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Abstract. Acute respiratory distress syndrome (ARDS) 
mainly involves acute respiratory failure. In addition to this 
affected patients feel progressive arterial hypoxemia, dyspnea, 
and a marked increase in the work of breathing. The only 
clinical solution for the above pathological state is ventilation. 
Mechanical ventilation is necessary to support life in ARDs 
but it itself worsen lung injury and the term is known clinically 
as ‘ventilation induced lung injury’ (VILI). At the cellular 
level, respiratory epithelial cells are subjected to cyclic stretch, 
i.e. repeated cycles of positive and negative strain, during 
normal tidal ventilation. In aerated areas of diseased lungs, 
or even normal lungs subjected to injurious positive pressure 
mechanical ventilation, the cells are at risk of being over 
distended, and worsening injury by disrupting the alveolar 
epithelial barrier. Further, hypercapnic acidosis (HCA) in itself 
confers protection from stretch injury, potentially via a mecha-
nisms involving inhibition of nuclear factor κB (NF-κB), a 
transcription factor central to inflammation, injury and repair. 
Mesenchymal stem cells are the latest in the field and are being 
investigated as a possible therapy for ARDS.
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1. Introduction

Significant morbidity and mortality has been confirmed due 
to acute respiratory distress syndrome (ARDS) worldwide (1). 
It is characterized by severe inflammation of the lung paren-
chyma with associated protein-rich pulmonary oedema 
leading to hypoxaemia refractory to supplemental oxygen, 
and respiratory failure (2). Most patients require mechanical 
ventilation (MeV) as a life-saving measure in an intensive 
care setting. Many patients frequently develop subsequent 
multi‑organ failure  (3). The mortality burden of ARDS 
approaches that of breast cancer and HIV  (4), and could be 
as high as 60%. There is currently no known treatment, and 
management remains supportive.

2. Mechanical ventilation role

Mechanical ventilation has been the mainstay of life‑supporting 
treatment in intensive care medicine  (5). One of the first 
mechanical ventilators was in the form of an iron lung and a 
metal cylinder (5). Negative pressure applied in the chamber 
using a vacuum pump, was used to expand the chest. However, 
this mode is a difficult procedure with significant discomfort 
to the patient involved.

The modern positive pressure ventilators reduced mortality 
from 85 to 20% (6). In positive pressure ventilation, the airway 
pressure is applied at the patient's airway via an endotracheal 
or tracheostomy tube. This permits gas flow into the lungs 
until the end of the ‘breath’ delivered by the machine. Elastic 
recoil of the chest occurs when the airway pressure is zero, 
leading to passive exhalation.

3. Role in sustaining life in ARDS patients

Mechanical ventilation is crucial for patients with ARDS 
and other forms of respiratory failure (7). Traditionally, most 
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patients, including those with ARDS that required mechanical 
ventilation were ventilated with tidal volumes of more than 
9 ml/kg. This in turn helped in maintenance of normal oxygen 
and carbon dioxide levels along with minimal atelectasis (8,9). 
To achieve these goals, grossly high peak inspiratory pressures 
of up to 50 cm H2O were tolerated quite often in the absence of 
obvious complications of barotrauma, such as the development 
of pneumothoraces.

4. Ventilator-induced lung injury (VILI)

It was discovered that ventilating rat lungs with peak pres-
sures of up to 45 cm H2O resulted in faster onset and more 
severe pulmonary oedema than when ventilating at pressures 
of 30  cm H2O, and that positive end-expiratory pressure 
(PEEP) could alleviate that damage (10). VILI can cause or 
worsen ARDS, and is in fact, a form of ARDS both clini-
cally and pathologically. Animal lungs injured by mechanical 
ventilation show patterns of atelectasis, severe congestion and 
enlargement due to oedema. Contemporary ventilation strate-
gies entail use of lower tidal volumes (6-8 ml/kg) leading to 
minimal lung over‑distension and further injury. ARDS typi-
cally does not have a uniform distribution, and affects some 
segments of lung more severely than others. CT-guided studies 
have demonstrated particular segments of lung with relatively 
normal elastance (baby lung) (11,12). Therefore even ‘normal’ 
tidal volumes during mechanical ventilation could damage 
these smaller segments of aerated lung tissue. The Vt/baby 
lung ratio is more relevant than the Vt/kg ratio for VILI in this 
context.

5. Mechanisms of VILI

It was later appreciated that simple barotraumas, i.e. gross air 
leaks induced by large trans-pulmonary pressures, was not 
the only way that ventilators could damage lungs. Important 
mechanistic insights have emerged from extensive research 
to elucidate the potential mechanisms by which certain 
ventilator settings may cause specific biological damage. The 
concept of volutrauma is of the view that lung distention is 
the cause behind lung injury (13). Atelectrauma is a term used 
to describe repeated opening and reopening of atelectatic 
areas leading to high shear stress and subsequent necrosis, 
classically with high ventilator distending pressures and no 
PEEP (14). Biotrauma, a relatively recent concept, states that 
excessive release of proinflammatory mediators and immune 
system hyperstimulation is the primary mechanism by which 
injurious ventilation damages the lungs (15).

6. Ventilator-induced lung inflammation

Multiple animal models of VILI have demonstrated that 
injurious ventilation in the form of volutrauma or atelec-
trauma results in significant leukocyte sequestration and lung 
damage (16). Cytokines are an important group of mediators 
in this process. These are low-molecular-weight glycoproteins, 
produced by a number of cells, which communicate with 
cell-surface receptors to activate or inhibit the inflammatory 
cascade. Pro-inflammatory cytokines play an important role 
in immune cell recruitment and in the activation of macro-

phages and polymorphonuclear cells. Mechanical ventilation 
has the ability to release cytokines in lung cells by a number 
of mechanisms:

i) Mechanotransduction: the conversion of physical forces 
on the cell membrane/receptors into promotion of intracellular 
signal transduction pathways leading to increased synthesis 
and secretion of cytokines (17). ii) Cell necrosis may result from 
injurious stretch, leading to secretion of preformed cytokines, 
which then modulate the production of more cytokines (18). 
iii) Vascular endothelial cells may exert an increased inflam-
matory response as a consequence of increased pressure in the 
pulmonary vasculature by MV (19).

The localized inflammatory response resulting from 
these mechanisms could rapidly become systemic if the 
endothelial‑epithelial barrier is disrupted secondary to necrosis, 
permitting ‘spillover’ of cytokines, endotoxins and bacteria 
to spread from alveoli into the systemic circulation. Previous 
studies have linked the systemic inflammatory response that 
accompanies aggressive mechanical ventilation with cytokine 
release from lung cells (20), and consequent translocation of 
cytokines into the bloodstream (21). This loss of pulmonary 
containment of inflammation, termed de-compartmentalization, 
explains the high mortality of patients with ARDS from 
multi-organ failure. This concept of a systemic effect from 
an initial lung injury is supported by direct evidence from 
ex vivo studies (22), in vivo animal studies (23) and indirect 
supportive data from human studies (24). It was observed in 
an earlier study that high tidal volumes and zero PEEP caused 
significant elevation in serum levels of TNF-α compared to rats 
ventilated at low tidal volumes with or without PEEP and high 
tidal volumes with PEEP (25). Of note, PEEP is shown to be 
protective here, as in the high tidal volume group with PEEP, 
there was no TNF-α response.

7. Cyclic stretch and transcriptional activation

Mechano-transduction also stimulates gene transcription 
following mechano-sensing. A growing body of evidence has 
implicated the mitogen-activated protein kinase (MAPK) 
pathway as integral in transduction of signals from the 
mechano-sensory apparatus to the nucleus and driving gene 
transcription (26). MAPKs are signaling enzymes activated by 
phosphorylation in response to a range of extracellular stimuli 
such as cytokines and growth factors (27).

These enzymes are responsible for the transduction of 
mitogenic and differentiation signals leading to activation of 
transcription factors (28). ERK1 and 2 are activated by cyclic 
stretch in alveolar epithelial cells (29), as well as in a variety of 
other cell types, including cardiac myocytes (30), endothelial 
cells (31), and vascular smooth muscle cells (32). Many cyclic 
stretch studies have demonstrated increased alveolar levels of 
IL-8, which is highly suggestive of increased transcription of 
this inflammatory cytokine by mechanical stretch (33). Cyclic 
stretch has also been demonstrated to induce activation of a 
powerful transcription factor nuclear factor κB (NF-κB).

8. NF-κB in injury

The NF-κB helps in harmonization of the inflammatory 
response. It regulates pro-inflammatory transcriptional 
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programs that carry out this response. Its activation leads to 
the upregulation of adhesion molecules and chemokines in 
vascular endothelial cells and within the tissue. It is also essen-
tial for the production of antimicrobial effector molecules and 
for the survival of leukocytes in an inflammatory milieu. 
Although crucial for an intact host defense response, excessive 
activation of NF-κB leads to exaggerated inflammatory injury 
of lungs and other organs (34). Mechanical stretch activates the 
NF-κB pathway in cardiac myocytes (35), vascular endothelial 
cells (36) and alveolar epithelial cells (37).

The presence of this transcription factor in the patho-
genesis of lung injury has been demonstrated in many 
experimental studies. Upregulation of NF-κB in response to 
stretch has been demonstrated in many in vitro and ex vivo 
lung studies (38). Increased activation of NF-κB occurs in 
alveolar macrophages in established ARDS (39). Using an 
isolated perfused lung model, Held et al demonstrated activa-
tion of NF-κB in response to LPS and ventilation with large 
tidal volumes (40). NF-κB regulation can take place at any 
point of its activation and postactivation pathway and prob-
ably plays a crucial role in the NF-κB-mediated inflammatory 
cascade. In ARDS for example, Moine et al (41) showed that 
NF-κB maintained an activated state in spite of increased 
IκB levels and reductions in Bcl-3 levels (another member 
of the IκB family). This implies that basic aberrations in 
NF-κB‑related transcriptional mechanisms are likely central 
to the generation of the inflammatory cascade, which occurs 
in patients with sepsis and ARDS.

9. Mechanisms of protection by low tidal volume ventilation

Modulation of the inflammatory response. Protective venti-
lation has actually been shown to reduce the inflammatory 
response at a molecular level, compared to more traditional 
ventilation. It was found in a recent report that BAL levels 
of IL-1β, IL-6, IL-8, TNF-α, TNF-αsR55, TNF-αsR75, and 
IL-1ra decreased over time, as did plasma levels of IL-6. 
This demonstrated that the protective strategy partially 
attenuated local and systemic inflammation over time. The low 
stretch/lung rest arm was concomitant with minimal apoptosis 
and maximum risks of atelectasis. A study in the recent past 
noted a significant decrease in interleukin-6 and -8 levels (42). 
Another study demonstrated reversal of the injurious stretch-
induced systemic inflammatory response, in terms of cytokine 
release, within 6 h of changing to a protective ventilation 
strategy, but no impact on the local pulmonary response (43). 
More recently, a study noted significant reduction in the levels 
of systemic inflammatory cytokines in the low tidal volume 
group.

10. Impact of lung ventilatory strategies over time

Mortality in ARDS has undoubtedly decreased over time 
according to a number of studies (44). Protective ventilation 
has played a major role in this reduction, but other advance-
ments in critical care, such as better supportive care, have been 
influential. Petrucci and De Feo conducted an extensive meta-
analysis in the form of a Cochrane review, which they updated 
for the third time in 2013 (45) in which they examine all trials 
to date that have studied the impact of lung protective venti-

lator strategies in ARDS. In this most recent update, the main 
conclusion was the utilization of lower tidal volume ventilation 
reduces relative risk of death. However, there is scarcity of 
information regarding conclusion in terms of morbidity and 
long-term outcomes.

11. The role of carbon dioxide in modulating lung injury

Injurious effects of hypocapnia. In contrast, traditional 
approaches to mechanical ventilation frequently resulted 
in hypocapnia, which can be severely damaging to lungs. A 
number of studies in the literature have identified hyperventi-
lation and hypocapnia as risk factors for adverse outcomes in 
ARDS (46). A possible explanation could be vasoconstriction 
and hemoglobin oxygen dissociation curve left shift. Both 
hyperventilation and hypocapnia might be independent causes 
of bronchopulmonary dysplasia in infants (47). Hypocapnia 
reduces lung compliance (48), impairs functional surfactant 
production (49) and increases microvascular permeability in 
tracheal mucosa (46). Trimble et al, in 1971 demonstrated 
that hypocapnia increased work of breathing, aggravated 
ventilation/perfusion mismatch, increased airway resistance, 
increased the A-a O2 gradient and decreased the PaO2 in 
patients with ARDS (50). Another study found hypocapnia 
to be directly deleterious in lung injury, and a promoter of 
ischemia-reperfusion-induced acute lung injury (51).

12. Rationale for ‘permissive’ hypercapnia to reduce lung 
stretch

One of the consequences of instituting a low tidal volume venti-
latory strategy is a gradually increasing PCO2 level greater than 
the upper limit of normal, termed hypercapnia. This ‘permis-
sive hypercapnia’ (PaCO2 >45 mmHg) has been adopted as 
the preferred approach versus normo- or hypocapnic targets in 
the setting of ALI/ARDS. Having been first demonstrated to 
be effective in the setting of acute severe asthma (52) in 1984, 
the strategy was then trialled by Hickling (53) for ARDS in 
the 1990s. This hypercapnia is accompanied by an acidosis in 
the acute phase, which is gradually then subjected to renal and 
tissue buffering. Hickling demonstrated no detrimental effects 
of this hypercapnic acidosis (HCA) in experimental studies. 
In subsequent preclinical studies, induced HCA - by means of 
addition of CO2 to the inspired gases - reduced the severity of 
acute lung injury (ALI) induced by multiple factors (54,55). 
HCA has attenuated early lung (56) and systemic (57) sepsis. 
These preclinical studies have suggested a potential direct 
benefit of HCA. Moreover, the presence of an HCA at the time 
of randomization in patients subjected to high tidal volume 
ventilation was associated with better 28-day survival (58).

13. Therapeutic hypercapnia - further reducing lung injury?

Encouraged by the beneficial effects of permissive hypercapnia, 
some groups hypothesized that deliberately increasing the 
PaCO2, by either initially ventilating at very low tidal volumes, 
or by inhalation of small fractions of CO2, would also confer 
benefit in lung injury - termed ‘therapeutic hypercapnia’ (TH). 
Experimental studies exploring this hypothesis have achieved 
promising results. Laffey and colleagues demonstrated 
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a protective effect in an in  vivo lung reperfusion injury 
model (54), while Sinclair et al demonstrated improved lung 
mechanics, gas exchange and injury scores in rabbits ventilated 
with high tidal volumes and targeted hypercapnia versus rabbits 
with eucapnic targets (59). De Smet et al ventilated isolated 
perfused rat lungs for 2 h with low (7 ml/kg) or moderately high 
(20 ml/kg) Vt and 5% or 20% CO2, with lipopolysaccharide or 
saline added to the perfusate (60). HCA resulted in improved 
pulmonary edema, decreased lung stiffness, and markedly 
decreased levels of TNF-α and IL-6 in the lavage and perfusate. 
Of note, they found HCA to be beneficial, regardless of the 
tidal volume, suggesting that HCA has independent protective 
effects. More recent experimental studies have demonstrated 
that therapeutic hypercapnia improved lung function and 
reduced inflammation after one-lung ventilation in lobectomy 
patients (61). Its beneficial effects extend outside the lung to the 
heart; TH prevents the adverse effects of sustained exposure to 
iNO on RV systolic function by limiting IL-1-mediated NOS-2 
upregulation and consequent nitration (62). Other studies have 
demonstrated that TH is neuroprotective via anti-apoptotic 
mechanisms and improves impaired spatial memory (63). A 
trial currently in progress will assess the feasibility and safety of 
targeting mild hypercapnia for 24 h following intensive care unit 
admission for cardiac arrest patients. It will also provide insight on 
whether such treatment improves neurological injury biomarkers 
concentrations, compared with normocapnia (64). The evidence 
is mounting in favour of the anti-inflammatory merits of CO2.

14. Mechanisms of action of HCA

One therapeutic mechanism is by the attenuation of free radical 
injury. Laffey and colleagues demonstrated anti‑apoptotic 
effects and inhibition of nitric oxide-derived oxidant genera-
tion (65). The study by Takeshita et al provides strong supportive 
evidence that HCA attenuates LPS-induced NF-κB activation 
by suppression of IκBα degradation, which in turn leads to 
downregulation of ICAM-1 and IL-8 in pulmonary endothelial 
cells (66). Our own group replicated this finding and in addi-
tion demonstrated that HCA attenuated ventilation-induced 
lung injury independent of injury severity in Sprague-Dawley 
rats and decreased mechanical stretch‑induced epithelial 
injury and death, via an NF-κB-dependent mechanism (67).

15. HCA and lung

HCA might also exert potentially deleterious effects in the 
setting of lung injury and may indeed worsen a pre-existing 
injury in certain situations. One group demonstrated that 
HCA worsens protein malfunction by potentiating protein 
nitration by the free radical, peroxynitrite (68). Other groups, 
including ours, have shown that HCA impairs bacterial killing 
in the setting of prolonged lung infection (69), delays plasma 
membrane resealing, an essential mechanism of cellular 
repair (70), and inhibits pulmonary epithelial wound healing 
by decreasing cell migration via an NF-κB-dependent mecha-
nism (71). Dixon also demonstrated that HCA, along with 
inhibiting stretch-induced cytokine production, also impaired 
stretch-induced pulmonary surfactant release in rat alveolar 
type II cells (72). It can be concluded, therefore, that HCA 
exerts diverse effects, some of which may be beneficial and 

others harmful, depending on the context. In this manner, it 
may constitute a ‘double-edged sword’.

16. MSCs and lung injury

Mesenchymal stem cells (MSCs) have inbuilt ability of 
self‑renewal and could classically differentiate into meso-
dermal lineages, including chondrocytes, adipocytes, and 
osteoblasts (73). There is increasing evidence that they might 
also differentiate into cells of non-mesodermal origin such 
as lung epithelial cells (74). MSCs offer unique advantage as 
they allow allogeneic administration due to their low immuno
genicity  (75). In this manner, the ‘immunomodulatory’ 
properties of adult stem cells like MSCs might be more 
successful. The alveolar fluid clearance limits and depletion of 
surfactant are commonly observed in ALI/ARDS (76). In the 
above situations, MSCs might restore epithelial and endothelial 
function, either by secretion of paracrine factors to enhance 
renewal of these tissues or by differentiation into these cell 
types. ALI/ARDS is also associated with multi‑organ failure, 
which frequently is the reason for mortality in critically ill 
patients. MSCs have great therapeutic potential in the above 
cases (77). MSCs have also potential to secrete disease modi-
fying molecules, which might augment their therapeutic effects. 
As they home to sites of inflammation following intravenous 
administration after tissue injury (78), MSCs might also act as 
vector for genetic therapies (79). The intratracheal administra-
tion provides access to both the distal lung epithelium and the 
pulmonary endothelium for stem cell therapies (80). Moreover, 
MSCs therapeutic potential for ALI/ARDS has been strongly 
supported (81). However, MSC are still in the early phases of 
clinical use in the form of various trials. Some trials showed 
positive effects and favored clinical use (82). These prelimi-
nary studies show potential, but larger trials are required for 
definitive answers.

17. Conclusions

To clearly understand the complex interplay between HCA 
and the NF-κB pathway might allow us to develop more effec-
tive strategies to minimize lung injury in ARDS. Generating 
new insights into the therapeutic potential of MSCs might 
transform traditional approaches to ARDS management by 
combining lung repair tactics with attenuation of injury.
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