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Utilizing nullomers in cell-free RNA for early cancer detection
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Early detection of cancer can significantly improve patient outcomes; however, sensitive and highly specific biomarkers for cancer
detection are currently missing. Nullomers are the shortest sequences that are absent from the human genome but can emerge
due to somatic mutations in cancer. We examine over 10,000 whole exome sequencing matched tumor-normal samples to
characterize nullomer emergence across exonic regions of the genome. We also identify nullomer emerging mutational hotspots
within tumor genes. Finally, we provide evidence for the identification of nullomers in cell-free RNA from peripheral blood samples,
enabling detection of multiple tumor types. We show multiple tumor classification models with an AUC greater than 0.9, including a
hepatocellular carcinoma classifier with an AUC greater than 0.99.
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INTRODUCTION
Cancer is characterized by the accumulation of somatic mutations
and uncontrolled clonal proliferation of malignant cells [1].
Though there have been important advances in cancer therapeu-
tics, cancer remains the second leading cause of death worldwide
[2]. The vast majority of malignant tumors are detected at a late
stage, where the likelihood of survival declines steeply [3]. Early
cancer detection is associated with improved clinical outcomes
[4]. Therefore, there is a need for novel biomarkers to facilitate
early cancer detection as well as surveillance at the
population level.
Cancer biomarker development has involved proteomic,

transcriptomic and metabolomic profiling, DNA methylation,
circulating tumor cells, and cell-free DNA (cfDNA) [5–9]. However,
these methods have been shown to have suboptimal sensitivity
and specificity. There is sufficient evidence that cancer cells
release cfRNA, which can be detected in the blood [10]. cfRNA
represents a highly dynamic biomarker, since it can indicate
expression changes in real time. Importantly, highly expressed
tumor-associated genes can be over-represented in cfRNA
samples relative to their lower frequency in cfDNA. cfRNA can
also provide information about the tissue of origin as there are
tissue-specific and cancer-specific transcriptomic differences [10].
Consequently, cfRNA can provide information that is complemen-
tary to that derived from cfDNA and could prove particularly
useful for tumors with lower mutational load.
Kmers, which are contiguous sequences of length k composed

of nucleotides in genomics or amino acids in proteomics.
Nullomers are the shortest sequences that are absent from the
human genome [11, 12]. By extension, nullpeptides are peptides

that are absent from the human proteome. We also recently
examined the shortest sequences unique to a species, termed
quasi-primes [13, 14]. We and others have previously genomically
characterized nullomers and provided evidence for negative
selection constraints and for emergence due to germline variants
[15, 16]. In cancer cells, a set of nullpeptides have been shown to
elicit cytotoxic activity, impact the tumor immune microenviron-
ment and affect the tumor transcriptome [17]. For example,
nulpeptides 9 R and 9S1R demonstrate extensive effectiveness
against various cancer types, indicating their potential as
promising therapeutic agents in cancer treatment [17, 18].
Nullpeptides can also emerge due to somatic mutations in cancer
[19]. Recently, we have also investigated the relevance of
nullomers in cancer; by analyzing more than 2,700 Whole Genome
Sequenced primary tumors we provided evidence for the
emergence of nullomers during cancer development while also
showing the effectiveness of nullomers as early cancer detection
biomarkers using cfDNA [20]. Even though exonic regions are
enriched for mutations that cause nullomer emergence, it is still
unclear whether nullomers in cfRNA can be used for the early
detection of cancer or carry prognostic and/or predictive
relevance.
Along these lines, we were interested to examine nullomers’

utility as novel cfRNA biomarkers for early cancer detection. Here,
we perform an extensive analysis of nullomer emergence across
more than 10,000 Whole Exome Sequencing (WES) matched
tumor-normal samples [21]. We evaluate the distribution of
nullomer emergence events across tumor types and patients
and identify recurrent nullomer emergence events within cancer
genes. Finally, we use cfRNA data obtained from liquid biopsy
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samples to detect cancer using nullomers. Our findings provide
evidence for the utility of nullomers as cancer diagnostic
biomarkers in cfRNA.

RESULTS
Mutation type preferences during nullomer emergence
in cancer
Even though nullomer sequences are absent from the human
genome, somatic mutations can cause the emergence of
nullomers during cancer development. We first identified nullo-
mers across kmer lengths of up to 16 base-pairs (bp) long for the
reference human genome as previously described in [20]. We
analyzed mutation data from over 10,000 WES matched tumor-
normal pairs across 32 cancer types to detect emergence of
nullomers due to somatic mutations. Germline mutations were
removed using the tumor-normal pairs and, thus, did not affect
the analysis. The total number of different sixteen bp nullomers
that emerged across all somatic mutations in this cohort was
29,774,302, representing 0.69% of the 16 bp kmer space. More-
over, we found that the proportion of somatic mutations that
cause nullomer emergence increased from 0.178% at 12 bp kmer
length, to 79.76% at 16 bp kmer length (Fig. 1A). This finding
indicates that the majority of exonic somatic mutations cause the
emergence of one or more nullomers at longer kmer lengths.
We also report a strong correlation between the number of

mutations and the number of emerged nullomers across patients
with cancer (Pearson correlation, r > 0.98, p-value < 0.0001 across
kmer lengths; Fig. 1B, Supplementary Fig. 1). In addition, the
average number of nullomers that emerge by each individual
mutation increased with the nullomer length (Supplementary Fig.
2). We also examined how different mutation types affect the
likelihood of a nullomer emergence. There were significant
differences in which of the substitution mutations across the 96
possible trinucleotide changes gave rise to nullomers and which
did not (Fig. 1C). For example, we observed that nullomer
emerging mutations show a smaller proportion being TCT > TAT
and a larger proportion being GCG > GTG than non-nullomer
emerging mutations (Fig. 1C). We also explored indels and doublet
base substitutions for nullomer emergence. We found that
mononucleotide repeat tract deletions almost never cause
nullomer emergence; rather, nullomer emergence occurred
primarily at 0 bp or 1 bp homopolymer length insertions
(Fig. 1D, Supplementary Fig. 3). These findings indicate that the
mutation type significantly influences the likelihood of nullomer
emergence.

Identification of nullomer emergence across 10,000 WES
tumor samples
We investigated how kmer length affected the proportion of
mutations which cause the emergence of nullomers across
individual cancer types. The proportion of mutations which
caused nullomer emergence was extremely small at twelve and
thirteen bp lengths (Supplementary Fig. 4a, b), whereas at sixteen
bp lengths the majority of somatic mutations caused nullomer
emergence across cancer types (Fig. 1E, Supplementary Fig. 4). We
also report differences in the proportion of mutations causing
nullomer emergence between cancer types. Across multiple kmer
lengths, thyroid cancer (THCA) and breast cancer (BRCA) had the
highest (85.55% for 16 bp) and lowest (75.50% for 16 bp)
proportion of mutations causing nullomer emergence, respec-
tively (Fig. 1E, Supplementary Fig. 4).
Next, the number of nullomers identified across individual

cancer types and patients was explored. The mean number of
nullomers identified across patients ranged between 0.62 and
278.5 for 12 bp and 16 bp kmer lengths, respectively. The cancer
types with the highest and lowest number of nullomers emerging
per patient were skin cutaneous melanoma (SKCM) and

pheochromocytomas and paragangliomas (PCPG), respectively
(Fig. 1F). We also observed one extreme case in which one patient
produced 508,100 nullomers, indicating a hypermutator pheno-
type. We conclude that nullomer emergence occurred for a
significant fraction of somatic mutations across cancer types,
when examining kmer lengths of fourteen bps or higher.

Nullomer emergence across cancer genes
Subsequently, we compared the frequency of nullomer emerging
mutations and non-nullomer emerging mutations across genes.
Firstly, across the most frequently mutated genes in the patient
cohort, we identified differences between the set of mutations
that did not cause nullomer emergence and those that did. For
instance, TP53 was more frequently found to have nullomer
emerging mutations relative to other cancer genes, and those
nullomer emerging mutations were primarily missense mutations
(Fig. 2A). Interestingly, the variant allele frequency was higher in
TP53 for mutations that caused nullomer emergence (Fig. 2B).
Similar results were also obtained for other cancer genes such as
RYR2 (Fig. 2A), indicating biases in the frequencies between
mutations that did or did not cause nullomer emergence across
patients.
We observed that for sixteen bp nullomers, more somatic

mutations caused nullomer emergence than those that did not
across the top cancer genes (Fig. 2B, C). For instance, 33% of
patients had nullomer emerging mutations at TP53, whereas only
5% had mutations that did not cause nullomer emergence in the
same gene (Fig. 2B–D). We also found that the types of mutations
which caused nullomer emergence in the most frequently
mutated cancer genes were different from those which did not
cause nullomer emergence and were primarily missense, non-
sense and multi-hit mutations (Fig. 2B–D). Thus, it can be inferred
that there is nullomer emergence associated with the vast
majority of mutations in cancer genes are mutated. Significant
differences were detected in the frequency of nullomer emer-
gence from somatic mutations between cancer types across kmer
lengths (Fig. 2E; Supplementary Fig. 6). Finally, we performed an
analysis examining the density of nullomer emerging mutations in
coding regions across genes. We find that the genes with the
highest density include TP53, KRAS and CDKN2A among others
(Supplementary Fig. 7). These nullomer signatures could be used
in liquid biopsy as additional cancer biomarkers.

Nullomer emergence at mutational hotspots
For the most mutated cancer genes, we compared the distribution
and frequency of nullomer emerging mutations to those that did
not cause nullomer emergence across the length of each gene.
Across the genetic pathways involved in cancer, we found that
nullomer emerging mutations are more common than mutations
that do not cause nullomer emergence (Fig. 3A), which is
consistent with the majority of mutations causing nullomer
emergence at length sixteen (Fig. 1A). When examining individual
cancer genes, we observed that there were loci at which
nullomers repeatedly emerged (Fig. 3B; Supplementary Table 1)
and these loci represented cancer driver events. Oncogenes, such
as BRAF, PIK3CA and IDH1, showed individual nullomer emerging
hotspots, whereas tumor suppressors such as TP53 showed
dispersed patterns of nullomer emergence across the gene body
(Fig. 3B). Thus, the characterization of nullomer emergence across
individual cancer genes can enable sample classification based on
clinical targets and inform on the biological effect of a mutation.
Nullomers that emerge recurrently across multiple cancer

patients are more likely to be predictive of the tissue of origin
of a cancer. We therefore examined how frequently each nullomer
emerged in multiple patients across all the considered cancer
types or at individual cancer types. We report that most nullomers
are not recurrent; however, a small subset can be detected with
high frequency across cancer patients (Fig. 3C). We also showed
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Fig. 1 Characterization of nullomer emergence in WES patient samples. A The number of mutations causing nullomer emergence (in yellow)
relative to those that do not cause nullomer emergence for kmer lengths between 12 bp and 16 bp. Β Association between the number of WES
somatic mutations and the number of nullomers that emerge per patient. Results shown for sixteen-mer nullomers. C Proportion of substitution
types in nullomer emerging and non-nullomer emerging substitutions for sixteen bp nullomer length. Characterization of differences in substitution
type preference for non-nullomer and nullomer emerging mutations using the 96 substitution type channels. D Characterization of differences in
indel preference for non-nullomer and nullomer emerging mutations using the 28 and 83 indel mutation channels. E Proportion of mutations (in
yellow) causing sixteen bp nullomer emergence across cancer types. The proportion of mutations that do not cause nullomer emergence are shown
in gray. F Number of nullomers detected for each cancer patient in each cancer type for 16 bp nullomer length. Every dot represents a patient.
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Fig. 2 Identification of nullomer emergence across cancer genes. A Percentage of patients with each mutated gene across cancer types for
the top twenty most mutated genes. B Variant allele frequency of mutations that do not cause sixteen-mer nullomer emergence and of
mutations that cause sixteen-mer nullomer emergence. C, D Number of mutations in top cancer genes for mutations that either do not cause
or cause nullomer emergence. E Proportion of patients in which each of the top 16 bp top 10,000 nullomers from across all patients is found.
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Fig. 3 Identification of highly recurrent nullomers across cancer types and patients. A Frequency with which genetic pathways were
affected for mutations that do not cause or cause nullomer emergence. B Lollipop plot displaying mutation distribution for nullomer
emerging and non-nullomer emerging mutations. C Number of patients in which each of the top sixteen-mer nullomers was detected.
D Number of cancer-type specific nullomers across all cancer types examined at length sixteen.
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that the most recurrently emerging nullomers are primarily found
at a single cancer gene within a particular locus and primarily
involve known driver mutations (Table 1). For instance, the most
recurrently observed nullomer was found at BRAF across 5.5% of
cancer patients, while other top emerging nullomers were found
at individual loci in IDH1, PIK3CA, KRAS and TP53 (Table 1), all of
which are known cancer genes.
Interestingly, we identified a second set of highly recurrent

nullomers, which are observed in multiple cancer genes (Table 2).
The top recurrent nullomers observed are found in clusters of
paralogous genes. For instance, “CTCCAGTGTGAGTTAT” was found
to emerge across 34 genes, most of which were zinc-finger genes.
Additionally, “GTTGTTCTCGCGGACA” was found in 13 genes, all of
which were different members of the Protocadherin Beta gene
family. Therefore, highly recurrent nullomers can be identified
across WES tumor samples and can be potentially utilized for the
early detection of cancer with liquid biopsies.

Identification of cancer-type specific nullomers
We were also interested in investigating if certain nullomers
appear in individual cancer types but are otherwise absent from
all other cancer types and are, therefore, cancer-type specific. We
identified cancer-type specific nullomers across all the cancer
types examined (Fig. 3D), with the highest number of cancer-type
specific nullomers being observed in uterine corpus endometrial
carcinoma (UCEC), SKCM and colorectal adenocarcinoma (COAD),
three of the cancer types with the highest mutational burden. We
found that at longer kmer lengths, the number of cancer-type
specific nullomers being identified increased (Supplementary
Fig. 8).

Identification of nullomers in cfRNA for cancer detection
We examined if the identified nullomers can be used to detect
cancer in liquid biopsies using cfRNA data. We performed our
analyses using two datasets that encompassed lung, colorectal,
stomach, esophageal and liver cancers, as well as healthy controls
[22, 23]. For each sample, we identified the nullomers present for
nullomer lengths between 14 bp and 16 bp and generated
classification models to estimate our ability to detect cancer.
The nullomers that we incorporated in this analysis were the top
100,000 most frequently emerging nullomers across all cancer
types (Fig. 1), thus serving as a general list of nullomers to detect
multiple cancer types.
For the first dataset, which encompassed hepatocellular

carcinoma (HCC) and healthy control data, we examined the
frequency of nullomer emergence in cancer relative to controls
[22]. We observed that the total counts of nullomers detected in
cfRNA derived from liquid biopsies of HCC patients was
significantly higher than for the healthy controls (Welch Two
Sample t test, p-value < 0.0001 across kmer lengths; Fig. 4A). Next,
we examined if the size of the set of unique nullomers differed
between the two groups and found consistent patterns (Welch

Two Sample t test, p-value < 0.0001 across kmer lengths; Fig. 4B).
We also trained a machine learning model to examine if we can
accurately detect HCC based on the nullomers identified in each
sample. We generated a lasso logistic regression classification
model which was able to detect cancer samples in all cases
(AUC= 1; Fig. 4C). Results were highly consistent with different
kmer lengths, and we were able to accurately detect HCC also
using fourteen (AUC= 0.999) and fifteen (AUC= 0.998) bp
nullomer lengths (Supplementary Fig. 9). In addition to good
discrimination between HCC and healthy samples, each model
showed accurate probabilistic predictions as evidenced by a Brier
score less than or equal to 0.02 (Supplementary Fig. 10). We also
examined the top most informative features and observed that
the most informative nullomers were found at liver cancer-
associated genes, including FTH1, EEF2, TMSB10, ACTB and the
long non-coding RNA MALAT among others (Table 3). Our findings
provide evidence for the utility of nullomer identification in cfRNA
for cancer detection.
Next, we examined a dataset that included liquid biopsy-

derived cfRNA data from liver, esophageal, stomach, colorectal
and lung cancers, as well as healthy control cfRNA data [23]. We
found that, on average, samples from each cancer type displayed
more nullomer counts than the controls (Fig. 4D, Welch Two
Sample t test, p-value= 0.0001491), suggesting that nullomers can
indeed be used to differentiate between cancer patients and
healthy controls across disparate cancer types. Next, we also
created lasso logistic regression classification models for cancer
detection and examined their performance for each cancer type.
The classification models for liver, stomach, and lung cancer had
an AUC of 0.922, 0.927, and 0.877, respectively. We also found the
most informative nullomers for each of the different cancer
classification models (Table 4). The reported results indicated the
models’ ability to accurately classify cancer and healthy samples
across different cancer types (Fig. 4D–G) with particularly high
performance for stomach, thus revealing the potential of RNA
nullomers to facilitate early cancer detection.

DISCUSSION
In this study, we have characterized nullomer-emergence across
more than 10,000 WES tumors in 32 cancer types and investigated
their utility as cancer biomarkers in liquid biopsies with cfRNA. The
usage of a cfRNA-based cancer detection assay offers several
advantages. For instance, the process by which tumor-derived
RNA is introduced into the bloodstream likely exhibits differences
from cfDNA, including its transfer with exosomes [10, 24]. In
addition, the usage of cfRNA in diagnostics can incorporate overall
expression levels and dynamic expression changes. By utilizing
nullomers, we reduce the needed biological material to detect
mutations. Thus, using nullomers within cfRNA should increase the
sensitivity of identifying mutations from the matched tumor.
Increasing sensitivity is crucial for uncovering both tumors with
low mutational burden and mutations with a low allelic fraction.

Table 1. Selection of cancer genes and the corresponding most
recurrently emerging 16 bp nullomers across cancer types and
patients.

16 bp nullomer Gene Percentage
of patients

Number of
cancer types

CTCCATCGAGATTTCT BRAF 5.5% 11

CTATCATCATAGGTCA IDH1 3.48% 6

TGAAATCACTAAGCAG PIK3CA 2.56% 19

TCTTGCCTACGCCATC KRAS 1.93% 18

GGAGGTTGTGAGGCAC TP53 1.51% 19

Selection is based on locus-specific nullomers.

Table 2. Selection of cancer genes and the corresponding most
recurrently emerging 16 bp nullomers across cancer types and
patients.

16 bp nullomer Number
of genes

Percentage
of patients

Number
of cancer
types

CTCCAGTGTGAGTTAT 34 0.456% 9

GTTGTTCTCGCGGACA 13 0.379% 14

CACCGCCACAAACAGG 15 0.369% 9

TGGCCTATGATTGTTA 7 0.262% 7

Selection is based on nullomers detected across multiple loci.
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An example of where increased sensitivity is needed is
hepatocellular carcinoma, where traditional cfDNA analysis
methods are only able to recover 19.5–43% of mutations found
on tumor biopsy [25–27].
In contrast to the usage of nullomers in WGS tumor samples, in

which most identified nullomers are non-coding and are

passenger mutations [20], in WES we observe a substantial
fraction of emerging nullomers being cancer drivers and
actionable targets. We also provide evidence for the usage of
nullomers in cfRNA for cancer detection across multiple cancer
types. We previously described the emergence of nullomers due
to putative mutations and germline variants [15]. The number of

Fig. 4 Identification of nullomers in cfRNA derived from liquid biopsy samples for early cancer detection. A Counts of nullomers identified
in healthy and HCC samples using 14mer, 15mer and 16mer nullomers. Samples are grouped by disease state. B Number of unique nullomers
identified in healthy samples and HCC. Results shown for 14mer, 15mers and 16mer nullomers. C ROC curve and precision recall for liver
cancer. D Counts of nullomers identified in healthy and cancer samples for liver, esophageal, stomach, colorectal and lung cancers using
16mer nullomers. Cancer samples are grouped by cancer type. E–G ROC curve and precision recall for (E) liver cancer, (F) stomach cancer and
(G) lung cancer.
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nullomers emerging from somatic mutations increases exponen-
tially as a function of kmer length, which aligns with the previous
findings for putative and germline variants. This is expected based
on the number of possible kmers for a given length; we observe
that this property enables us to capture a larger proportion of the
somatic mutations (Supplementary Fig. 4; Fig. 1E), which in turn
results in improved cancer detection (Fig. 4A, B, D). Our
hepatocellular carcinoma nullomer model shows higher perfor-
mance than previously used detection panels of ncRNAs
[22, 28, 29]. Additionally, our model shows better performance
than models which were trained on somatic copy number
aberrations [30]. To further show the information gain provided
by nullomers, we plan to compare the results of the nullomer
models of cfRNA of patients with cancer to the same model
applied to normal sequences subjected to random in-silico
mutation.
It is important to note that these results are limited by the

sample size of the datasets. Larger cohort sizes with information
about cancer staging are needed to validate the use of specific
nullomers in models for cancer detection before one day making
it to clinical trial. In future work, we plan to incorporate additional
disparate cancer types to characterize the performance of our
nullomer-based approach between them. It will be of interest to
directly compare the performance of predictive models using
cfDNA and cfRNA for the same patients as well as their integration
into multi omics predictive models. To account for functional
mutations, it may also prove fruitful to incorporate the predicted
protein sequences of the cfRNA into the predictive models.
Furthermore, as immunotherapies and personalized treatments
are advancing, nullomer based cfRNA-based diagnosis could be
coupled with the identification of neoantigens for personal cancer
vaccine development or other patient-tailored therapies.

Therefore, in future work, we envision an integrated setting in
which we can use nullomers across the stages of cancer care
including cancer detection, diagnosis and treatment choice.
Finally, cfRNA biomarkers can be combined with DNA-based,
protein-based and other cancer biomarkers to improve and
advance the early diagnosis of cancer.

METHODS
Mutation dataset
Whole exome sequencing mutation data from tumor samples with
matched controls were downloaded from https://api.gdc.cancer.gov/
data/1c8cfe5f-e52d-41ba-94da-f15ea1337efc for over 10,000 whole exome
sequencing tumor samples spanning 32 cancer types, from The Cancer
Genome Atlas. Throughout the study, the GRCh37 reference human
genome was used unless otherwise stated.

Nullomer emergence from somatic mutations
Nullomers were identified as previously described in [15]. Nullomer
emergence was performed for kmer lengths of 12–16 bp for each somatic
mutation across cancer patients and tumor types. Somatic mutations were
separated into nullomer emerging and mutations that did not cause
nullomer emergence. Maftools was used for the analysis of somatic
mutations across cancer genes and at individual loci of specific cancer
genes. The density of mutations causing nullomer emergence was
estimated at coding regions. Genes were ranked based on the density of
nullomer emerging mutations at coding regions (Supplementary Fig. 7).

Identification of cancer-type specific nullomers
Tumor types were clustered based on the proportion of nullomers shared.
Cancer-type specific nullomers represented nullomers that emerged in at
least one patient within a cancer type and which were absent from every
patient across all other cancer types.

cfRNA dataset processing
Liquid biopsy cfRNA fastq files were downloaded [22, 23]. Sequences
containing the top 100,000 emerging nullomers (12 bp to 16 bp) across
cancer types were extracted from each sample’s respective fastq files with
BBTools bbduk.sh [31]. The resulting reads were then trimmed with Trim
Galore [32] to remove poor quality bases and adapter sequences. The reads
were then filtered with BBTools seal.sh [33] to remove common microbial
contaminants, UniVec, ERCC spike-in, and ribosomal sequences. The
remaining reads were subsequently deduplicated with BBTools dedupe.sh
[33]. Aligning was done with BBTools bbmap.sh [33] with stringent
parameters (minid= 0.9 kfilter= 25) against a custom genome including
GRCh38, SILVA SSU Ref NR 99, and common human viruses. Jellyfish [34]
was used to count occurrences of each nullomer in the aligned SAM files.

Classification model to detect cancer patients from cfRNA
A count matrix of samples by nullomers was used as the starting input for
each model. Any counts less than or equal to two were set to zero to
decrease false positive counts. Nullomers which had a sum of counts
across samples less than 10 were removed. The count matrix was then
CPM normalized with edgeR [35]. Samples for each matrix contained

Table 3. Selection of the most informative nullomers for detection of
liver cancer.

Gene Nullomer Proportion Reference

ACTB AAGGCCAACCGCAAGA 0.992 [39]

BAC RP11-
96H19

ATCAGCAAGCACACCA 0.958 [40]

EEF1A1 CCAATGGAAGCCGC 1.00 [41]

EEF2 CTGGCGTAGAGGCAGC 1.00 [42]

FTH1 CGGCCGCCCATAGTCA,
ATGACGACTGCGTCC,
CGACTGCGTCCACC

0.999,
0.999,
0.965

[43]

MALAT1 GAAGTTTGCAGTGGAA 0.954 [44]

RPL32 ACCAATGTTGGGCATG 0.942 [45]

TMSB10 GATTGGGGGGGGGCCC,
ATTGGGGGGGGGCCC

1.00, 0.913 [46]

Table 4. Selection of the most informative nullomers for detection of multiple cancer types including stomach, lung, colorectal, esophageal
and liver cancers.

Gene Nullomer Cancer Type Proportion Reference

ACRBP AAACTGGCCTAGAGTC Stomach 0.954 [47]

ACTB AAGGCCAACCGCAAGA Stomach 1.00 [39]

CAVIN2 GGAAAGCCTGCACACC Lung 0.999 [48]

FTH1 CGGCCGCCCATAGTCA Stomach, Colorectal 0.986, 0.973 [43]

KIF2A GGCGGAAAAGGCGGGA Stomach 0.908 [49]

MALAT1 GAAGTTTGCAGTGGAA Esophagus 0.958 [44]

MPC1 GGCCACCCCCCCGGCA Esophagus 0.931 [50]

SNX3 GAGACCGTGGCTGGCA Stomach 0.905 [51]

UBC CATCGAGAATGGCAAG Stomach 0.994 [52]
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healthy samples and samples of a specific cancer type. The R caret package
[36] was used to tune the lambda parameter of an L1 regularized logistic
regression model across twenty values between zero and one. Ten-fold
cross-validation was repeated 100 times to detect the best model and
evaluate its stability. Models were calibrated with the val.prob function in
the rms R package. Models which showed a sigmoid curve between
predicted probability and actual probability were then recalibrated with
Platt scaling. The R precrec package [37] was used to generate the
Precision-Recall and ROC curves based on the repeated cross-validation
predictions. Feature importance was assessed using the R glmnet package
[38] to perform 10-fold cross-validation repeated 100 times with the
previously ascertained lambda parameter. Nullomers with non-zero
coefficients were tracked across each of the 1000 models. Nullomers
which occurred in over 90% of the models were deemed important and
stable across models.

CODE AVAILABILITY
The code for this work can be found at: https://github.com/Georgakopoulos-Soares-
lab/cfRNA-nullomer-analysis.
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