers are more accessible and can provide novel insights
about systemic responses to SCI. Although previous studies have
proposed large structural proteins in blood serum/plasma and
CSF as fluid biomarkers of SCI (Kwon et al., 2017; Leister et al.,
2020), these proteins are susceptible to proteases and degrade
rapidly, rendering measurements of concentration variable- and
time-sensitive. More recent studies of circulating microRNAs as
biomarkers are promising since microRNAs are not as sensitive
to degradation due to their small size (22 nt) and the fact that
most are protected inside exosomes (Tigchelaar et al., 2019;
Tigchelaar et al., 2017).

Our approach differs substantially from previous efforts to
identify fluid biomarkers of SCI. First, we have analyzed po-
tential biomarkers that are “safely housed” in their cell of origin
at the time of collection, as opposed to free-floating molecules in
CSF or blood. Second, instead of preselecting candidate bio-
markers in advance, we have performed an unbiased high-
throughput analysis of 17,500 transcripts from WBCs isolated
from each patient. This high-dimensional readout of the im-
mune response during the acute phase of the injury provides
important information about how the periphery affects the
progress of the central lesion and may lead to new hypotheses
and targets for intervention. Our results indicate that global
gene expression patterns in WBCs can distinguish SCI patients
from healthy and non-CNS TCs. Moreover, when overlaying
these gene expression patterns with the widely used AIS injury
grade classification system, we identified 197 genes whose ex-
pression levels changed with increasing injury severity and,
upon confirmation in larger patient cohorts, may serve as novel

fluid biomarkers of SCI. The list of these 197 genes (Table S2)
includes a number of genes that seem appropriate, as well as
some whose functions are yet to be delineated, which might
provide clues to new therapeutic targets. For example,
metalloproteinase-8 (MMP8), which is the top-seeded gene in
module M12 (module predicting AIS A), haptoglobin (HP), and
kininogen-1 (KNG1) have each been proposed previously as po-
tential biomarkers for SCI, at the protein level in either blood
plasma/serum or CSF (Light et al., 2012; Lubieniecka et al., 2011;
Sengupta et al., 2014). The fact that we identify them at the mRNA
level in WBCs and they seem to be correlated with SCI severity is
very promising and provides converging evidence for the poten-
tial importance of these genes as encoding transcript and protein
indicators of injury. Due to the high throughput of our approach,
we have dozens more genes to screen that have never been re-
ported as potential SCI biomarkers. For example, our analysis
identifiedMCEMP1 (mast cell–expressed membrane protein 1) as a
candidate biomarker of SCI severity. Interestingly, Raman et al.
(2016) previously suggested that the expression level of this gene
in WBCs is a biomarker for stroke prognosis. These findings may
indicate a need to separate SCI-only patients from SCI patients
who also suffered a concurrent traumatic brain injury or suffered
from a preexisting neurological condition (Table S1), sample size
permitting.

Despite the attractiveness of single-gene biomarkers, there is
growing evidence (mainly from cancer research) to suggest that
their performance is limited (Targonski et al., 2019). Of course,
genes do not work in isolation, and there is overwhelming evi-
dence for reproducible transcriptional covariation in blood and
other tissues, suggesting a modular organization to genomic
function. These modules are not always neatly captured by ex-
isting GOs, hence the need to perform unsupervised coex-
pression analysis. Multivariate analysis revealed 16 gene
coexpression modules associated with SCI, a subset of which
were able to predict AIS A and AIS D SCI patients with im-
pressive accuracy. From a clinical perspective, this finding has
the potential to add an important resource to health care pro-
viders, with the caveat that routine assays of mRNA expression
patterns in the acute care setting will require the development of
new technologies.

It is worth noting that the timing of the AIS grades is not
always the same. For most of our patients, more than one
ISNCSCI examination was performed during their hospital stay.
In this study, we used the earliest AIS grade obtained between 3
and 10 d after injury. The rationale for that choice is that we
wanted to stay away from the first 48 h after injury, a time point
known to produce substantially unstable AIS grades due to
several factors, such as spinal shock or strong sedation of the
patients. Similarly, we stayed clear from the exam performed at
discharge due to the wide variance at discharge times (from 4 to
56 d after injury). The range we selected for our analysis (3–10 d

M5, M10, and M16) are required to predict AIS D SCI patients with an impressive 90.9% accuracy. For each one of the modules in this figure, on the left is a
heatmapwith the top-seeded genes for the module and the eigengene score for each patient (and control); on the right are the expression patterns (in arbitrary
units) of the top 15 genes with the highest correlation to each module eigengene (color scheme in x-axis labels is as follows: blue = HC, green = TC, brown = AIS
D, purple = AIS C, salmon = AIS B, and red = AIS A).
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Figure 4. Digital cytometry using CIBERSORTxmeasures relative abundance of 22 distinct leukocyte subtypes in SCI and control patients.We used a
recently created machine learning algorithm (CIBERSORTx) that uses deconvolution methods to infer cell type proportions based only on gene expression
patterns. We cross-referenced the transcriptomes of all SCI patients and controls with the leukocyte gene signature matrix (LM22; Newman et al., 2015) and
estimated relative abundances for 22 leukocyte subtypes. (A) The stacked bar plots show the relative abundance of the 22 digital cell types for each of the SCI
patients and controls. (B) Left shows group averages, and right shows AIS grade averages. (C) One-way ANOVA for each digital cell type showed statistically
significant differences for neutrophils, resting NK cells, CD4 resting T cells, CD4 naive T cells, and γδ T cells with adjusted P values <0.05. Tukey’s test showed
that for CD4 naive and γδ T cells, the SCI group is significantly different from both control groups. No statistically significant difference was identified among
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after injury) was the one that provided us with enough data,
allowed us to avoid unnecessary technical and biological vari-
ance, and also proved to be stable across time. Only four of our
patients would have a different AIS grade if we were to use their
discharge exam. A future goal of our ongoing study is to predict
long-term outcomes (e.g., the AIS grade at 6 and 12mo after SCI).
Currently, such an analysis is limited by sample size: Out of the
38 SCI patients, only 17 returned for their 6- and/or 12-mo

evaluation, and 16 out of those 17 were classified as AIS D, so
we are hampered by both sample size and low variance. We are
continuing to add longitudinal data from enrolled patients. In
the future, we will be able to extend our analysis in this fashion
with the addition of participants both at our center and at new
TRACK-SCI sites that are in the process of being added to our
study. Moreover, given the well-known limitations of the AIS
grade scale, additional outcome measures (e.g., upper and lower

AIS grades. (D) The neutrophil-to-lymphocyte and lymphocyte-to-monocyte ratios (calculated from the CIBERSORTx data) show differences between HCs,
TCs, and SCIs (one-way ANOVA, P value < 0.05; color scheme in x-axis labels in A are as follows: blue = HC, green = TC, brown = AIS D, purple = AIS C, salmon =
AIS B, and red = AIS A).

Figure 5. NLI is correlated with a differential immunological response after SCI. (A) The distribution of the NLI levels across the predicted AIS grades
does not show a pattern that would suggest a strong effect on the predictability of the model. (B) CIBERSORTx data aggregated per NLI. The stacked bar plots
show the differential immune response for each NLI level. (C) One-way ANOVA for each digital cell type from B showed that several cell types displayed a
statistically significant differential response per NLI. The four cell types presented here are the ones remaining significant (P < 0.05) after Benjamini–Hochberg
multiple testing correction (cervical = 18, thoracic = 10, lumbar = 2).
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extremity motor scores and sensory scores from the ISNCSCI
neurological examination) could offer more detailed insights
into patients’ conditions and enable more accurate predictions.
As we increase the number of enrolled patients and sequenced
blood samples, such analyses will be feasible.

Although we have demonstrated proof of concept for our
methodology in a sample of 38 SCIs, TRACK-SCI continues to
enroll patients, with 179 participants to date. By combining
multivariate and longitudinal analysis of WBC transcriptomes
with detailed clinical information, we seek to create a novel
framework for diagnosing SCI severity and predicting outcomes
based on the systemic immune response. Such a framework
could eventually replace the ASIA grading system or be used in
combination to allow more precise clinical decisions. Additional
studies with larger sample sizes will be required to validate
these findings and move toward a practical RNA-based blood
biomarker. Furthermore, it should be possible to determine
whether diagnostic patterns reflect WBC responses to specific
CNS injury–induced signals such as CNS protein products and/
or signaling molecules such as chemokines. The clear differen-
tiation between expression profiles from TCs and SCI suggests
that WBC transcriptomes contain latent information specific to
CNS injury, raising the possibility that WBC RNA profiles may
also respond to treatments that mitigate secondary damage or
are associated with recovery of function. If so, the routine
analysis of RNA expression profiles in blood may provide both a
practical clinical tool and a new window into the biology of
human CNS injury and its treatment.

Materials and methods
Statistics
The differential gene expression analysis was performed using
linear modeling with edgeR and the limma method in the R
programming language. The genes were selected based on the P
values (P < 0.05) of the Benjamini–Hochberg correction and a
log2 fold change >1 or lower than −1. For eigengene module se-
lection and CIBERSORT cell type differential analysis, one-way
ANOVA was used with Tukey’s post hoc and adjusted (Benjamini–
Hochberg) P values <0.05. For all the boxplots in the figures, the
middle line represents the median value, the bottom and the top of
the box represent the first and third quartiles of the data, the
whiskers are 1.5 times the interquartile range, and the dots repre-
sent the outliers.

TRACK-SCI patients and controls enrollment
All procedures for this study were conducted with the approval
of the Human Subjects Review Boards at the University of Cal-
ifornia, San Francisco, and the U.S. Department of Defen-
se Human Research Protection Office. All English- and
non–English-speaking patients who presented to the emergency
department and were diagnosed with a traumatic SCI were ini-
tially eligible for the study. Patients who were <18 yr old, in
custody, prisoners, pregnant, or on medically indicated psychi-
atric hold were excluded. Informed consent was sought for all
patients. For patients who were unable to sign for themselves
due to their injury, a witness unaffiliated with the study was

present throughout the consenting process and signed on the
patient’s behalf. Patients incapable of consenting themselves
were initially enrolled via a legally authorized representative
(next of kin) or another suitable surrogate when one was avail-
able, then later approached for patient consent. Patients and
surrogates had the option to participate in all or some of the
following study portions: blood draws, ISNCSCI examinations,
and/or follow up assessments. Patients were compensated ($50)
after each time point (hospital stay, 3-mo phone call, 6-mo in-
person visit, 12-mo in-person visit) for a total of $200.

Non-SCI subjects were either HCs (n = 10) or TCs (n = 10).
HCs were recruited using Institutional Review Board–approved
recruitment flyers posted at Zuckerberg San Francisco General
Hospital and Trauma Center and from friends and family of
enrolled SCI patients. Subjects contacted study coordinators,
were interviewed, consented, and provided basic demographic
information and biospecimens. TCs were recruited from emer-
gency department patients with traumatic but non-CNS injuries.
The same basic demographic and biospecimen data were col-
lected for these patients as for SCI patients for comparison
purposes except that a single blood sample was taken. No
monetary compensation for participation was provided for the
control subjects.

Patient data collection
The foundation of the TRACK-SCI database is the National In-
stitute of Neurological Disorders and Stroke–recommended
common data elements (CDEs; Biering-Sørensen et al., 2015).
Core CDEs are data elements that all SCI studies are strongly
encouraged to use in collection of basic participant information.
Additional measures from the International Spinal Cord Society
were also used. Data collection domains include demographic,
clinical, radiological, and functional outcome measures. All data
collected from these CDEs were housed in a Research Electronic
Data Capture (REDCap; Harris et al., 2009) database and include
>21,000 data fields including additional institutional variables,
calculated fields, repeated measures, date/time stamping of
measures, and completion status log. Upon admission to the
inpatient service, another 19,148 data fields regarding trauma
characteristics, injury severity, blood pressure management,
operating room procedures, interventions, hospital outcomes,
and high-frequency operating room vital signs, as well as motor-
sensory exams and pain questionnaires, are obtained from both
paper and electronic medical records as well as participant in-
terviews. REDCap is in full compliance with Health Insurance
Portability and Accountability Act security standards for pro-
tection of personal health information. The following CDE cat-
egories comprised the demographic and clinical data domain: (1)
demographics, (2) health history, (3) injury-related events, and
(4) assessments and examinations. A total of 229 variables
concerning patient demographics, medical history, and consent/
contact information was collected through abstraction from
electronic medical record systems and participant interviews.

The ISNCSCI (Maynard et al., 1997) was used to assess motor
and sensory function and group patients by injury severity
based on the AIS, which ranges from A (most severe—complete)
to E (not impaired). ISNCSCI examinations were conducted by
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trained personnel who completed the ASIA International
Standards Training E Program and in-person training. ISNCSCI
exams were performed on all patients during the initial admis-
sion, either as part of clinical care if the treating provider
completed International Standards Training E Program training,
or separately for the research study if the ISNCSCI was not
performed for clinical purposes. Occasionally, an ISNCSCI was
not performed or not completed during the admission, usually
because the patient was excessively sedated and could not par-
ticipate in the exam. In the case of incomplete ISNCSCI exami-
nations, the assessor gave an estimated AIS grade based on the
collected data and the overall clinical picture of the patient.

If possible, patients completed examinations at regular in-
tervals including admission (day 0 = 0–23 h from injury), every
24 h until post-injury day 7, discharge, 6-mo follow-up (±2 wk),
and 12-mo follow-up (±2 wk). All ISNCSCI exam results were
included in the REDCap database.

Biospecimen collection
Two blood samples were collected, one 4 ml for total RNA ex-
traction from WBCs, and the other 6 ml for serum isolation.
Samples were aliquoted and frozen at −80°C within 1 h of col-
lection. To preserve WBC concentrations, 7.2 mg K2-EDTA va-
cutainer tubes were used for WBC collection and subsequent
RNA extraction, instead of K3-EDTA vacutainer tubes. The
second blood sample was collected in 6-ml Z serum clot activator
vacuette tubes for serum extraction. To prevent reduction in
sample volume, externally threaded cryovials were used for
serum storage. Serum was divided into multiple 500-µl aliquots
for storage. An inventory system was developed to track time of
collection, processing, and storage for all biospecimens.

WBC isolation and RNA extraction
Blood was centrifuged at 1,500 rpm for 15 min at room tem-
perature within 0–15 min from blood draw. Then, the interface
layer (buffy coat) was carefully aspirated with a pipette and
placed in 10 ml of 1× solution of Red Blood Cell Lysis Buffer
(BioLegend) for 15 min in the dark. After the 15-min incubation,
the solution was centrifuged at 1,500 rpm for 10 min. The su-
pernatant was discarded, and the cell pellet resuspended in 1 ml
of TRIZOL (Ambion) and either stored at −80°C or immediately
processed for RNA extraction. Total RNA from WBCs was ex-
tracted using the TRIZOL method. The RNA yield was between
15 and 25 µg per 5 ml peripheral blood. 1 µg of the total RNA was
then used for generating the Illumina cDNA library, which was
used for the downstream RNA-seq.

RNA-seq
1 µg of total RNA was used for the library synthesis. cDNA li-
braries were synthesized using Illumina’s TruSeq Stranded To-
tal RNA with Ribo-Zero Globin kit. The kit depletes ribosomal
RNA, which makes up more than 90% of total RNA, and globin
mRNA, which is present in very high levels in blood total RNA.
The libraries were quantified using a Thermo Fisher Scientific
Nanodrop 2000c spectrophotometer, and their quality and av-
erage fragment size was assessed using Agilent’s DNA 1000 kit
and Agilent’s 2100 Bioanalyzer. After quantification, equal

amounts of 10 libraries, each one with different barcoded
adapters, were pooled together to be sequenced in one lane of
the Illumina’s HiSeq4000 sequencer. Based on the specifications
of the HiSeq4000 and our sample pooling per lane, we aimed to
get ∼40 million reads per sample, which has been shown to be
sufficient to reveal the vast majority of the differentially ex-
pressed genes of a well-annotated genome (Liu et al., 2014). The
sequencing output of our samples can be seen in Table S8, and
the raw sequences have been deposited to Gene Expression
Omnibus database with accession no. GSE151371.

Bioinformatic analysis
Data analysis was performed in R (R Core Team, 2019; R Studio
Team, 2020) using the statistical packages that are specifically
mentioned below as well as the packages dplyr (Wickham et al.,
2020), ggplot2 (Wickham, 2016), cowplot (Wilke, 2019), table1
(Rich, 2018), rgl (Adler and Murdoch, 2019), PCAtools (Blighe,
2019b), magick (Ooms, 2020), EnhancedVolcano (Blighe, 2019a),
VennDetail (Guo andMcGregor, 2019), Rtsne (Krijthe, 2015), and
ggdendro (de Vries and Ripley, 2016). The raw reads of the fastq
files were tested for quality control using the FastQC software
(Andrews, 2010) and were then aligned to the human reference
genome (hg38 from University of California, Santa Cruz) using
the software TopHat2 (Kim et al., 2013). After the alignment, we
used the featureCounts (Liao et al., 2014) program to summarize
the gene counts, and then the programs edgeR (Robinson et al.,
2010) and limma (Ritchie et al., 2015) for differential gene ex-
pression analysis through linear modeling. GO enrichment
analysis was performed with the GOrilla (Eden et al., 2009) tool
and the visualization of the enriched GO terms with the tool
ReviGO (Supek et al., 2011).

SCI-specific differentially expressed genes and neurological
outcome
Preliminary examination of the data using network methods
revealed several samples as outliers as well as library and
sequencing batch effects. Using the ComBat (Johnson et al.,
2007) function of the sva (Leek et al., 2012) package in R to
target the library batch effect, we were able to remove both
batch effects, and as a result, no sample appeared as an outlier
anymore. We performed differential gene expression analysis
among the three groups (HC, TC, and SCI), and after the in-
tersection of the three comparisons (HC vs. TC, HC vs. SCI,
and TC vs. SCI; fold change >2 and adjusted P value < 0.05), we
selected only the genes that significantly and specifically
changed their expression after SCI (n = 2,096). To examine the
relationship between the gene expression changes and injury
severity, we grouped the SCI patients based on the assigned
AIS grade given after a neurological examination between
days 3 and 10 at the hospital (Table S5). From the 38 SCI pa-
tients whose transcriptome was sequenced, five did not have
an AIS grade during that time window and hence were re-
moved from this part of the analysis. We then averaged the
expression levels of each gene per group and queried for genes
that exhibited a stepwise increased or decreased expression as
the SCI severity increased. That query resulted in 197 genes
shown in Fig. 1 C and Table S2.
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Gene coexpression network analysis and identification of SCI-
specific gene modules
The normalized expression matrix that was generated for the
differential gene expression analysis with edgeR was used as a
template for the unsupervised gene coexpression network
analysis (Kelley et al., 2018). We built a series of gene coex-
pression networks and identified one that included the gene
module with the highest Spearman correlation to AIS grade.
That network contained 57 gene modules. Using one-way AN-
OVAwith Tukey’s multiple comparison correction, we identified
17 gene modules that were highly specific for SCI (significantly
different from both HC and TC; adjusted P value < 0.05). One of
these modules contained genes annotated to be involved in ri-
bosomal RNA processes, which likely represented an artifact,
and was eliminated from the subsequent analysis. The 16 re-
maining SCI-specific modules (M1–M16; Fig. 2 A) were used to
create a predictive model of SCI severity using multinomial lo-
gistic regression.

Multinomial logistic regression with regularization
We generated a predictive model of SCI severity using the ei-
gengenes (first principal components; Horvath and Dong, 2008)
of the 16 SCI-specific gene modules as predictors. AIS at dis-
charge from the hospital was used as the target outcome variable
in a multinomial logistic regression model. To deal with the high
number of predictors (16 modules), LASSO regularization was
applied, using leave-one-out cross-validation to determine the
regularization parameter (λ). The final model was chosen with λ
producing a model with a misclassification error at 1 SD from
the minimal misclassification error. The model was specified
using the glmnet (Friedman et al., 2010) and the glmnetUtils
(Microsoft and Ooi, 2020) packages in R. The model was as-
sessed by confusion matrix metrics (Table S3 and Table S4) of
internal prediction obtained using the caret R package (Kuhn,
2020). Overall accuracy (percentage of correct classification)
was 72.7% with a 95% CI of 54.5–86.7%, resulting in significant
accuracy (P value <0.0001) against random classification (no
information rate of 36.4%). The uniform weighted overall ac-
curacy (accounting for class unbalance) was 62.3%, with ac-
curacy for AIS A = 83.3%, AIS B = 25%, AIS C = 50%, and AIS
D = 90.9%. The same approach was performed for the model
predicting the cervical vs. other NLI (Table S6 and Table S7).
ROC curves for each AIS class were obtained by binarizing the
problem (e.g., for AIS A, A = 1; B, C, D = 0) and rerunning the
model as a binary classification. The curves were obtained using
the roc() function of the pROC R package (Robin et al., 2011), and
smoothing transformation was applied to each ROC curve using
the smooth() function of the pROC R package.

CIBERSORTx and module enrichment analysis
CIBERSORTx (Newman et al., 2019) is a machine learning al-
gorithm that uses deconvolution methods to infer the pro-
portions of cell types from gene expression patterns in bulk
tissues. It is called digital cytometry because it performs an
analogous function to regular flow cytometry without the need
to physically isolate cells. We used the CIBERSORTx tool
(https://cibersortx.stanford.edu/index.php) on all 58 of our

samples and cross-referenced it with the LM22 signature
(Newman et al., 2015) using 100 permutations. LM22 is a vali-
dated leukocyte gene signature matrix containing 547 genes that
distinguish 22 human hematopoietic cell types. The output of the
algorithm is the relative abundance of each of the 22 subtypes
for all samples (Fig. 4, A and B). The cell types that have a P value
<0.05 after Benjamini–Hochberg correction are shown in Fig. 4
C. For the calculation of leukocyte ratio estimates, we used the
22 subtypes from CIBERSORTx. While neutrophils and mono-
cytes are among the 22 subtypes, lymphocytes had to be calcu-
lated. Lymphocyte counts were generated after summing the
values of naive B cells, memory B cells, plasma cells, CD8 T cells,
naive CD4 T cells, resting memory CD4 T cells, activated mem-
ory CD4 T cells, helper follicular T cells, regulatory T cells, γδ
T cells, resting NK cells, and activated NK cells. One-way AN-
OVA was used to identify cell types that differ significantly
among HCs, TCs, and SCIs. For enrichment analysis, modules
were defined as all unique genes with positive kME values
(Pearson correlation coefficients of module eigengenes; Horvath
and Dong, 2008) that were significant after applying a Bonfer-
roni correction for multiple comparisons (P < 0.05 / [no. genes ×
no. modules]). If a gene was significantly correlated with more
than one module eigengene, it was assigned to the module for
which it had the highest kME value. Enrichment analysis was
performed for each gene set of interest with published human
RNA-seq datasets (Newman et al., 2015; Watkins et al., 2009)
using a one-sided Fisher’s exact test as implemented by the
fisher.test R function.

Study approval
All the methods and protocols presented in this study were ap-
proved by the Institutional Review Board of the University of
California, San Francisco (Institutional Review Board approval
number: 15–16115). All participants of the study provided writ-
ten informed consent before enrollment, and they are identi-
fied with a random identification specific for this manuscript
only after removing any variable that could result in patient
reidentification.

Online supplemental material
Fig. S1 demonstrates the in-hospital flowchart of the SCI
patients’ data collection. Fig. S2 shows the differential gene
expression between HC, TC, and SCI in volcano plots and
heatmap. Fig. S3 displays the GO enrichment analysis. Table
S1 shows the basic demographic characteristics of the SCI
patients and controls included in this study. Table S2 lists the
197 differentially expressed genes whose expression changes
in an SCI severity-related manner. Table S3, Table S4, Table
S6, and Table S7 summarize the statistical models used for
AIS grade and NLI classification. Table S5 contains the neu-
rological examination details of the 38 SCI patients used in
this study. Table S8 shows the summary of the sequencing
output of our 58 samples. All tables show summarized data.
For detailed data for each individual subject, the data have
been deposited to the Open Data Commons for Spinal Cord
Injury (and can be accessed at https://doi.org/10.34945/
F5QC7J).
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Supplemental material

Figure S1. Flowchart of patient enrollment, data acquisition, and analytic pipeline. In TRACK-SCI, as soon as a confirmed SCI patient is admitted and
consents to participate in the study, our team collects clinical data during all stages of the hospital stay and at 3, 6, and 12 mo after injury (in total >22,000 data
points for each patient). Blood is also collected as early as possible after hospital admission (day 0) and at days 1, 2, 3, and 5 as well as at 6 and 12 mo after
injury. After the blood draw, WBCs are isolated, and RNA is extracted for RNA-seq. The RNA-seq data from SCI patients along with RNA-seq data from HCs and
TCs are analyzed using both supervised and unsupervised methods with the goal of creating a predictive model for injury severity. ED, emergency department;
ICU, intensive care unit; Moberg, data collected from the Moberg ICU device; MRI, magnetic resonance imaging; NQoL, quality of life in neurological diseases;
OR, operating room; ZSFG, Zuckerberg San Francisco General Hospital and Trauma Center.
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Figure S2. Differential gene expression analysis of SCI patients vs. healthy and TCs reveals many genes induced specifically upon SCI. (A) Volcano
plots of the three comparisons between HCs, TCs, and SCI patients. (B) Heatmap of the 2,096 differentially expressed genes after SCI but not trauma (fold-
change [FC] >2, adjusted P value <0.05; HC = 10, TC = 10, AIS D = 11, C = 6, B = 4, A = 12).
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Tables S1, S2, S3, S4, S5, S6, S7, and S8 are provided online as separate files. Table S1 shows demographic data for patients in the
analysis. Table S2 lists the 197 genes whose expression changes in an SCI severity–dependent manner. Table S3 shows a confusion
matrix. Table S4 shows summary statistics of AIS grade predictive model. Table S5 shows neurological examination of the SCI
patients. Table S6 shows the confusionmatrix for the NLI predictivemodel. Table S7 shows summary statistics of the NLI predictive
model. Table S8 shows sequenced samples output and quality metrics.

Figure S3. GO enrichment analysis of the SCI severity–dependent genes suggests an important role of inflammation and cellular transport and
localization in classifying SCI patients. (A) Visualization of the enriched GOs of the genes that increase their expression as the AIS grade increases. The
bubble color shading indicates the P values (stronger shading = lower P value) and the bubble size the frequency of the GO in the underlying GO Annotation
database. The lines link highly similar GO terms and the width of the line indicates the degree of similarity. (B) The bar plot shows the number of differentially
expressed genes in each one of the significant GO terms. The shade of each bar indicates the P value (stronger shading = lower P value).
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