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Simple Summary: We previously reported a gene signature, “Chromophobe-Oncocytoma Gene
Signature” (COGS), to differentiate chromophobe renal cell carcinoma from oncocytoma. Current
clinical workflow with histology and immunohistochemistry can fail to distinguish these two renal
cancers. We have evaluated the potential of COGS genes to classify these two renal tumors, on
a single-molecule counting platform by measuring the expression of the COGS genes in archival
tissue at Augusta University Medical Center. We show the expression level difference of the COGS
signature in these tumors is able to classify these cancers accurately using machine learning. The
assay has the potential to be instituted in clinically complex cases to differentiate these renal tumors.

Abstract: Malignant chromophobe renal cancer (chRCC) and benign oncocytoma (RO) are two renal
tumor types difficult to differentiate using histology and immunohistochemistry-based methods
because of their similarity in appearance. We previously developed a transcriptomics-based classi-
fication pipeline with “Chromophobe-Oncocytoma Gene Signature” (COGS) on a single-molecule
counting platform. Renal cancer patients (n = 32, chRCC = 17, RO = 15) were recruited from Augusta
University Medical Center (AUMC). Formalin-fixed paraffin-embedded (FFPE) blocks from their
excised tumors were collected. We created a custom single-molecule counting code set for COGS to
assay RNA from FFPE blocks. Utilizing hematoxylin-eosin stain, pathologists were able to correctly
classify these tumor types (91.8%). Our unsupervised learning with UMAP (Uniform manifold
approximation and projection, accuracy = 0.97) and hierarchical clustering (accuracy = 1.0) identified
two clusters congruent with their histology. We next developed and compared four supervised
models (random forest, support vector machine, generalized linear model with L2 regularization, and
supervised UMAP). Supervised UMAP has shown to classify all the cases correctly (sensitivity = 1,
specificity = 1, accuracy = 1) followed by random forest models (sensitivity = 0.84, specificity = 1,
accuracy = 1). This pipeline can be used as a clinical tool by pathologists to differentiate chRCC
from RO.
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1. Introduction

Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma (RO) are renal tu-
mor types, each generally termed as oncocytic renal neoplasms [1] that arise from collecting
ducts and constitute about 8–13% of all renal tumors [1,2]. ChRCC is a slow-growing ma-
lignant tumor that, once metastasized, has a poor prognosis [3]. RO is a benign tumor that
does not require treatment [3]. Due to prognostic differences, it is essential to differentiate
these tumors to guide treatment. Both of these tumors are diagnosed using hematoxylin
and eosin (H&E) and immunohistochemistry (IHC) staining [4]. Histologically these tu-
mors are similar; however, features such as binucleate or multinucleated cells, nuclear
wrinkling, perinuclear clearing, presence of mitotic figures, and cytoplasmic invaginations
are distinctive to chRCC and can help differentiate chRCC from RO. However, given sub-
stantial morphological overlap, especially in biopsies, the distinction between the two may
be challenging despite the aforementioned distinctive morphologic characteristics [4]. Due
to their similarity in histology and lack of reliable IHC markers, the distinction between
chRCC and RO can be challenging.

Immunohistochemical detection of CK7 is used in laboratories with variable sensi-
tivity and specificity [4–6]. Other studies showed that the inclusion of CD117, vimentin,
and S100A1 in clinical diagnosis distinguishes chRCC from RO [4,6,7]. Several recent
studies [7–9] have suggested using genetic and molecular assays as well as deep learning-
based image detection to classify these tumors. Throughout the literature, smaller sample
sizes have been the main limitation leading to variation in marker sensitivity and speci-
ficity [6,8–10]. In an effort to resolve interobserver variability and misdiagnosis, compre-
hensive guidelines and additional markers for renal tumor differentiation are needed.

We previously reported the Chromophobe-Oncocytoma-related gene signature (COGS)
and a bioinformatics pipeline that can differentiate chRCC from RO and be implemented
as a clinical tool [11]. Here we present our results on a retrospective validation of the
gene signature at Augusta University Medical Center (AUMC). We developed a diag-
nostic workflow using a single-molecule counting assay to use formalin-fixed paraffin-
embedded (FFPE) samples to differentiate these tumors. We demonstrate the robustness
of the gene-signature and bioinformatics pipeline for the classification of chRCC from RO
with unsupervised and supervised models.

2. Materials and Methods
2.1. Human Subjects and Study Design

We identified patients (n = 82) who attended AUMC between 2003 and 2018. These
patients underwent tumor excision or needle biopsies to diagnose renal masses identified
in abdominal images. The inclusion criterion was a histological diagnosis of chRCC or RO.
Core/fine needle biopsy samples were excluded. Power analysis showed that six samples
per group were required to identify gene expression differences between chRCC and RO
for COGS genes (β = 1.65, 1 − β = 0.8, α = 0.05). Based on inclusion criteria.

We retrieved archived formalin-fixed paraffin-embedded (FFPE) tissues diagnosed
as chRCC (n = 17) or RO (n = 15) from the Department of Pathology at AUMC. The
tissue samples (n = 32) had been surgically excised from renal tumors and embedded in
paraffin after fixing with formalin (FFPE); 5µm thick sections were taken for histological
diagnosis (Figure 1).

Three AUMC Pathologists examined the selected sample set and identified the tumor
region on FFPE blocks while also evaluating the matching H&E slides.

Demographic and clinical data were collected using the Augusta University Cancer
Registry and validated through the patients’ electronic health records. The study was
conducted according to the Declaration of Helsinki (1997, revised in 2013) and approved
by the Institutional Review Board at Augusta University (Biomarkers and Therapeutics in
Cancer, 611205-49).
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Figure 1. Study workflow from sample collection to RNA quantitation.

2.2. Coring, RNA Extraction, and Quality Control

Tumor-rich region marked by the pathologist was cored using a 2 mm biopsy punch
(Integra Miltex, York, PA, USA). Paraffin was removed from the tissue core by treatment
with Citrisolve (Fisher Scientific, Piscataway, NJ, USA) at 65 ◦C. The tissue was then
homogenized in 10 mM Tris HCl-EDTA (pH 7.4) by mechanical disruption. According to
the manufacturer’s instructions, RNA from lysates was extracted using an RNA extraction
kit designed for FFPE tissue (RNEasy, Qiagen, Hilden, Germany). RNA quality, quantity,
and concentration were checked using Qbit and TapeStation 2200 (Supplemental Figure S1).

2.3. Quantification of Gene Expression Data

Custom nCounter assay consisting of gene expression code set for 33 genes (including
three housekeeping genes) was synthesized (NanoString Technology Inc., Seattle, WA,
USA) [12]. Two hundred nanograms of RNA/sample were hybridized into the reporter
probe. Data capture was performed on a NanoString nCounter Digital Analyzer (NanoS-
tring Technology Inc., Seattle, WA, USA) and exported as reporter code count (RCC) files.
These RCC files were analyzed using nSolver analysis software (Version 4.0.70, NanoString
Technology Inc., Seattle, WA, USA) for quality control purposes (imaging, binding density,
positive spike in control, and limit of detection).

The output from nSolver software was read into R for data pre-processing. The data
was initially normalized by their concentration, followed by background thresholding. It
was normalized first by the geometric mean of the code set’s internal positive controls
(Supplemental Figure S2A,B) and then the geometric mean of the housekeeping genes
included in our assay (HPRT1, LDHA, and TBP) (Supplemental Figure S2C,D). The data
was then log2-transformed and subjected to our machine learning models described below.
We calculated the optimum cut point for each gene by calculating sensitivity plus specificity
at each percentile. The value at which sensitivity plus specificity is maximum is called
the optimum cut point. This data was then used as the “test” dataset in the machine
learning models.

2.4. Discovery Data, Train-Validation-Test Set, Supervised Models

COGS was developed from a meta-analysis dataset from multiple GEO studies con-
taining 53 chRCC and 36 RO arrays [11]. This dataset was split randomly by 80:20 into
train and validation sets for unsupervised and supervised learning with the caret R pack-
age [13]. “Test” dataset contains the entire NanoString dataset for COGS genes, 30 samples
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(2 samples failed QC for low count across all COGS genes) with the clinical diagnosis of
16 chRCC and 14 RO cases.

Unsupervised learning models were developed with UMAP and Hierarchical cluster-
ing. UMAP was implemented as a feature extraction algorithm to develop two components
from COGS expression in the training dataset [14]. As UMAP is a stochastic algorithm, it
was checked with 100 iterations by visual inspection of cluster formation, each with a dif-
ferent random seed. The hierarchical model was developed using the “Euclidean” distance
and “ward.D2” clustering method. For the supervised UMAP model, a supervised em-
bedding was developed using the train set to identify the internal structure of the training
dataset. This supervised embedding was developed as a form of feature engineering and
classification models were built on that new space. Test data was passed to this embedding
for the classification of the samples.

Multiple supervised models (random forest, generalized linear model with L2 regular-
ization, and support vector machine) were trained on COGS training data [11] with three
repeats of 10-fold cross-validation and tested on Test data. These models were selected
based on their performance in previous gene expression studies in the literature [15–17].
The discovery data introduced a UMAP manifold for supervised UMAP models and tested
on NanoString data. NanoString data’s UMAP projection was used to cluster the data. A
contingency matrix was created for all models’ results and performance metrics (Sensitivity,
specificity, positive and negative predictive value) were calculated. The p-value for the
metrics was estimated by bootstrap distribution where applicable. Classification metrics,
i.e., sensitivity, specificity, positive predictive value, negative predictive value, and accuracy,
were calculated by constructing a confusion matrix for each model’s true positive, false
positive, true negative, and false-negative rate.

2.5. Statistical Methods

All statistical analyses were performed using the R language and environment for
statistical computing (v4.1.2; R Foundation for Statistical Computing, Indianapolis, IN,
USA). Software packages were used for cutpointr, caTools, UMAP, ComplexHeatmap,
Caret, and tidy models in the R environment. Continuous data are presented as mean and
standard deviation, and differences in the group means were tested using Student’s t-test.
Categorical variables are presented as count and percentages and differences in count data
were evaluated using Chi-square tests. All p-values were two-sided and a p < 0.05 was
considered significant.

3. Results
3.1. Human Subject Demographics

The demographic information on subjects diagnosed with chRCC (n = 17) and RO
(n = 15) is presented in Table 1. The mean age of onset of chRCC and RO was 57.8
(SD = 8.51) and 64.3 (SD = 13.9) years. Patients with RO patients significantly are older
than chRCC (p-value = 0.003). There is a higher number of females in RO; overall, there
were no significant differences in the distribution of males and females in both tumor types
(Table 1). All chRCC tumors were staged. The majority of the cases were Stage I (64%),
whereas Stage II and III were 17% each. RO cases were not staged. The race breakdown for
chRCC was 70% Caucasian and 29% African American, while RO was 60% Caucasian and
33% African American.
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Table 1. Clinical and Demographic information for chRCC and RO cases in the AUMC cohort.

Variable chRCC a RO b Overall p-Value

Stage, n(%)
1 11(64.7%) NA 11(34.4%)
2 3(17.6%) NA 3(9.4%)
3 3(17.6%) NA 3(9.4%)

Age at Diagnosis, Mean (SD) 57.8(14.7) 71.5(8.51) 64.3(13.9) 0.003 *
Race, n (%)

0.55 **
AA 5(29.4%) 5(33.3%) 10(31.3%)
C 12(70.6%) 9(60%) 21(65.6%)

Other 0 1(6.7%) 1(3.1%)
Gender, n (%)

0.11**F 8(47.1%) 3(20%) 11(34.4%)
M 9(52.9%) 12(80%) 21(65.6)

Tumor size (mean) 5.15(2.4) 4.68(4.05) 4.93(3.22) 0.696 **
a chRCC: chromophobe renal cell carcinoma, b RO: renal oncocytoma cases are not staged, * Student’s t-test, **
Chi-Square test.

3.2. Univariate Analysis

We performed a univariate AUC analysis for differentiating chRCC and RO with count
difference. The sensitivity was 1 for nine genes (AQP6, NDUFS1, MAP4K3, HOOK2, ESRP1,
ELMO3, BSPRY, PRDX3, and LIMS1) with a median of 0.94. Seven genes have a specificity
of 1 (AQP6, AP1M2, ITGB3, LRFN5, RSPO3, SPINT2, and LSR) and a median of 0.93. The
minimum AUC was 0.5 (LAMA1) with a median of 0.93 and a maximum of 1 (AQP6). Genes
with the highest difference in AUC analysis were AQP6 (AUC = 1.00), BSPRY (AUC = 0.99),
HOOK2 (AUC = 0.99), SPINT2 (AUC = 0.99), ESPR1 (AUC = 0.99), ITGB3 (AUC = 0.98).
The maximum is 1 (AQP6) for accuracy, and the median is 0.90. Amongst all the COGS
genes, AQP6 has the highest sensitivity, specificity, AUC, and accuracy. The full table is
presented in Table 2.

Table 2. Univariate analysis of chRCC and RO NanoString Data. All values were calculated at the
optimum cut point between chRCC and RO count data.

Gene Optimal Cut Point Accuracy AUC Sensitivity Specificity

AP1M2 10.16 0.97 0.96 0.94 1
AQP6 13.24 1 1 1 1

ATP2C1 11.38 0.87 0.94 0.94 0.79
BSPRY 9.2 0.97 0.99 1 0.93
CLDN8 12.57 0.93 0.93 0.94 0.93
DNAI3 6.51 0.9 0.93 0.86 0.94
ELMO3 9.32 0.97 0.97 1 0.93
ESRP1 9.94 0.97 0.99 1 0.93

HOOK2 9.02 0.97 0.99 1 0.93
ITGB3 9.97 0.97 0.98 0.93 1

KCNG3 7.62 0.8 0.83 0.86 0.75
KIDINS220 9.8 0.9 0.92 0.93 0.88

KRT7 8.28 0.9 0.96 0.94 0.86
LAMA1 5.63 0.6 0.5 0.36 0.81
LIMS1 9.26 0.97 0.98 1 0.94
LRFN5 9.55 0.8 0.88 0.63 1

LSR 10.43 0.93 0.96 0.88 1
MANEA 8.66 0.9 0.9 0.86 0.94
MAP4K3 8.62 0.93 0.98 1 0.88

MSH2 8.37 0.67 0.54 0.86 0.5
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Table 2. Cont.

Gene Optimal Cut Point Accuracy AUC Sensitivity Specificity

NDUFS1 11.33 0.9 0.91 1 0.81
PLCL1 10.78 0.87 0.9 0.93 0.81
PLCL2 11.18 0.73 0.75 0.56 0.93
PNPT1 8.68 0.87 0.82 0.86 0.88
PRDX3 11.94 0.97 0.96 1 0.94
RSPO3 8.83 0.83 0.88 0.69 1
S100A1 7.12 0.87 0.88 0.93 0.81
SOCS1 9.32 0.93 0.98 0.94 0.93
SPINT2 13 0.97 0.99 0.94 1
SUCLA2 10.83 0.87 0.85 0.86 0.88

AUC: Area under the curve.

3.3. Unsupervised and Supervised Machine Learning Models

As single markers can fail to differentiate chRCC and RO, we implemented multi-
variate models using unsupervised learning. We implemented UMAP and hierarchical
clustering to see the combined markers’ ability to differentiate these tumors. UMAP anal-
ysis on NanoString count data showed two clusters, and 29/30 samples were correctly
identified (Supplemental Figure S3). Then we developed a supervised UMAP model us-
ing COGS discovery data as the training set by setting parameters to n_neighbors = 15,
epoch = 200, min_dist = 0.1, init = “spectral”, metric = “Euclidean” (Figure 2A) [11]. This
trained model was tested on the AUMC cohort. This trained UMAP model created two
clusters congruent with their histology (30/30 samples are correctly classified) (Figure 2B).
Hierarchical clustering showed 100% congruency with their histological classification
(Figure 2C).
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Although unsupervised models are a powerful tool for identifying data structure
in high dimensional space, they are not ideal for testing a new sample. Therefore, we
compared four supervised learning models, viz., random forest, support vector machine,
and a generalized linear model with L2 regularization trained with COGS’ discovery data
with 10-fold cross-validation with three repeats. The four models were compared (Table 3)
by sensitivity, specificity, positive predictive value, negative predictive value, and accuracy.

Table 3. Supervised Model metrics for classification of chRCC and RO.

Metric Random Forest SVM GLM Supervised UMAP

Sensitivity 0.84 0.76 0.88 1
Specificity 1 1 1 1
Accuracy 0.93 0.83 0.9 1

95% CI 0.78–0.99 0.65–0.94 0.73–0.98 -
p-value 4.74 × 10−5 0.07659 0.001066 0

PPV 1 1 1 1
NPV 0.87 0.64 0.78 1

SVM: Support Vector Machine, GLM: Generalized Linear Model, UMAP: Uniform Manifold Approximation and
Projection, PPV: Positive Predictive Value, NPV: Negative Predictive Value.

Supervised UMAP showed to be most accurate in classifying the chRCC and RO based
on their COGS expression (Sensitivity = 1.0, Specificity = 1.0, PPV = 1.0, NPV = 1.0 and
Accuracy = 1.0). As Supervised UMAP did not have any misclassification, the p-value is 0,
and the 95% confidence interval cannot be calculated. Random forest models performed
better than the other SVM and GLMNet models. For random forest models, a minimum of
250 trees were needed to achieve an accuracy of 1 (Figure 3A). A sample tree is presented
in Figure 3B. Although support vector machines are popular in classification analysis,
they did not reach statistical significance in our dataset (Figure 3C, Table 3). Coefficients
for the generalized linear model with ridge regression are presented in Figure 3D. All
the supervised models were used to create a confusion matrix, and sensitivity, specificity,
positive predictive value, negative predictive value, and accuracy were calculated (Table 3).
All the p-values were calculated by accuracy over no information rate for the models.

3.4. H&E Scoring between Pathologists

Three independent AUMC pathologists evaluated H&E for the selected sample set
(n = 32). Two of the three pathologists had one discrepancy in diagnosis from the original
clinical diagnosis, while the third pathologist had two discrepancies. We developed a linear
mixed model with clinical diagnosis as the fixed effects and H&E and scorer as the random
effects. The model showed that H&E accounts for 0.918 (p-value <0.001) of the variation
in the diagnosis of these cases. The student t-test between the clinical diagnosis and
pathologist impression or between the pathologist impression did not show any difference
(p-value > 0.05). All the raw data is provided in Supplemental Table S1.



Cancers 2022, 14, 3242 8 of 12Cancers 2022, 14, x 8 of 12 
 

 

 
Figure 3. Supervised models with training on COGS discovery data and tested on NanoString data. 
(A): Figure 3: Development and comparison of four supervised models. Random Forest models 
showing a minimum of 250 trees can achieve the error = 0. (B): A sample tree showing the distribu-
tion of gene KIDINS220 expression on COGS discovery data with the arrow pointing at the best 
cutoff value. (C): A sample support vector model with KRT7 and BSPRY. (D): Generalized linear 
model with Ridge regression showing the fraction explained by the COGS genes as covariates. All 
these metrics show the results on NanoString data (AUMC cohort). 

3.4. H&E Scoring between Pathologists 
Three independent AUMC pathologists evaluated H&E for the selected sample set 

(n = 32). Two of the three pathologists had one discrepancy in diagnosis from the original 
clinical diagnosis, while the third pathologist had two discrepancies. We developed a lin-
ear mixed model with clinical diagnosis as the fixed effects and H&E and scorer as the 
random effects. The model showed that H&E accounts for 0.918 (p-value <0.001) of the 
variation in the diagnosis of these cases. The student t-test between the clinical diagnosis 
and pathologist impression or between the pathologist impression did not show any dif-
ference (p-value > 0.05). All the raw data is provided in Supplemental Table S1. 

4. Discussion 
In this study, we tested the potential of COGS to differentiate chRCC and RO renal 

tumor types (Supplemental Table S2). We also developed a single-molecule counting as-
say in a single institutional cohort. Our univariate analysis demonstrates that the majority 
of the genes in the COGS signature shows expression level difference between the tumor 
types and can serve as potential biomarkers to differentiate these tumors (Table 2). We 
showed that the COGS profile between these tumors is distinct in unsupervised models 
(UMAP and hierarchical clustering) (Figure 2B,C). To classify future samples, we devel-
oped and compared four different supervised models (random forest, support vector ma-
chine, generalized linear model, and supervised UMAP) (Figure 3A,D) and identified su-
pervised UMAP outperforming all the other models in classifying chRCC and ROs (Table 
3). This workflow can be implemented in clinical settings to quantify and correctly classify 
future samples suspected of chRCC or RO. 

Figure 3. Supervised models with training on COGS discovery data and tested on NanoString data.
(A): Figure 3: Development and comparison of four supervised models. Random Forest models
showing a minimum of 250 trees can achieve the error = 0. (B): A sample tree showing the distribution
of gene KIDINS220 expression on COGS discovery data with the arrow pointing at the best cutoff
value. (C): A sample support vector model with KRT7 and BSPRY. (D): Generalized linear model
with Ridge regression showing the fraction explained by the COGS genes as covariates. All these
metrics show the results on NanoString data (AUMC cohort).

4. Discussion

In this study, we tested the potential of COGS to differentiate chRCC and RO renal
tumor types (Supplemental Table S2). We also developed a single-molecule counting assay
in a single institutional cohort. Our univariate analysis demonstrates that the majority
of the genes in the COGS signature shows expression level difference between the tumor
types and can serve as potential biomarkers to differentiate these tumors (Table 2). We
showed that the COGS profile between these tumors is distinct in unsupervised models
(UMAP and hierarchical clustering) (Figure 2B,C). To classify future samples, we developed
and compared four different supervised models (random forest, support vector machine,
generalized linear model, and supervised UMAP) (Figure 3A,D) and identified supervised
UMAP outperforming all the other models in classifying chRCC and ROs (Table 3). This
workflow can be implemented in clinical settings to quantify and correctly classify future
samples suspected of chRCC or RO.

The current clinical workflow to differentiate these tumors is based on H&E im-
pressions and certain IHC markers. H&E with or without IHC suffers in sensitivity and
specificity because there is a lacking of definitive features on H&E or the overlapping
expression of the immunohistochemical markers. This is even more difficult in biopsy
cases where there is limited tissue. CK7 is the most widely used marker specific for chRCC
with variable sensitivity (0.73–1.0) and specificity (0.84–1.0) [18,19]. S100A1 is the specific
IHC marker for RO with variable sensitivity (0.87–1.0) and specificity (0.7–1.0) [20,21]. The
variability in these markers can leave up to 10% of cases to be misdiagnosed by traditional
clinical workflow. IHC staining can be subjective and requires optimization as the reading
is dependent on the quality of the staining [22]. In comparison, gene expression workflows
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follow a strict protocol, have high quality-control measures, and require a smaller amount
of tissue. In this study, we used a 2 mm punch biopsy core (~3–4 mm in length) to collect
tumor tissue which is a smaller amount of tissue than core biopsies used in the current
clinical workflow [23]. Our workflow requires 72 h from tissue to RNA quantification,
which is comparable to pathologist evaluation, IHC processing, and optimization. Our
NanoString validation pipeline correctly identified 100% of the cases analyzed in this study.
This limits the possibility of inconclusive biopsy results, repeat biopsies [24], as well as
inadequate treatment for chRCC or unnecessary surgical intervention for RO cases. This
workflow can overcome the obstacles such as inconclusive biopsy results or interobserver
variability between pathologists with the integration of supervised learning. This will
significantly improve the patient’s prognosis and lower the economic burden as it will
lower unnecessary surgical intervention, i.e., partial or total nephrectomy. AQP6, HOOK2,
AP1M2, ESPR1, and CLDN from the COGS panel were already suggested in the previous
studies as potential biomarkers [25,26]. We report AQP6, AP1M2, LIMS1, PRDX3, SPINT2,
BSPRY, ELMO3, ESPR1, HOOK2, ITGB3 (sensitivity > 0.93, specificity > 0.93, AUC > 0.96,
and accuracy > 0.93) as top-performing genes in our study and can serve as potential
transcriptomic biomarkers between these tumors.

A limitation of using bulk transcriptomics is that the expression profile includes
tumor cells and stromal cells, immune cells, etc. Future studies are needed to identify the
differences between tumor cells themselves in chRCC and RO and incorporate stroma and
immune-specific genes into the signature. Patients with RO were older in age compared
to chRCC as the peak age of detection of RO is the seventh decade, whereas peak chRCC
detection is the sixth decade [27]. Another limitation was due to the FFPE RNA being
highly fragmented, which resulted in some genes not showing the observed differences in
our discovery data, such as LAMA1 and MSH2. To work around the fragmentation issues,
multivariate models were implemented as they account for such variation due to technical
or biological reasons. Although SVM models are one of the most well-understood machine
learning algorithms, in this study, they did not reach statistical significance. This could
have stemmed from the smaller sample size (n = 30) collected from a single institution.
Therefore, an additional study is needed to evaluate these findings in a larger sample set
collected from multiple sites.

The strength of this study is the direct clinical application. The supervised model
training was on bulk transcriptomic data from multiple GEO studies previously validated in
microarray and RNASeq platform, which are now translated into the NanoString platform.
Therefore, quantifying the expression of COGS genes assayed on any platform can be
conducted and followed up by the implementation of the machine learning models. This
workflow can be performed directly on biopsies by extracting RNA and quantifying it using
the NanoString platform. Our method has shown an overall greater accuracy (Supervised
UMAP, accuracy = 1.0) in comparison to the current clinical workflow [18,20,21,28].

We have shown that the single-molecule counting on the nCounter platform work-
ing in conjunction with our machine-learning pipeline can be a viable clinical assay for
differentiation of chRCC from RO. This approach has been shown to predict therapeutic
outcomes in breast cancer [29], diagnosis of small B-cell lymphoid neoplasm [30] cancer,
and classification of gliomas [31].

5. Conclusions

We report a pipeline that uses gene expression profiling by single-molecule counting to
differentiate chRCC from RO, which can be an important clinical tool in renal cancer diagnosis.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14133242/s1, Figure S1: RNA quality control on Tapesta-
tion 2200. A: Gel images showing RNA quality. The bottom number represents RIN (RNA integrity
number). B: Showing a representative sample for RNA fragments. The green horizontal line repre-
sents the target range for hybridization. The RNA concentration was calculated for this range for
each sample; Figure S2: Positive control and housekeeping gene normalization using geometric mean.
A: Before normalization of the positive control. B: After positive control normalization. C: Before
housekeeping gene normalization. D: After housekeeping gene normalization; Figure S3: Uniform
manifold approximation and projection (UMAP) analysis showing two clusters. Raw count data was
normalized with internal controls and log2 was transformed prior to UMAP analysis. Histology 1
represents chRCC and 2 represents RO samples; Table S1: Comparison of original hematoxylin-eosin
stained sections at the time of diagnosis with a re-review of the slides by three independent patholo-
gists. The identity and diagnosis were blinded to be reviewed by pathologists; Table S2: Functional
description for the COGS (Chromophobe-Oncocytoma Gene Signature) genes.
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