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Sensorineural hearing loss (SNHL), which typically arises from the inner ear, is
the most common sensory deficit worldwide. The traditional method for
studying pathophysiology underlying human SNHL involves histological
processing of the inner ear from temporal bones collected during autopsy.
Histopathological analysis is destructive and limits future use of a given
specimen. Non-destructive strategies for the study of the inner ear are
urgently needed to fully leverage the utility of each specimen because
access to human temporal bones is increasingly difficult and these precious
specimens are required to uncover disease mechanisms and to enable
development of new devices. We highlight the potential of reversible iodine
staining for micro-computed tomography imaging of the human inner ear.
This approach provides reversible, high-resolution visualization of
intracochlear structures and is becoming more rapid and accessible.
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Introduction

Conventional temporal bone imaging approaches, including computed tomography

(CT) and magnetic resonance imaging, reveal gross anatomic defects but provide limited

resolution of intracochlear microanatomy due to the inner ear’s encasement in the dense

otic capsule. The gold standard for study of auditory pathology has long been post-

mortem histology of temporal bones (1). This approach is time-intensive and requires

several processing steps including fixation, decalcification, embedding, sectioning, and

staining. These steps can introduce artifacts and limit the utility of sectioned temporal

bones for other applications which require their three-dimensional structure. Since human

temporal bones are precious specimens collected from autopsy, it is important to

maximize their multi-utility (2). Therefore, a non-destructive imaging approach which

provides structural information of the inner ear is invaluable in the study of human
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SNHL while allowing the imaged specimen to be used for

additional downstream applications such as device development.

Recently, synchrotron-radiation phase-contrast imaging (SR-

PCI) has been established as a high-resolution technique that can

be used in non-decalcified, unsectioned, and unstained human

temporal bones (3). While this method offers several advantages

over traditional histology, access to SR-PCI infrastructure is

limited and often tightly regulated (4). MicroCT, which affords

low micrometer level spatial resolution, is a more widely

available technology. MicroCT images have been used to develop

high-resolution cochlear atlases from which lower resolution

clinical CT images have been segmented into different cochlear

regions (5, 6). Furthermore, microCT resolution can be improved

with the use of contrast agents, of which iodine solutions,

osmium tetroxide (OsO4), and phosphotungstic acid (PTA) are

most commonly used (7, 8). Iodine staining is advantageous as it

is not permanent and can be removed via leaching or chemical

destaining with sodium thiosulfate (STS) (8). Combining the ease

of access of microCT with improved resolution from iodine

staining could provide a reversible and non-destructive imaging

method for the study of temporal bones. We compare microCT

images obtained with three different contrast agents and

demonstrate the feasibility of reversible iodine staining for the

first time in human temporal bones.
Material and methods

Specimen acquisition and preparation

Human temporal bones were procured at autopsy from

donors aged between 6 and 90 years with unknown inner ear
TABLE 1 Overview of properties of staining and destaining agents.

Compound Mechanism of action

Lugol’s Iodine Solution
(I2KI)

Iodine trimers bind to glycogen and lipids

Phosphotungstic acid
(PTA)

Binds to fibrin, collagen, and fibers of connective tissues. Has
electron-shell energies which match common x-ray source emi

Osmium Tetroxide
(OsO4)

Reacts with unsaturated fatty acids and increases x-ray absorpt
cellular membranes

Sodium Thiosulfate
(STS)

Reduction of halogenic compounds
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pathology. Collected bones bone were drilled to expose the

round and oval windows, and excess bone was removed to

meet the size limit of the microCT scanner. Bones were fixed

in 10% neutral buffered formalin and later stored in Temple

University Wetting Solution at 4°C prior to staining. The

Massachusetts Eye and Ear permitted use of these deidentified

specimens for research purposes.
Staining with contrast agents

Three contrast agents - Lugol’s iodine solution (I2KI), PTA,

and OsO4 – were compared for their ability to stain soft tissue

structures of the inner ear (7–9). An outline of the properties of

each agent is provided in Table 1. Staining solutions were

prepared by dissolving each compound in an aqueous

solution at room temperature until saturation was reached.

I2KI stain was prepared over multiple days to ensure proper

solubility of iodine and potassium crystals. Once prepared, all

stains were applied in the form of concentrated aqueous

solutions in which the temporal bone samples were immersed.

Additionally, round window membranes were penetrated with

a hand-held 22-gauge needle and 2–3 ml of contrast agent

was injected at a rate of 0.5 ml/min. The stapes footplate was

removed to allow the oval window to serve as the egress point

for the contrast agent.

Each specimen was stained for 48 h followed by a 24 h

washing period in either distilled water (I2KI, OsO4, STS) or

70% ethanol (PTA). The specimens were placed on a shaker

at 4°C for the duration of this time. Specimens were then

imaged in respective washing solutions and returned to

staining solution for additional 48 h intervals up through
Advantages Disadvantages

• Provides best soft tissue contrast in
non-decalcified specimens

• Short incubation time
• Non-toxic and water soluble
• Reversible

• Risk of overstaining
• No known histologic or
fluorescent properties

ssions
• Compatible with hematoxylin &
eosin staining

• Non-toxic

• Long incubation period
• May not fully penetrate deep
tissue layers

ion of • Best source of contrast for nerve
fibers

• Commonly used post-fixative agent
for staining

• Toxic
• Not reversible
• Requires decalcification for
full effect

• Removes iodine
• Does not alter cellular morphology
• Non-hazardous
• Affordable

• May not fully penetrate deep
tissue layers
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240 h, again on a shaker at 4°C. Optimal staining duration for each

agent was determined by visual observation of microCT images as

well as calculated contrast ratios. Detailed stain preparation

information is provided in Supplementary Data Sheet S1.
Reversible I2KI staining

Previous studies have demonstrated that iodine-based

contrast agents can be removed through leaching or chemical

destaining (8). Leaching is a process by which iodine is

removed via an osmotic gradient between stained specimen

and surrounding fluid. This process is slow and requires

replacement of leaching solution as it becomes saturated with

iodine. Efficacy of leaching is variable and requires many

weeks for full effect. An effective alternative is chemical

destaining with STS (8).

In solution, STS reacts with dissolved iodine and reduces it to

iodide which is transparent (8). The concentration of STS should

be maintained at a high enough level to bind and convert iodine

ions. However, concentrations ≥10% weight/volume of STS can

alter properties of fixed specimens rendering them softer and less

contrasted than the original specimen (8). Therefore, a 3%

aqueous solution of STS was prepared to maintain a balance

between effective iodine removal while limiting alteration of

bony or soft tissue elements. Specimens were immersed in

15 ml of STS solution following completion of I2KI staining.

The specimens were placed on a shaker at 4°C for the duration

of this time. STS solution was replaced at 24 h intervals.

Detailed solution preparation information is provided in

Supplementary Data Sheet S1.
Image acquisition and post-processing

Specimens were scanned using a Nikon Metrology HMX ST

225 scanner at the Center for Nanoscale Systems (Harvard

University) in Boston, MA. This system uses a 225 kV

microfocus x-ray source with 3 µm focal spot size. Pixel sizes

range from 5 to 300 μm and the practical limit of resolution

for images from this scanner is approximately 11 μm. All

stained specimens were imaged at 90–92 kV and 92–108 mA

for 14–21 μm voxel sizes. STS treated bones were imaged at

65 kV and 58 mA for a 19 μm voxel size. Ring-artifact-

reduction was applied to all specimens. Due to intrinsic

differences between the specimens and the staining properties,

the imaging parameters were modified to optimize the resolution

of each image. To ensure that the image quality was

standardized, a histogram range of 8,000–16,000 pixels for image

brightness was maintained. Images made on the Nikon

Metrology HMX ST 225 were reconstructed using VGStudio

viewing software and were stored as TIFF image stacks. Imaging

parameters are described in Supplementary Table S1.
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All images were reconstructed using Amira 6.4 (Thermo

Fisher Scientific – FEI Visualization Sciences Group, Mérignac

Cédex, France). Virtual sections were inspected for image

contrast and visibility of selected soft tissue structures of the

inner ear. In addition, x-ray densities for different regions

including auditory nerve (AN), fluid-filled space, and bone

were measured to quantify the staining for different contrast

agents.
Results

Mid-modiolar virtual two-dimensional (2D) sections

through non-dehydrated, non-decalcified specimens were

compared across each of the contrast agents at different time

points (Figure 1). Additionally, contrast ratios were calculated

for the AN relative to bone and fluid-filled spaces (Table 2).

I2KI staining effectiveness peaked between 48 and 96 h after

which soft tissue became saturated as evidenced by bright

spots of iodine buildup. In I2KI stained bone, the basilar

membrane (BM), Reissner’s membrane (RM), and spiral

ligament (SL) were visualized in the basal, middle, and apical

turns of the cochlea. Clear distinctions between the scala

tympani (ST) and scala vestibuli (SV) were also appreciated.

Furthermore, the AN and its branching structure is seen. PTA

staining, conversely, showed poorer resolution of intracochlear

structures and the AN than I2KI staining at all time points.

Faint contrast is visible at 96 h, at which point the BM can be

partially visualized. Contrast enhancement did not improve

appreciably at later time points. OsO4 stained bone was

imaged at a single 48 h timepoint following the protocol

adapted from Glueckert et al., 2018. In OsO4 stained bone,

the BM is visualized in all cochlear turns, but the RM is only

weakly observed in the basal turn. The stria vascularis (StV)

and SL are well defined in the basal and middle turns, and

the AN trunk is clearly visualized.

Chemical destaining with STS was effective in removing

I2KI from temporal bone specimens (Figure 2). The structural

details of the cochlear interior and AN were no longer

appreciated in the mid-modiolar virtual 2D sections after 48 h

of treatment with STS.

Virtual whole mount of I2KI stained bone displayed the full

cytoarchitecture of the organ of the Corti including the

modiolar core, hair cells, and AN bundles. None of these

features were visualized following destaining with STS.

Virtual 3D mid-modiolar section of I2KI stained bone

provided distinct boundaries between the ST, SV, and scala

media (SM) (Figure 3A). The SL and the AN are also well

defined. 3D reconstruction of the I2KI stained temporal bone

shows the anatomical relationship between the superior and

inferior vestibular nerve, facial nerve, and AN in the internal

auditory meatus (Figure 3B).
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Discussion

Human temporal bones are invaluable for the study of

diseases of the auditory and vestibular systems, for research
FIGURE 1

Comparison of uCT images obtained with different contrast agents at differen
decalcified, non-dehydrated human cochlea. I2KI and PTA staining was con
timepoint. Resolution of intracochlear structures including basilar membrane
and the auditory nerve (AN) is highest in I2KI and OsO4 stained bones. SV
phosphotungstic acid; OsO4, osmium tetroxide. All scales = 1 mm.

TABLE 2 Comparison of gray scale values for auditory nerve, fluid filled spa

Specimen Solution Timepoint (hrs) AN Mean

1 None 0 N/A
I2KI 96 10,447.72
STS 48 5,819.98

2 None 0 N/A
OsO4 48 16,171.85

3 None 0 N/A
PTA 240 7,368.99

AN, auditory nerve; I2KI, Lugol’s iodine solution; STS, sodium thiosulfate; OsO4, osm

Frontiers in Surgery 04
involving new devices and for training of surgeons and

investigators alike. Nevertheless, resources devoted to the

study of temporal bones have decreased over the years. In

fact, only three federally-sponsored active temporal bone
t timepoints. Mid-modiolar 2D virtual cross sections through the non-
tinued through 240 h. OsO4 staining was completed only at the 48 h
(*), Reissner’s membrane (•), spiral ligament (SL), stria vascularis (StV)

, scala vestibuli; ST, scala tympani; I2KI, Lugol’s iodine solution; PTA,

ces, and bone at optimal time points for each solution.

Fluid Mean Bone Mean AN:Fluid AN:Bone

11,306.771 24,048 - -
9,227.59 9,672.5 1.132 1.08
5,680.01 10,885 1.025 0.535

11,295.64 23,632.5 - -
13,167.78 27,574.5 1.228 0.586

8,460.89 17,733 - -
7,602.25 13,546.5 0.969 0.544

ium tetroxide; PTA, phosphotungstic acid.
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FIGURE 2

Reversible iodine staining of temporal bones. Mid-modiolar 2D
virtual cross sections are displayed next to virtual cochlear
wholemounts. Staining with I2KI greatly enhances the resolution of
intracochlear structures. In the mid-modiolar view of I2KI stained
bone, basilar membrane (*) and Reissner’s membrane (•) are
visualized with clear distinctions between scala tympani (ST) and
scala vestibuli (SV). In the virtual wholemount, distinct
cytoarchitecture of the modiolar core is appreciated, including
auditory nerve (AN) fiber bundles (teal underline), and the organ of
Corti containing hair cells (pink underline). These features are no
longer visualized following destaining with STS for 48 h. I2KI,
Lugol’s iodine solution; STS, sodium thiosulfate. All scales = 1 mm.
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research laboratories remain today in the United States due to

the high costs associated with collecting and processing these

specimens (10). Moreover, collection and study of temporal

bones from patients with well documented otologic disease

and/or prior surgical procedures is limited. Of the nearly 200

deafness causing genes, histopathologic analysis has only

been reported for 22 (11). This lack of reported

histopathology extends to those who have undergone surgical

procedures such as labyrinthectomies or cochlear

implantation (10).

The scarcity of temporal bones characterized at the

otopathological level can partially be attributed to the

challenges of traditional histological processing. This
Frontiers in Surgery 05
approach is technically rigorous, and processing steps take

many months. Additionally, histological processing can

introduce artifacts into tissue which can confound findings

(12). Furthermore, the 3D relationships between structures

cannot easily be appreciated with sectioned temporal bone

slides. These factors underly the need for alternative

methods of studying auditory pathology that are faster, more

accessible and cost-effective while facilitating multi-utility of

the same specimen.

In this study, we demonstrate the feasibility of a non-

destructive approach to studying human temporal bone

histopathology using microCT technology coupled with

iodine contrast. MicroCT is a readily available imaging

modality that has been used extensively in the study of

human temporal bones (13–15). Given comparable staining

outcomes to OsO4, I2KI affords the additional benefit of

reversibility. We have demonstrated that chemical destaining

with STS returns I2KI stained bone to a near original state

with regards to imaging properties. It is important to note,

however, that destaining does not return a specimen to its

initial chemical state as colorless iodine remains in the

sample. Even so, the structural integrity of the specimen is

left intact allowing for continued use of these bones for

additional analyses.

The current study does have limitations inherent to the

use of microCT imaging. Specifically, non-contrast microCT

affords poor soft tissue visibility due to weak absorption of

x-rays, as was evident in our unstained temporal bones.

However, visualization of intracochlear structures was

improved with contrast agents OsO4 and I2KI. A limitation

of our methodology is that direct injection into the RW

might cause injury to the cochlear cytoarchitecture, despite

the injections being done in a controlled fashion by a

skilled investigator. Finally, to maximize resolution

provided by the microCT system, temporal bones need to

be drilled down to the level of the otic capsule, which adds

time prior to imaging.
Conclusion

Temporal bones have been used in applications ranging

from uncovering molecular and cellular mechanisms of

audiovestibular dysfunction (11, 16–18), development of

devices for inner ear stimulation and monitoring (19, 20), and

validation of novel imaging strategies (3, 21–24). Therefore,

the value of each bone cannot be understated. While we await

the development of methods for investigation of temporal

bones which preclude the need for processing, reversible I2KI

staining with microCT can be used as an alternative approach

for the study of the inner ear which preserves three-

dimensional structure.
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FIGURE 3

(A) Mid-modiolar 3D virtual cross-section through the human cochlea in I2KI stained bone. Boundaries between scala tympani (ST), scala vestibuli
(SV), and scala media (SM) are appreciated. Spiral ligament (SL) is well defined, and auditory nerve trunk is seen. Scale = 1 mm. (B) 3D
reconstruction of I2KI stained temporal bone. Anatomical relationship between the cochlea and the structures of the internal auditory meatus
including facial nerve (VII), auditory nerve (AN), superior vestibular nerve (SVN) and inferior vestibular nerve (IVN) are seen. I2KI, Lugol’s iodine
solution. Scale = 0.5 cm.

Bommakanti et al. 10.3389/fsurg.2022.952348
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