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Abstract: The present investigation demonstrates renewable cardanol-based polyol for the formula-
tion of nanocomposite polyurethane (PU) coatings. The functional and structural features of cardanol
polyol and nanoparticles were studied using FT-IR and 1H NMR spectroscopic techniques. The
magnetic hydroxyapatite nanoparticles (MHAPs) were dispersed 1–5% in PU formulations to develop
nanocomposite anticorrosive coatings. An increase in the strength of MHAP increased the anticorro-
sive performance as examined by immersion and electrochemical methods. The nanocomposite PU
coatings showed good coating properties, viz., gloss, pencil hardness, flexibility, cross-cut adhesion,
and chemical resistance. Additionally, the coatings were also studied for surface morphology, wetting,
and thermal properties by scanning electron microscope (SEM), contact angle, and thermogravimetric
analysis (TGA), respectively. The hydrophobic nature of PU coatings increased by the addition of
MHAP, and an optimum result (105◦) was observed in 3% loading. The developed coatings revealed
its hydrophobic nature with excellent anticorrosive performance.

Keywords: cardanol; hydroxyapatite; nanocomposite; anticorrosive coatings; polyurethane; renew-
able materials

1. Introduction

Corrosion is a process in which metallic objects become damaged, which affects
various sectors of industries such as automobile, construction, aerospace, marines, and
healthcare. Metal corrosion is one of the big problems that result in massive losses to the
economy as well as human health [1–3]. In the case of biomaterials, corrosion prevention is
crucial particularly to overcome inflammation and allergic reactions caused by biomaterials
as these materials are constantly challenged by biological fluids [4]. Anticorrosive paints
and coatings based on synthetic polymeric resins are used to minimize such types of losses
and to improve the life span of metallic items [5–7]. The majority of polymeric resins used
in the present paints and coatings are of petroleum origin. The depletion of petroleum
sources and fluctuations in their prices made it necessary to find out some new alternatives
such as renewable, readily available, and ecofriendly polymeric materials [8,9]. Renewable
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materials including carbohydrates, lipids, vegetable oils, cardanol [10], eugenol [11], etc.,
have been explored to use in the preparation of monomers and polymers such as alkyds [5],
polyurethanes [6], polyesters [6], phenol-formaldehyde resins, epoxy [12], benzoxazines,
etc. [13]. The resultant renewable source-based polymers have found applications in the
different fields such as coatings, composites, microencapsulation, reactive diluents, foams,
and so on. Among all renewable materials, cardanol has fascinated the researchers due to
its unique chemical structure and possible chemical modifications through the availability
of reactive sites such as phenolic hydroxyl group, aromatic ring, and long aliphatic carbon
chain with unsaturation [13,14]. Aromatic ring provides chemical and thermal resistances,
while the hydroxyl group provides good adhesion. A long aliphatic carbon chain provides
good flexibility, excellent water resistance, and anti-corrosive properties [5].

Over the past decades, nanocomposite polymer coatings have been used to improve
the corrosion, thermal, and mechanical properties of coating formulations [15,16]. They
are developed from nano-sized fillers and polymeric resins. The polymeric resin helps to
hold the nanofiller in the matrix that works as a reinforcing material or improves physi-
comechanical properties of the composites [17,18]. Various types of nano-size fillers such as
SiO2 [19], ZnO [20], TiO2 [21,22], Fe2O3 [23], Fe3O4 [24], ZrO2 [25], Al2O3 [26], V2O5 [27],
graphene [28], BaZrO3 [29], and other materials [30] have been used in coating matrix
for desired applications such as the improvement of adhesion, gloss, corrosion, scratch,
thermal, and scratch/wear resistance. The main purpose of nanoparticle incorporation in
the coating formulation is to enhance physicochemical as well as corrosion resistance. The
use of nanocomposites offer excellent barrier resistance, flame retardancy, and change in
optical and electrical properties [31]. Additionally, the use of corrosion inhibitor is also
possible based on precursors used in the formulation of coatings, thickness, and adhe-
sion towards the metal surface [32]. The protective organic/inorganic hybrid composite
coatings are prepared by the addition of magnetic hydroxyapatite nanoparticle (MHAP)
as a reinforcing agent. The presence of MHAP has enhanced coating properties such as
chemical, wetting, and corrosion resistances. Previous reports are available on the use of
hydroxyapatite (HAP) for bone tissue engineering, controlled drug delivery, and as filler
for composites coatings. Even HAP modified with silver was used in the formulation of
antibacterial composite coatings [33] as bone substitutes [34], drug and protein carriers [35],
dental implants [36], etc. Additionally, magnetically modified HAP was utilized in the
removal of heavy metals such as uranium (VI) [37], lead ion [38], cadmium (II) [39], copper,
nickel [40], and other pollutants for the water [41]. As per the literature, until today, MHAP
has not been used in the designing of anticorrosive coatings for metal protection.

The present study explored the potential of cardanol and its derivative as an envi-
ronmentally friendly alternative for petroleum raw materials for applications in polymer
resin and coating industries. In the present study, cardanol-based Mannich polyol has been
used to synthesize renewable PU. Structural features of the prepared resin were confirmed
by end group analysis as well as by spectroscopic methods. Simultaneously, magnetic
hydroxyapatite nanoparticles were prepared and modified for their magnetic properties to
improve the anti-corrosion properties of PU coatings upon mixing with polyol and further
treatment with hexamethylene diisocyanate. The prepared PU composite coatings were
tested for their physicochemical and anticorrosive properties.

2. Materials and Methods

Cardanol was provided as a gift sample by the Polymer Division of Atul Ltd., India.
Hexamethylene diisocyanate (99%) (HDI), diethanolamine, (98%), and dibutyltin dilaurate
(95%) (DBTDL) were purchased from Sigma-Aldrich, India. Ferrous chloride tetrahydrate,
ferric chloride, potassium hydroxide, calcium nitrate tetrahydrate, diammonium hydrogen
phosphate, and xylene were purchased from Loba Chemie, India. All other chemicals were
used as received without any purification.
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2.1. Synthesis of Cardanol Based Mannich polyol

The synthesis of cardanol Mannich polyol (CMP) was based on our previously reported
method [42]. In the first step, the formation of oxazolidine was performed by reacting
diethanolamine (0.2 M) with formaldehyde (0.2 M) in a three-necked flask equipped with a
magnetic stirrer, condenser, and thermometer. The reaction mixture was heated at 65 ◦C for
2 h followed by distilling water off reaction to form oxazolidine intermediate. Thereafter,
cardanol (0.066 M) was added dropwise in the reaction mixture for 30 min and the reaction
was maintained to 95 ◦C for 4 h. The progress of the reaction was checked by conducting
thin layer chromatography (TLC) in an ethyl acetate: hexane (20:80) system. Finally, the
deep reddish-colored liquid of cardanol polyol was formed. The reaction for the synthesis
of CMP is given in Scheme 1.
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2.2. Synthesis of Magnetic Hydroxyapatite Nanoparticles

Magnetic hydroxyapatite nanoparticles were synthesized according to the literature
procedure with some modifications [43,44]. In the typical process, ferrous chloride tetrahy-
drate (1.85 mM) and ferric chloride (3.78 mM) were dissolved in 30 mL DI water taken
in a 250 mL round bottom flask under stirring at 500 rpm in the presence of nitrogen
atmosphere. After 1 h, the completely clear orange color solution was formed. Then,
10 mL 30% ammonia solution was added dropwise into the reaction mixture and kept at
70 ◦C temperature for 1 h to form black color iron oxide nanoparticles. Entire synthesized
iron oxide nanoparticles were well dispersed in a solution of calcium nitrate tetrahydrate
(33.7 mM) and diammonium hydrogen phosphate (20 mM) prepared in a 250 mL beaker
containing 50 mL DI water. Afterward, the pH of the solution was adjusted to 11 using
ammonia solution. This mixture was stirred for 3 h at 90 ◦C temperature under a nitrogen
atmosphere. Milky white particles formed were centrifuged and washed with water and
ethanol to remove impurities. The resulting particles were magnetically separated from
the medium using a local magnet and dried in an oven at 70 ◦C. Then, the particles were
ground in a mortar pestle and filtered using 150 mesh size sieved for their uniform size
and utilized for further applications.

2.3. Formulation of Polyurethane Nanocomposite Coatings

Mild steel (MS) panels were used as the substrate for the application of polyurethane
(PU) nanocomposites coatings. The elemental composition of mild steel used is provided
in Table 1.
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Table 1. The elemental composition of mild steel substrate used for exploring the functionality of
the coating.

Element Composition Amount in Steel (%)

Carbon 0.16

Aluminum 0.07

Silicon 0.168

Manganese 0.18

Phosphorous 0.025

Copper 0.09

Iron Balance

The MS substrate was pre-treated with sandpaper, degreased with acetone, and dried
in an oven for 20 min. The required quantities of MHAP of 0, 1, 2, 3, 4, and 5 wt. %
and CMP were dispersed into the xylene with stirring. Then, the calculated amounts of
hexamethylene diisocyanate (HDI) in the ratio of NCO:OH 1.2:1 and DBTDL as a catalyst
were added into the above mixture. After achieving desired viscosity to the resultant
formulation, it was applied by brush on pre-treated mild steel (MS) panels of 2.14-inch
dimension. The prepared coating panels were allowed to cure at room temperature for
48 h, and the cured coating film’s thickness was 90 ± 2 µm. The prepared samples were
coded as CMPU, CMPU-1, CMPU-2 CMPU-3, CMPU-4, and CMPU-5 based on the amount
of MHAP. The schematic of PUs preparation reaction is represented in Scheme 2.
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3. Characterization of Materials
3.1. End Group Analysis

Hydroxyl functionality is the most important parameter in the development of
polyurethane. They are deciding the actual quantity of diisocyanates for solid film devel-
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opment in the final crosslinked structure of PUs. It was determined experimentally by
following ASTM D 6342-12 methods.

3.2. Structural Analysis

Transformation of the functional group of cardanol to cardanol Mannich polyol and
structural confirmation were determined by recording FT-IR spectra on a Perkin Elmer-
1750 in the range between 4000 and 400 cm−1 and 1H NMR spectroscopic techniques were
applied on a Bruker Avance-400 MHz spectrometer in deuterated CDCl3 as a solvent and
TMS as an internal standard.

3.3. Testing Properties of Coatings
3.3.1. Gloss Test

The lustrous property of PU coatings was investigated using a digital gloss meter
(Model BYK Additives and Instruments, Wesel, Germany) at an angle of 60◦. For testing,
10 different positions on the surface of coated MS panels were considered and their average
value was recorded as a final gloss of PU coatings.

3.3.2. Adhesion Test

The adhesion of developed coatings to the mild steel surface was checked using a
cross-cut adhesion tester (model No. 107, Elcometer UK) as per the following method:
ASTM D-3359-02. The tester toolbox contained a die of parallel sets of 10 blades, adhesive
tape (Scotch brand 810 magic tape), brush, and lens. Initially, the coated surface was rapidly
scratched two times at 90◦ to each other with the help of a blade and smoothly cleaned
using a brush. Then, the adhesive tape was pressed on the scratched surface and pulled
within 60 S at a 180◦ angle. Finally, the visual confirmation of the percentage of squares
adhered on the surface of adhesive tape from crosscut MS panel with respect to the total
initial number of squares was considered for calculating the adhesion of the coatings with
the metal substrate.

3.3.3. Pencil Hardness

The hardness of PU-coated samples was determined using a pencil hardness tester
(Model BYK Additives and Instruments, Wesel, Germany) as per the ASTM D-3363 stan-
dards. The test was carried out by pushing pencils on the coated samples at an angle of 45◦

and repeated at a fresh place every time until the pencils formed scratches on the surface
of coatings.

3.3.4. Flexibility

The flexibility of the prepared coating samples was tested by a Conical Mandrel
Instrument (Raj Scientific Co., Mumbai, India) in the range of 45−180◦ angles.

3.3.5. Contact Angle

The surface hydrophobicity of PU coating samples was determined using a Contact
Angle Tensiometer, Model 200 standard Goniometer (p/n 200-F4) of Rame-hart Instrument
Co., Succasunna, NJ, USA. The test samples were fitted on the stage of the equipment and
a liquid drop of deionized water with constant volume (approximately 3–5 µdm3) was
dropped on the surface of the PU-coated sample using a microsyringe (Thermo Scientific
Gilmont Micrometer Syringe Model-GS-1200). All measurements were taken at room
temperature and an average of 10 times was considered for reporting.

3.3.6. Corrosion Performance

The corrosion performance of developed PU coatings was examined by immersion
and electrochemical testing.

An immersion study was used to examine the corrosion performance by dipping
uncoated and PU-coated MS samples in 3.5% NaCl aqueous solution for 7 days [45].
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After testing, the coated samples were compared with the control for a change in gloss,
deterioration, cracking, and partial or complete removal of the film from the surface. The
result was in the form of captured images of both before and after testing of all samples.

The corrosion performance of prepared PU coatings was also checked by electrochemi-
cal testing. The analysis was performed by an Auto lab PGSTAT30 potentiostat instrument,
and all analyses were carried out at room temperature in an aqueous 3.5 wt. % NaCl
solution. The analysis comprises three electrodes: platinum wire as a working, calomel and
coated MS strips as counter and working electrodes. The area of the coated panels exposed
to the test solution was 1 × 0.5 cm2 in all cases and the range of testing current potential
was kept between −1 and +1 V at a scan rate of 0.01 V/s.

3.3.7. Chemical Resistance

The chemical resistance was checked by dipping coatings into aqueous acid and
alkali solutions, water, and xylene as an organic solvent for 7 days [45,46]. The chemical
resistance of PU coatings was also checked by the methyl ethyl ketone rub test as per ASTM
D-5402. The test was carried out by rubbing the methyl ethyl ketone wet cotton cloth on
the surface of coated samples. The maximum number of double rubs at which the coatings
were removed from the surface or when 200 rubs were passed was considered as the final
result’s value.

3.3.8. Thermal Property

The thermal property of prepared PU films was studied in the range of 40 to 750 ◦C
using a thermogravimetric analyzer (TGA), Perkin Elmer TGA-4000 (Waltham, MA, USA).
All PU films were measured at a heating rate of 10 ◦C per min under an inert nitrogen
atmosphere at a flow rate of 20 mL/min.

3.3.9. Surface Morphology

The surface morphology of the prepared PU films was observed under a scanning
electron microscope (SEM) (FESEM, S-4800, Hitachi High Technologies Corporation, Tokyo,
Japan). The accelerating voltage was in the range of 0.5 to 30 kV and with an emission
current at about 10 µA.

4. Results and Discussion

Magnetic nanocomposite materials serve multifunctional purposes in the field of
catalysis, colloidal photonic crystals, imaging, nanofluids, data storage, defect sensor,
optical filters, environmental remediation, and, in particular, in the biomedical industry
because of their unique mechanical, thermal, physical, and chemical properties [47]. The
research in the field of hydroxyapatite nanocomposites is still in its infancy and requires
controlling fabrication processes for advanced applications.

4.1. Formation of Cardanol Based polyol

Renewable cardanol-based polyol was synthesized by the Mannich condensation of
cardanol, diethanolamine, and formaldehyde. The overall process for the synthesis of CMP
was considered ecofriendly due to its solvent-less nature. The hydroxyl value of polyol was
187 mg of KOH/g. Initially, diethanolamine and formaldehyde were condensed together to
form the oxazolidine intermediate [48]. Oxazolidine is present in the equilibrium with cyclic
and open-chain forms. The open-chain form is an iminium cation, which is the well-known
intermediate of Mannich reactions [49–51]. In the presence of a base (i.e., oxazolidine and
tertiary amine), cardanol dissociates in the cardonalate anion with the negative charge
circulated at equilibrium in resonance hybrids at oxygen and ortho- and para-positions of
the aromatic ring. Finally, it results in a substituted product at ortho- and para-positions
of the phenolic hydroxyl group of cardanol. The mechanism for the synthesis of CMP is
presented in Figure 1.
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Figure 1. Mechanism for the formation of cardanol Mannich polyol.

Structural confirmation of the cardanol-based polyol was performed by FT-IR and
1H NMR spectroscopies. The FT-IR spectrum of CMP is represented in Figure 2 and the
corresponding functional groups are tabulated in Table 2.

Materials 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 2. FT-IR spectra of cardanol and cardanol Mannich polyol. 

The stretching vibration at 3371 cm−1 was related to the -OH group present in carda-
nol and CMP. Absorption bands associated with the vibration of symmetric and asym-
metric -CH2 group were observed in between 2854 and 2924 cm−1, while aromatic -C-H 
stretching vibration was observed at 3009 cm−1. The band at 1651 cm−1 is due to the pres-
ence of -C=C- bond present in CMP and cardanol. The new broad peak observed in the 
FT-IR spectra of CMP at 1041 cm−1 for -C-N- stretching confirmed that the reaction of ox-
azolidine with cardanol formed cardanol Mannich polyol. 

Additionally, the structural confirmations of cardanol and CMP were carried by 1H 
NMR, and their spectra are shown in Figure 3. In the spectrum of cardanol, the chemical 
shift of terminal methylene proton appeared at 0.9 ppm and all -CH2- linkages were ob-
served at 1.25–1.5 ppm. The peaks found between 5.03 and 5.46 ppm were related to the 
protons of -C=C-, while the peaks at 2.03 and 2.55 ppm corresponded to the -CH2- protons 
adjacent to the unsaturation and aromatic ring, respectively. The peak at 4.6 and 6.68–7.17 
ppm were related to phenolic protons and aromatic benzene rings. In the spectrum of 
CMP, the new chemical shift was observed at 2.35 and 3.7 ppm, which were corresponded 
to the hydroxy and methylene protons present in between the nitrogen atom and phenolic 
aromatic ring, respectively [49]. The appearance of these protons in the CMP spectrum 
evidenced the occurence of the reaction between oxazolidine with cardanol. 

 
Figure 3. 1H NMR of cardanol and cardanol Mannich polyol. 

Figure 2. FT-IR spectra of cardanol and cardanol Mannich polyol.



Materials 2022, 15, 2308 8 of 17

Table 2. Peaks observed in FT-IR spectra of cardanol and cardanol Mannich polyol and magnetic
hydroxyapatite nanoparticles and the corresponding functional groups.

Wavenumber (cm−1) Vibration Type

Cardanol and cardanol Mannich polyol

3371 -OH bending vibration

2854–2924 vibration of symmetric and asymmetric -CH2 group

3009 -C-H stretching vibration

1651 C=C-bond

1041 -C-N- stretching

Magnetic hydroxyapatite nanoparticles

3570 -OH bending vibration

1458, and 871 -C=O stretching vibration

1035 and 630 phosphate group

1619 and 570 Fe-O bond stretching

The stretching vibration at 3371 cm−1 was related to the -OH group present in cardanol
and CMP. Absorption bands associated with the vibration of symmetric and asymmetric
-CH2 group were observed in between 2854 and 2924 cm−1, while aromatic -C-H stretching
vibration was observed at 3009 cm−1. The band at 1651 cm−1 is due to the presence of
-C=C- bond present in CMP and cardanol. The new broad peak observed in the FT-IR
spectra of CMP at 1041 cm−1 for -C-N- stretching confirmed that the reaction of oxazolidine
with cardanol formed cardanol Mannich polyol.

Additionally, the structural confirmations of cardanol and CMP were carried by 1H
NMR, and their spectra are shown in Figure 3. In the spectrum of cardanol, the chemical
shift of terminal methylene proton appeared at 0.9 ppm and all -CH2- linkages were
observed at 1.25–1.5 ppm. The peaks found between 5.03 and 5.46 ppm were related to
the protons of -C=C-, while the peaks at 2.03 and 2.55 ppm corresponded to the -CH2-
protons adjacent to the unsaturation and aromatic ring, respectively. The peak at 4.6
and 6.68–7.17 ppm were related to phenolic protons and aromatic benzene rings. In the
spectrum of CMP, the new chemical shift was observed at 2.35 and 3.7 ppm, which were
corresponded to the hydroxy and methylene protons present in between the nitrogen atom
and phenolic aromatic ring, respectively [49]. The appearance of these protons in the CMP
spectrum evidenced the occurence of the reaction between oxazolidine with cardanol.
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4.2. FT-IR of Magnetic Hydroxyapatite Nanoparticles

FT-IR spectrum of MHAP nanoparticles is represented in Figure 4, and the values are
tabulated in Table 2. The broad absorption band at 3570 cm−1 was related to -OH bending
vibration. The stretching vibration of carbonyl was observed at 1458, and 871 cm−1, while
the phosphate group showed absorption at 1035 and 630 cm−1 [52,53]. The Fe-O bond
stretching vibration occurred at 1619 and 570 cm−1 [37]. It proved that MHAP nanoparticles
were successfully formed.
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4.3. Magnetic Behavior of MHAP Nanoparticles

The magnetic property of the nanoparticles was tested by a simple magnet test. For
this purpose, the synthesized nanoparticles were suspended in a water–ethanol solution
and sonicated for 5 min to form a complete suspension of nanoparticles (Figure 5a). Af-
terward, the magnet was connected to bottles as shown in Figure 5b. In a few seconds, all
nanoparticles were attracted toward the magnet, which concluded that the synthesized
particles had magnetic behavior.
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4.4. Coating Properties

Determining the properties of coating is important in order to find out the suitability
of coating formulations. The results of coating properties are represented in Table 3. The
gloss of all the coated samples was observed in the range of 73 to 121. The gloss value of
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the pristine sample was more than all nanocomposite coatings because the incorporation of
MHAP nanoparticles would have increased opacity as well as increased roughness on the
surface of the coating. Thus, as the percentage of MHAP increased in coating formulations,
it decreased gloss. All coatings showed 100% adhesion towards the metal surface as not
a single block was removed from the area of the scratched surface. Hence, the results
conclude that the formulated coatings have excellent adhesion to the metal surface. The
MHAP nanoparticles incorporated coatings were not scratched to the level of a 5H-grade
pencil. The coatings containing 4 and 5% MHAP nanoparticles presented better pencil
hardness (5 H) than other coating samples. It may be due to the magnetic nature of MHAP
nanoparticles that might have resulted in high interactive forces between metal surfaces
and the coating matrix. All coating samples passed the flexibility test, which can offer
the prevention of crack formation. In addition to that, the chemical resistance of all the
prepared coatings was checked using the methyl ethyl ketone rub test. There were no
defects found on the surface of coatings, such as film removed from the surface, crack
formation, and changing color of coating on the surface up to 200 double rubs. Finally,
based on all coating properties, one can say that the developed coatings are suitable for the
coatings on metal surfaces.

Table 3. Coating properties of prepared PUs coatings.

PUs Code Gloss 60◦ Cross-Cut Adhesion (%) Pencil
Hardness Flexibility Methyl Ethyl Ketone

Double Rub Test

CMPU 121 100 3H Pass 200
CMPU-1 96 100 3H Pass 200
CMPU-2 85 100 4H Pass 200
CMPU-3 84 100 4H Pass 200
CMPU-4 74 100 5H Pass 200
CMPU-5 73 100 5H Pass 200

4.5. Chemical Resistance Study

The chemical resistance of the developed cardanol-based nanocomposite coatings was
studied in 5% HCl (in DI water) and 5% NaOH (in DI water), solutions, water, and xylene
as an organic solvent for 7 days. The obtained results of the test are expressed in Table 4
and captured images are provided in Figure 6.

Table 4. Chemical resistance of bared, CMPU, CMPU-1, CMPU-2, CMPU-3, CMPU-4, and CMPU-5.

Sample Code Water HCl NaOH Xylene

Bared F F F F
CMPU B D A A

CMPU-1 B B A A
CMPU-2 C C A A
CMPU-3 B C A A
CMPU-4 B B A A
CMPU-5 B B A A

A = not affected; B = slight loss in gloss; C = change in color and loss in gloss; D = the film partly removed; E = film
completely removed; F = fully damaged.

The results detected that bared and MHAP nanoparticles added PU coating samples
were completely damaged, had film detached from the surface, and showed a loss in
gloss in water and acid media. On the other hand, PUs added with MHAP showed better
resistance against media, with the exception of only a slight loss in gloss. These results
indicated that the presence of MHAP plays a role in increasing the adhesion of metal
surfaces. A minor loss in gloss was noted for all coatings in the alkali medium, while all
prepared coatings showed excellent results against the solvent medium, which may be
attributed to the good interaction between the MHAP and polyurethane matrix. Thus,
all composite coatings with MHAP showed better chemical resistance compared to the
pristine PU.
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4.6. Anticorrosive Performance by Immersion Method

The corrosion resistance of the prepared nanocomposite coatings was examined by
dipping coated and uncoated samples in 3.5% NaCl solution. After the test, analyzed
samples were compared with control samples and captured images are given in Figure 7.
The bared sample fully corroded, as it does not cover the PU coating layer and had direct
contact with the corrosive medium. From the test results, it was revealed that MHAP-based
nanocomposite coatings provide superior corrosion resistance than compared to the bared
and without MHAP coatings. The presence of MHAP nanoparticles in the PU matrix
provides a strong adhesion over the metal surface and acts as a barrier between corrosive
media and metal surface, which caused inhibition in the corrosive process.
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4.7. Anticorrosive Study by Electrochemical Method

Anticorrosive performance was also examined by measuring Tafel plots of uncoated,
coated, and MHAP-added coating samples in 3.5% NaCl solution. The Tafel plots of all
PU samples are shown in Figure 8. The plots were used to estimate corrosion potential
(Ecorr), corrosion current density (Icorr), polarization resistance (Rp), and corrosion rate (CR).
Using the Tafel extrapolation method based on the software Nova 1.8, the values of these
corrosion parameters were calculated and represented in Table 5. In such a curve, higher
Ecorr and lower Icorr values corresponded to the lower corrosion rate and vice versa [6,54].
The MHAP nanoparticles-added coatings showed lower Icorr values and higher Ecorr values
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than blank and pristine (CMPU) coatings. As the percent loading of MHAP in formulations
increased, it decreased the Icorr values of the coatings because of an increase in adherence
of the coatings with the metal surface due to the magnetic property of MHAP particles and
the formation of a protective barrier between corrosive ions and metal substrate.
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Figure 8. Tafel plot of CMPU, CMPU-1, CMPU-2, CMPU-3, CMPU-4, and CMPU-5 coated samples
in aq. 3.5% NaCl medium.

Table 5. Electrochemical corrosion measurement of bare, CMPU, CMPU-1, CMPU-2, CMPU-3,
CMPU-4, and CMPU-5 coated samples.

Sample
Code Ecorr (mV) Icorr

(nA)
Rp

(kΩ)
Corrosion Rate
(CR) (mm/Year)

Inhibition Efficiency
(% IE)

Bare (Uncoated) −656.47 968.44 4.929 0.0442 0.00
CMPU −618.24 528.12 8.994 0.00814 45.47

CMPU-1 −602.31 479.09 8.954 0.00812 50.52
CMPU-2 −544.68 465.71 10.343 0.00709 51.91
CMPU-3 −554.76 372.97 23.280 0.005483 61.48
CMPU-4 −547.84 345.10 16.059 0.00401 64.47
CMPU-5 −535.07 181.35 116.520 0.000582 81.28

Percent IE was determined from the values of corrosion current density of uncoated
and coated samples. In general, the higher the Icorr values, the lower the inhibition efficiency
of the coatings. The graphical presentation of all the coated and uncoated samples is shown
in Figure 9. The corrosion inhibition efficiency of MHAP-added coating samples was far
better than blank and CMPU. Higher efficiency was obtained for the 5% loaded coating due
to the good adhesion of PU formulation to the MS substrate. Additionally, the hydrophobic
nature of the coatings might have helped to enhance anticorrosive behavior by restricting
interaction between coatings and corrosive media.

The corrosion rate versus the type of coatings is graphically represented in Figure 10.
The corrosion rate of all PU-coated samples was better than the uncoated ones. Therefore,
it confirmed that the prepared PU formulations acted as an obstacle for said medium to
interact with the substrate and thus decreased the corrosion rate. From all results, it was
concluded that the developed nano-composite PU coatings provide superior corrosion
inhibition as compared to CMPU due to the presence of MHAP nano-particles in the PU
matrix. MHAP nano-particles act as a barrier to corrosive ions, which cause corrosion
inhibition and result in high Rp values and impedance of nanocomposite coatings, which
increased with an increase in the percent loading of MHAP nanoparticles in coatings.
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4.8. Contact Angle

The contact angle of the coated CMPU and all MHAP-embedded coated samples was
measured to estimate the surface hydrophobicity, and the results are shown in Figure 11.
From the results, it was observed that all nanocomposite-coated MS samples were more
hydrophobic than the pristine-coated sample. The contact angle of all the nanocomposite
coatings was found to be more than 90◦, which was much higher compared to MHAP
coatings (87◦) without nanoparticles. The contact angle of the coating samples increased
with an increase in the amount of MHAP nanoparticles up to 3% and, beyond that, the
declining values of the contact angle were observed. Overall, the results of contact angle
revealed the hydrophobic nature of the prepared nanocomposite PU coatings.

4.9. Thermogravimetric Analysis

The thermograms of all prepared PU films are presented in Figure 12. Thermal analysis
showed three steps of thermal degradation in all PU films. The first step of degradation
started in the range of 212–225 ◦C and ended at 410–419 ◦C with a degradation result of
30–38% weight losses due to the breakdown of urethane groups in PUs. In the second step,
degradation occurred in the range of 416–425 ◦C and ended at 530–539 ◦C with weight
losses of 35–43% due to the degradation of the main backbone chain of PUs. The third step
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of degradation was observed in the range of 534–536 ◦C and completed at 643–677 ◦C with
weight losses of 17–19% as a result of residual degradation. Thus, it can be stated that all
prepared composite coatings resulted in excellent thermal stability than CMPU.
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4.10. Surface Morphology of MHAP Composite Coating

The MHAP nanoparticles and their PU coatings were observed under a scanning elec-
tron microscope, and a few representative images are shown in Figure 13. The morphology
of MHAP nanoparticles revealed irregularly shaped agglomerates with an average size
of 38.64 nm. The particles showed a smooth surface. The CMPU appeared as a smooth
surface as it does not contain MHAP and it was free from phase separation or the presence
of any voids. However, slight agglomerations were seen at larger amounts of nanoparticles,
CMPU-4 and 5 samples, which is common in the dispersion of nanoparticles. The images
of MHAP incorporated coatings were also clear and homogeneous with the absence of
any type of phase separation or cracks over the surface. Therefore, it can be concluded
that MHAP was properly dispersed in the PU formulation and interacted with the matrix.
Furthermore, all coatings were free from the microcracks, voids, and phase separation.
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5. Conclusions

Cardanol was used as a renewable phenol for the preparation of Mannich-type polyol,
which was further utilized in the formulation of PU nanocomposite coatings using a various
percentage of MHAP (1,2,3,4, and 5%). The structural features of the synthesized cardanol
Mannich polyol were confirmed by FT-IR and 1H NMR spectroscopic techniques. MHAP
was synthesized in the laboratory and characterized by FT-IR and SEM analysis. The
developed PU nanocomposite coatings demonstrated good physicochemical properties.
The prepared coatings showed excellent anti-corrosion and chemical resistance tests. The
hydrophobic character of coatings increased up to 3% loading of MHAP; beyond that, it
decreased as measured by the contact angle test. All coatings showed good thermal stability
and smooth surface morphology, as studied by TGA and SEM, respectively. Thus, cardanol
can be used as a good renewable substitute over petroleum materials in the preparation of
polyurethane coatings.
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