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Abstract

The research reported herein integrates a generic holographic sensor platform and a smart-
phone-based colour quantification algorithm in order to standardise and improve the deter-
mination of the concentration of analytes of interest. The utility of this approach has been
exemplified by analysing the replay colour of the captured image of a holographic pH sensor
in near real-time. Personalised image encryption followed by a wavelet-based image com-
pression method were applied to secure the image transfer across a bandwidth-limited net-
work to the cloud. The decrypted and decompressed image was processed through four
principal steps: Recognition of the hologram in the image with a complex background using
a template-based approach, conversion of device-dependent RGB values to device-inde-
pendent CIEXYZ values using a polynomial model of the camera and computation of the
CIEL*a*b* values, use of the colour coordinates of the captured image to segment the
image, select the appropriate colour descriptors and, ultimately, locate the region of interest
(RQI), i.e. the hologram in this case, and finally, application of a machine learning-based
algorithm to correlate the colour coordinates of the ROI to the analyte concentration. Inte-
grating holographic sensors and the colour image processing algorithm potentially offers a
cost-effective platform for the remote monitoring of analytes in real time in readily accessible
body fluids by minimally trained individuals.

Introduction

Holographic sensors provide a real-time colour, alphanumeric or image response to the ana-
lyte of interest which is readable by the human eye [1-7]. However, the visual inspection of a
holographic sensor by an untrained operator is often adequate in providing only semi-quanti-
tative categorical interpretation of analyte concentrations such as positive, negative, high or
low. Improving the sensitivity and standardisation of colour quantification of the holographic
sensors requires the use of measurement instruments, which in this report, is a camera-
enabled mobile phone.

Colour digital imaging is an active research area for quantification in colorimetric instru-
ments. The scope of the work reported in the literature is diverse and covers a wide range of
sensors and digital image-based colour analysers. However, standard colour image processing
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techniques [8-15] are not applicable to holographic reflection sensors, which have an intrinsic
reflectivity, are dependent on the illuminating light intensity and exhibit a replay wavelength
which depends on the angle of view and which may or may not change with sample applica-
tion. Accordingly, the captured image of a holographic sensor can lead to an image with a
complex background, including highlights and shadows, which demands an improved and
sophisticated colour image processing algorithm to recognise automatically the region of inter-
est (ROI), i.e. the colour response of the holographic sensor.

The first step of digital image processing for such heterogeneous systems is image segmen-
tation that partitions the image into regions, each of which represents a homogenous region
with respect to selected features. In most of the previous studies, semi-automatic methods
were considered, which requires a user intervention to select manually the ROI based on sub-
jective evaluation. Such repetitive manual image segmentation is time-consuming and is not
justifiable for the efficient management of the substantial volume of information obtained
from multiple sensors. Thus, it would be useful if the segmentation task is automated. Garcia
et al. [10] highlighted the possibility of automatic image segmentation using an edge detection
algorithm to locate discontinuities in images; however, this method was applied to images
which were captured under controlled conditions in front of a simple, homogenous back-
ground that may not be applicable in real-world situations. The second step of image pro-
cessing is descriptor selection to present each segment based on its colour characteristics.
Accordingly, the selection of an appropriate colour model (colour space) is critical. Several
colour spaces have been used in the literature because the selection of the colour model
depends on its application and it is not possible to develop a universal approach. Therefore,
for any given application, it is necessary to evaluate the performance efficiency of various
combinations of absolute and hybrid colour descriptors. The third step of colour image pro-
cessing is object recognition to identify the ROI. Byrne et al. [13] employed a matching
algorithm for automatic, unsupervised ROI recognition; however, this method has a low
degree of tolerance to variations in the patterns to be matched and becomes time-consum-
ing for complex images in real-world applications.

Previous studies in the field of digital image-based colorimetry [8-15] used different predic-
tive modelling (regression analysis) methods to investigate the relationship between the ana-
lyte of interest and the colour response. Simple statistical models have been most commonly
used; however, the superiority of neural networks in modelling complex nonlinear systems
and increasing the prediction accuracy has been demonstrated and achieved by incorporating
a multi-dimensional vector of dependent variables as the input of the network and setting non-
linear equations between them using weighting parameters. It should be emphasised that a
predictive modelling method is a function of the sensor type and the engineering behind its
design, and thus, for any given sensor platform, it is required to develop a sensor-specific
model.

Colour image processing algorithms can be segregated into both system- and software-lev-
els. At the system-level, the camera reproduction of a colour of the original object is a function
of its spectral sensitivity profile, which is utilised as a weighting function to determine the RGB
values. Such colour rendering is device-dependent. Most of the previous studies inputted the
RGB values directly into the software-level and hence developed device-dependent image pro-
cessing algorithms which do not allow accurate generalisation of the algorithm with different
devices. Therefore, it is preferable to develop a device-independent algorithm at the software-
level. Device-independent colour reproduction is a systematically formulated colour imaging
model that provides a single, standard representation of colour. However, the spectral sensitiv-
ity of a digital camera is not a linear transform of the CIE colour matching functions [16],
mainly due to the need for maximising the signal-to-noise ratio, and thus the device-
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Fig 1. Flowchart of colour quantification based on digital colour image processing for holographic
grating sensors.

https://doi.org/10.1371/journal.pone.0187467.9001

dependent RGB values are not linearly related to the device-independent values. Shen et al. [8]
converted RGB values to the device-independent colour space of CIEL*a*b* using CIE1931
standard conversion metrics on the assumption that this was an ideal imaging device with
spectral sensitive profiles equivalent to the CIE1931 RGB colour matching functions. However,
this creates a conversion error, and to obviate this, it is essential to characterise the camera and
develop an appropriate camera model to convert the RGB values to a device-independent col-
our space and, eventually, a device-independent algorithm at the system level. Ideally, a generic
camera model would allow the development of a device-independent algorithm at both system
and software levels.

Thus, digital image processing for holographic sensors requires the development of specific
algorithms for colour quantification in which the camera characterisation process is incorpo-
rated. Moreover, the requirements for operation in real-world applications whilst largely
ignored in previous studies [8-15], should also be considered. An automatic colour processing
algorithm is essential to identify the sensor in a captured image where the colour coordinates
of the background objects might be similar to the operational colour range of the sensor. A
reliable transfer of image data from the smartphone of the user to a secure cloud demands
image data encryption, while image compression is required to allow transporting the image
data with a low bandwidth in limited-resource settings.

This report shows that colour quantification can be achieved when the user locates, identi-
fies and captures the image of the holographic sensor on a mobile phone, uploads the image to
an app, which automatically executes the encryption and compression algorithms and subse-
quently, transfers the output image to the cloud for further automatic processing and colour
quantification (Fig 1).

The feasibility and limitations of developing a smartphone-based hologram reader is exem-
plified for the response of pH-sensitive holographic sensors to various pH buffer solutions in
controlled conditions where the ambient illumination and the camera characteristics were
known and the distance and the angle between the smartphone and the sensor were fixed.
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Methods and materials

The smart polymer was synthesised following a standard protocol in the Institute of Biotech-
nology, University of Cambridge, UK. In order to covalently immobilise the hydrogel, the
glass slide was modified with 2% (v/v) solution of 3-(trimethoxysilyl) propyl methacrylate in
acetone and dried overnight in the dark at room temperature (20-23°C). Subsequently, the
modified glass slide was rinsed with ethanol and dried at room temperature.

UV-initiated bulk polymerisation was used for the preparation of the smart hydrogel. The
monomer phase, including 91.5m0l% HEMA, 2.5mol% EDMA, 6mol% MAA, was dissolved in
DMSO containing 2% (w/v) DMPA. The monomer mixture was vortexed for 5min to effect
dissolution. HEMA forms the backbone polymer chain and EDMA creates junctions for a
cross-linked network. The low percentage of the cross-linker leads to a relatively soft polymer
with a greater degree of swelling which in turn results in relatively larger Bragg shifts in
response to changes in analyte concentration. MAA is the functional monomer that makes the
polymer sensitive to pH changes by providing an ionisable carboxyl group. DMPA is a radical
generator to initiate the polymerisation reaction.

The mixture was degassed by sonication for 10min. A 200ul droplet of the monomer mix-
ture was pipetted onto the aluminium side of an aluminised polymer film and a silane-treated
glass slide was then gently lowered onto the monomer mixture (modified side down). The
monomer volume has been experimentally optimised in the Lowe group to obtain the mini-
mum variability across samples. The smart polymer was synthesised via UV polymerisation at
365nm for 25min. Afterwards, the glass slide was removed from the aluminium surface and
washed with ethanol to remove unreactive monomers and DMSO. Subsequently, the polymer
was dried at room temperature.

The holographic sensors were developed by the photochemical method [1]. The entire pro-
cess was carried out under a red safe light. A droplet of 200u/ 0.25M silver nitrate was applied
on a carrier glass and the glass slide was placed on the solution, polymer side down, for 2min.
Subsequently, the excess solution was wiped off with a clean tissue. The polymer was dried
with a cold blower to facilitate the diffusion of the following reactants into the hydrogel. After-
wards, the slide was immersed face-up in a solution of 40ml 0.25M sodium bromide and 2ml
0.5% (w/v) QBS dye in 3:2 (v/v) methanol/water under agitation for 45s. This timing was
experimentally optimised for the grain size of silver bromide to achieve maximum resolution
and minimum scattering phenomena. Afterwards, the polymer film was washed copiously
with deionized water to remove excess silver bromide. The glass slide was exposed to two
pulses at 532nm with a Q-switch setting of 275ps. In the highly illuminated regions, the rate of
reduction increases and bright fringes with a higher refractive index are formed, whereas in
the intensity minima, the reduction occurs less strongly, resulting in dark fringes. After the
laser exposure, the polymer film was washed briefly with deionized water and immersed face-
up in the developer bath under agitation for 10s, containing Saxby A: Saxby B 1:1 (v/v), where
Saxby A is 3g metol and 20g ascorbic acid in 500! deionized water and Saxby B is 50g sodium
carbonate and 15¢ sodium hydroxide in 500m! deionized water. Afterwards, the polymer was
immersed in the 1% (w/v) sodium bisulphate (Stop bath) for 1min to prevent the growth of sil-
ver nanoparticles which could reduce the spatial resolution of the grating. Then, to remove
undeveloped silver bromide in dark fringes, the glass slide was placed in 12% (w/v) sodium sul-
phite (Hypo solution) for 10min. The sulphite creates a strong complex with undeveloped sil-
ver and removes it from the hydrogel which leads to shrinkage and hence a blue shift.
Removing undeveloped silver bromide frees the attached dye in the hydrogel network which
can be easily removed in an ethanol: water 1:1 (v/v) (dye washer) bath. The last two steps
improve the brightness of the holographic grating by removing unreacted reactants and thus
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increase the difference in the refractive indices of the bright and dark fringes. Afterwards, the
glass slide was immersed in the bleach solution, 2% (w/v) copper sulphate and 0.4% (w/v)
potassium bromide in deionized water, for 15s to transfer the amplitude grating to a phase
grating by converting metallic silver to silver bromide; at this stage, the hydrogel film becomes
colourless.

The colour response of the pH-sensitive holographic sensor was evaluated across buffers
ranging in pH between 3.00 and 6.50. The recipes for each buffer was taken from the website:
https://www liverpool.ac.uk/buffers/buffercalc.html. The following buffer species at a concen-
tration of 10mM were used: Phosphate (pH 3 and 6.20-8.20), acetate (pH 4.00-5.00) and Bis-
Tris (pH 5.00-6.20). The pH was adjusted by dropwise addition of hydrochloric acid or
sodium hydroxide. The pH bulffer solutions used for this work were 3.00, 4.00, 4.50, 4.75, 5.00,
5.25, 5.50, 5.75, 6.00, 6.25 and 6.50.

The acquisition of true colour images from the holographic sensor was performed under
controlled conditions in response to pH buffer solutions. The hologram was integrated into a
logo matrix barcode (QR code) with a black central space and the pH buffer solutions were
applied. The required information about the sensor was incorporated the encoding region.
The diffracted colour was captured using a smartphone (Samsung GT-S5660). As the baseline
for the studies described in this report, the smartphone was placed in a fixed position at a dis-
tance 20cm from the sample with a 25°+1.5° viewing angle. The effect of the viewing angle on
the perceived colour was previously investigated in the Lowe group [2] and an angular toler-
ance of £1.5° was demonstrated for a reproducible measurement. The image database was
composed of 66 true colour images [3] of six pH-sensitive holographic gratings sensors in pH
buffer solutions (11 pH values between 3.00 and 6.50). The pH sensors were obtained from six
different batches. Since the preliminary studies demonstrated a strong agreement between the
colour features of 3 to 5 consecutive images of the sensors, one image was captured from each
sensor unless the image was blurry [4] due to ambient vibrations. The images had a size of
2048 by 1536 pixels.

The overall architecture of the image encryption technique involved confusion and diffu-
sion steps [5, 6]. In this work, an algorithm to generate the carrier image using a unique pass-
code was implemented for personalised image encryption. Each character of the personalised
alphanumeric password was encoded, and consequently, the carrier image was generated. For
passwords in English, 36 binary codes were required to cover 26 letters and 0-9 figures. Once
the binary codes of each character were converted to decimal, the permutation matrix was gen-
erated and the input image was highly encrypted.

Single-level two-dimensional wavelet-based image compression was applied [7-9] using
the Wavelet Toolbox of MATLAB to achieve temporal and spatial localisation simultaneously.
The performance of Haar and Daubechies wavelets was evaluated.

A decrypted and decompressed image was obtained by applying the reverse processes and
then the sensor was identified in the captured image. An object recognition algorithm based
on template matching was used to locate the QR code with the embedded sensor in the scene.
The Compute Vision Toolbox of MATLAB was used to apply the Speeded Up Robust Features
(SUREF) [10] method for the feature detection. The target image of the scene was converted
into the greyscale before finding point correspondences between the template and target (the
image of the scene) images. This algorithm can detect the QR code despite a scale, in-plane
rotation and a low degree of out-of-plan rotation.

The next stage of the algorithm is camera characterisation which refers to converting the
device-dependent colour (RGB) to a device-independent colour model such as CIEXYZ. The
homogeneity in the lighting of the captured image is critical for camera characterisation. To
assure repeatability of the image acquisition and uniformity of the lighting, the non-linear
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response of camera RGB channels was investigated under laboratory-controlled illumination
(CIEDG65 of a light booth) and viewing conditions using a colour chart with known device-
independent coordinates (ColorChecker®) Classic). The elapsed time of the light booth was
recorded to ensure the illuminance of the MiniMatcher light booth is maintained according to
its operational specifications. Despite using a light booth, the uniformity in the lighting of cap-
tured images is not attainable practically. This is due to the sensor non-linearity and non-uni-
formity, which needs to be addressed prior to camera characterisation.

The non-linearity of the imaging sensor in capturing luminance [11] was corrected using
the gamma correction algorithm suggested by Sharma and Bala [12], where the relationship
between incident radiance and camera response for the 6 grey scale patches of ColorChecker
was determined. The RGB values of the individual grey patches were mapped to the corre-
sponding normalised luminance values and then, the gamma value of each RGB channel was
calculated. The spatial non-uniformity which is caused by various noise sources [13] and the
falloff in illumination at the edges of the image due to lens vignetting [14] were corrected
using a scene-based technique suggested by Hardeberg [15].

Once the ColorChecker image was corrected for non-linearity and non-uniformity, the
mean RGB values of each colour patch were extracted. The XYZ tristimulus values for each 24
colour patch were calculated using their spectral reflectance 380-780nm in 5nm intervals
under illuminant CIED65 and the 2° CIE1931 standard colorimetric observer and illuminant
CIEDG65. The spectral reflectance of colour patches was obtained from the webpage of Roches-
ter Institute of Technology [16]. The CIE1931 colour matching functions were obtained from
the UCL Institute of Ophthalmology webpage [17]. Afterwards, the CIEXYZ values were con-
verted to CIEL*a*b* [18] to enable quantification of the performance of camera characterisa-
tion methods. The tristimulus of the reference illuminant was considered CIED65 white light.
Polynomial modelling of 24 patches of the ColorChecker was used to derive a matrix to trans-
fer the camera RGB outputs to XYZ values [14,19]. The suggested augmented RGB terms were
based on a study by Cheung and Westland [20]. Once the coefficients of polynomial models
were estimated, the CIEXYZ values of the 24 colour patches of the Colorchecker were calcu-
lated. To evaluate the performance of various orders of polynomial models, the mean of result-
ing XYZ tristimulus values were converted to CIEL*a*b* values, and subsequently, the colour
difference, AE,;, between the reference and the calculated CIEL*a*b* values for each polyno-
mial was calculated [18, 21-23]. Afterwards, the median of AE,, for various degrees of polyno-
mial models was obtained.

The colour image processing stage of the algorithm includes three key steps of image seg-
mentation, descriptor selection and object recognition after the pre-processing step to derive
the device-independent colour values. The purpose of this stage is to extract the region of
interest (ROI), i.e. the colour response of the hologram, from the captured images. The cap-
tured images of the colour response of holographic grating sensors to pH buffer solutions were
pre-processed using the camera characterisation algorithm, where the images were initially
corrected for non-linearity and non-uniformity and subsequently, the polynomial model of
the camera with 22 RGB terms was applied to compute the corresponding XYZ tristimulus.
Afterwards, the CIEXYZ matrix was reshaped to a two-dimensional matrix and the CIEL*a*b*
values were calculated. The extracted RGB values were also used to calculate the HSI colour
values.

Image segmentation is the process of partitioning the image into distinct regions, each of
which represents a homogeneous region with respect to selected features. Prior to the image
segmentation, a two-dimensional (2D) Gaussian-based smoothing filter [24] was applied to
reduce the noise. Since there is no clear standard to determine which segmentation technique
should be used for an image, the candidate image segmentation techniques were selected
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based on the pixel clouds of the captured images and their performance was then evaluated.
The pixel clouds were visualised in the RGB, HSI and L*a*b* colour spaces and subsequently,
two pixel-based clustering methods, including k-means [25] and fuzzy c-means (FCM) [26]
were used; the latter is the fuzzified version of the k-means. Three colour spaces of RGB, HSI
and CIEL*a*b* were considered for these segmentation methods. These segmentation meth-
ods are unsupervised and hence a quantitative metric is required to control the number of
compact clusters (segments) that are well separated. In this report, a validity measure (VM)
proposed by Turi and Ray [27] was applied to optimise the number of clusters:

VM — y(k) intra

(1a)

inter

where intra is a measure of cluster compactness, inter is a measure of distance between the
clusters and y is a function of number of clusters:

o 1 ¢
intra = 3 Y el - ¢ (1b)
Vi=1,2,...,c=LVj=i+1,....c inter =min(|c,—¢]°) (1)
y=mN(u.o)+1 (1d)

where M is the number of pixels in the image, C is the number of clusters and ¢; is the colour
of the cluster centre C;. The squared Euclidian distance increases the importance of large dis-
tances while weakening the importance of small distances. The multiplier function y is the
Gaussian function of the number of clusters with a mean of pt and standard deviation of o:

N(p.o) = — \/%e[%]. (2)

Given the complexity of the background, including highlights and shadows, more than two
segments of background and foreground were required to represent adequately variations in
colour coordinates of the image, and hence, the mean p was set at 2. The standard deviation ¢
was set at 1 to avoid over-segmentation and affecting the number of clusters between 2 and 5
in accordance with the empirical rule [28] that 99.7% of values fall within the range of +3o,
which equals to 5 segments. The constant m was set at 20, which has been shown [27] to be a
minimum value that appropriately segments various types of images. The VM minimization
was obtained for the optimal value of the number of clusters (k) for each segmentation
method. The constant 1 in Equation 1d maintains the original ratio of intra to inter where the
Gaussian function is not effective in large numbers of clusters (k). This algorithm searched for
the minimum value of VM for the number of segments between 2 and 10.

The image segmentation step provides raw data in the form of distinct regions. The next
step is descriptor selection to represent and describe the regions in characteristic features for
further processing. In this study, an individual region in the captured colour image was pre-
sented based on colour. However, the selection of an appropriate colour model (colour space)
is critical. To select the most suitable colour space for a hologram identification approach, the
performance of the colour spaces was evaluated in terms of separability of various classes in
different colour spaces of RGB, HSI and CIEL*a*b* [29]. The quantitative metric ] was
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measured based on intra-class (S,,) and inter-class (S;) covariance matrices:

J= trace(%). (3)

w

The intra-class matrix (S,,) indicates the distribution of data (X,,) around their respective
mean of the class and is defined as:

Sw = Z;ZI Si (43)

S, = Znec, (X, = M) (X, — Mi)T (4b)
M = ! X 4

i NZ;«EC,- n ( C)

N = ZiNi (4d)

where c refers to the number of classes, M, is the mean of class, C;, N; is the number of mem-
bers in class C; and T represents the matrix transpose. The inter-class matrix (S;) represents
the distribution of samples around M, the mean of the means of the classes (grand mean):

1
Sy = Eiclei(Mi - M)(Mz - M>T and M= NZS:lNiMi' (5)

The next step of the colour image processing stage is object recognition to determine the
class (label) of objects. An unsupervised neural network, self-organising map (SOM) of 10 by
10 nodes [30, 31], was used for classification and recognising the segment of the ROI in the
segmented images using the selected descriptor values.

In this paper, two segmentation methods (k-means and FCM) were applied to the image
dataset. The evaluation of the degree of consistency between these methods requires evaluating
the segmentation algorithms based on the performance of the colour image processing stage
where the ROI is recognised. The suggested metrics were applied to the mean value of colour
features of ROI in the RGB, HSI and CIEL*a*b* colour spaces. A common metric for quantita-
tive analysis of the segmentation methods is the intra-class correlation coefficient (ICC) [32]
which represents the consistency between segmentation methods:

MS, — MS,,
MS; + (k—1)MS,,

ICC = (6)

and the between-targets mean squares MSg and the within-targets mean squares MSy, are

defined as:

1
n—1

MSy = > k(m, — )’ (7a)

1
MS, =

» mzx(’f -m,)’ (7b)

where 7 is the number of targets and k is the number of segmentation methods which are
respectively 3 and 2 in the case of comparing the three colour features of ROI of two segmenta-
tion methods, m, is the mean of all segmentation methods on target x and 4 is the grand mean.
In this paper, the three colour coordinates of ROI for each colour space are the targets for col-
our quantisation by k segmentation algorithms on each image set. The value of ICC will be

PLOS ONE | https://doi.org/10.1371/journal.pone.0187467 November 15, 2017 8/21


https://doi.org/10.1371/journal.pone.0187467

@° PLOS | ONE

Smartphone-based quantitative measurements on holographic sensors

increased where there is a high correlation between the image segmentation methods which

demonstrates inter-method reliability. Moreover, the Bland and Altman method [33] was used
to establish the degree of concordance between the pair of segmentation methods and to inves-
tigate the interchangeability of two methods without assuming that either is the gold standard.

Regression analysis is the final stage of the algorithm which is targeted at predicting the
concentration of an analyte by means of colour digital imaging by investigating the relation-
ship between descriptors and analyte concentration. Once this relationship is established, the
calibration method is used to estimate an unknown analyte concentration from the response
of a custom-developed smartphone-based reader. The colour features of the RO, in this case
the hologram, were obtained in the RGB, HSI and CIEL*a*b* colour spaces. The colour fea-
tures were visualised to explore whether the absolute colour value in the proposed colour
spaces has the ability to represent the response of the hologram across a wide range of pH val-
ues (3.00-6.50). Accordingly, a hybrid combination of colour coordinates was considered as
the feature vector of the ROI. Afterwards, a multilayer perceptron (MLP) [34, 35] neural net-
work was used to learn the relationship between the colour descriptors and the analyte concen-
tration, which are sensor-specific. The MLP had three layers, 2 hidden layers and one output
layer, with 9 input nodes. Each node of the hidden layer had a log-sigmoidal activation func-
tion and the output layer had a linear transform function. The maximum iteration number
was set at 10K and an error limit of 1E-6 was assigned. The image database was divided into
training and test data sets, respectively 44 (4 sensors; 11 pH levels) and 22 (2 sensors; 11 pH
levels) images. The test data was used to simulate future data points in evaluating the accuracy
of the network. The network was trained based on the backpropagation rule using the colour
descriptors. The MLP performance was assessed in terms of the accuracy of estimation of the
analyte concentration.

In terms of materials, all reagents were purchased from Sigma-Aldrich Chemical Com-
pany Ltd (UK) in analytical grade unless otherwise stated. Chemicals for silanization
include 3-(trimethoxysilyl) propyl methacrylate and acetone, whilst for the hydrogel syn-
thesis they include 2-hydroxyethyl methacrylate (>99.9%; HEMA) as the backbone mono-
mer, methacrylic acid (99%; MAA) as the functional monomer, ethylene glycol dimethacrylate
(98%; EDMA) as the crosslinking agent and 2,2’-dimethoxy-2-phenylacetophenone (99%;
DMPA) as the photo-initiator; the polymerisation was performed in dimethyl sulphoxide
(>99.9%; DMSO) as solvent. The required reagents for the development of the poly(HEMA)
holographic grating sensor were silver nitrate (>99.9%), 1,1’-diethyl-2,2’-cyanine iodide (97%;
QBS dye), sodium bromide (>99%), ascorbic acid (>99%), sodium carbonate anhydrous,
sodium hydroxide, sodium bisulphate, ethanol (~95%) and copper sulphate (>99.99%).
Chemicals for pH buffer solutions include phosphoric acid, sodium phosphate monobasic
(>99%) and acetic acid (>99%). Chemicals that were supplied by Acros included 4-(methyla-
mino) phenol hemisulphate salt, >98% (Metol) and potassium bromide (>99%). Methanol
(>99.8%) and sodium sulphite (98.5%) were purchased from Fisher Scientific (UK). Freshly
distilled and deionized water was used to prepare all solutions.

Microscope slides (1.0-1.2mm thick) were purchased from Fisherbrand™. Aluminised poly-
mer films with a thickness of 125um (MEX12C) were purchased from HiFi Industrial Film Ltd
(UK). The UV exposure unit was an EPROM Eraser supplied by Electroplan.

A standard bench-top pH meter (Accumet™ Basic AB15, +0.01 pH unit), electrode and cali-
bration buffers were purchased from Fisher Scientific Ltd, UK. A frequency-doubled Nd:YAG
(20w, 2], 10Hz, 532nm, Brilliant B, Quantel, France) was used for the holographic grating
development. The fibre optic cables (FC-UV200; 200um core diameter; single fibre; 1-2m
long) were purchased from Avantes. Unless otherwise stated, images of the sensor were cap-
tured under a controlled illumination setup of the artificial daylight (CIED65) using a compact
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colour matching booth (GTIT Minimatcher MM-1e/65). For the spatial non-uniformity correc-
tion, the ColorChecker® 18% Grey Balance target (101mmx178mm) was purchased from
X-Rite (Macbeth). The reference test colours for camera characterisation were obtained from
the X-Rite (Macbeth) ColorChecker®) Classic (21.59c¢mx27.94cm) with 24 patches to provide
a suitable representation of colours [36] including six neutral, red-green-blue (RGB), cyan-
magenta-yellow colours. The 18% grey reference is also used in the standard 24-patch Color-
Checker. The digital images, which are associated with the hologram response to the test solu-
tions, were captured using a Samsung smartphone, model GT-55660 (3.15M Pixel). The
camera phone was set to automatic focus, white balance, sensitivity, centre weighted and cap-
tured in single-shot mode. These are the standard conditions that are expected any user to
consider. Each image was recorded as a JPEG (24 bits) on a Kingston microSD card. The
images were transferred to a desktop computer (64 bit Windows 7 Professional, Intel ® Core™
i5-2500K CPU @ 3.30GHz, RAM 8GB) for subsequent processing. The colour image process-
ing algorithm was developed in MATLAB® R2012a.

Results

The mechanism of colour change in holographic sensors is driven by the kinetics of volume
changes in the smart hydrogel [37]. The colour of the smart pH hydrogel used in the work
described in this paper reversibly changes from blue to green to red in response to changing
proton concentrations. The reversible swelling/deswelling characteristics of a pH-sensitive
hydrogel are defined by the chemistry of the polymer film. In HEMA-MAA copolymers, the
swelling equilibrium is a strong function of the functional monomer (MAA). At the apparent
pK, value of the MAA-containing hydrogel (6.01), there is an equilibrium between co-existing
deprotonated (-COQO") and protonated (-COOH) forms of the carboxyl group of MAA. This
equilibrium tends towards the deprotonated form at pH values above the pK, value. Charge
neutrality is maintained by cations that enter the hydrogel with conjugated OH". The increased
cation concentration in the hydrogel leads to an osmotic pressure gradient that causes the
polymer film to swell. Additionally, the deprotonated carboxyl group is more hydrophilic than
the protonated one which leads to absorbing more water and further expansion. Therefore,
starting from low pH values, the hologram swells following a sigmoidal profile centred at the
apparent pK, value of the polymer, which is typically one unit less than that of the functional
monomer due to proximity effects and intra-network interactions. Fig 2 illustrates the
response of a carboxyl-functionalised acrylic polymer pH-sensitive sensor to pH changes in
the range 4.75 to 6.00, resulting in the swelling of the smart hydrogel and, ultimately, leading
to a red shift in the diffraction spectrum. The degree of volume change and hence wavelength
shift is found to be a function of the number of covalently attached charged groups in the
hydrogel matrix.

The colour response of holographic sensors is readable by human eye; however, there are
limitations for colour discrimination due to the inherent limitations of human colour vision,
colour memory loss, eye fatigue and colour blindness. Accordingly, standardisation of colour
quantification by instrumentation is essential. As shown in Fig 3A and 3B, the captured colour
by the camera of the smartphone is a function of the ambient illuminant, the camera character-
istics and the replayed colour of the sensor in the response to the analyte concentration. In this
set of experiments, knowledge about the ambient illuminant was available (artificial daylight;
D65) and the camera colour sensitivity profiles were extracted through the camera characteri-
sation stage. Accordingly, the colour information of the captured image can be deconvoluted
for quantification. Since the proposed colour quantification algorithm is a cloud-based one,
image data transformation from the smartphone of the user to the cloud is required. This may
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(B)

Bragg Diffraction

Fig 2. Tuning structural colour in a pH-sensitive holographic sensor developed in the Lowe group. (A)
Structural colours in three different pH solutions of 6, 5.25 and 4.75, from left to right; (B) The colour is tuned
by controlling the parameter d, the grating spacing and consequently Bragg diffraction from the holographic
grating.

https://doi.org/10.1371/journal.pone.0187467.9002

raise concerns regarding data security, the overall transportation time and low bandwidths. To
address these challenges, the captured image of the sensor was encrypted and compressed to
allow its near real-time, secure flow across the network (Fig 3C).

Although a captured image of the sensor per se without the colour quantification code may
contain less sensitive personal information, this image encryption algorithm still increases the
security of image data transition to the cloud, and, in terms of rate of performance, the wavelet
transforms performed the task in ~7.7s although the Daubechies were on average 0.23s slower.
The compression rate for the Daubechies and Haar wavelets was 11.4 and 12.6, respectively.
Accordingly, the Haar transform slightly outperformed the Daubechies wavelet.

Once the image was securely uploaded on the cloud, the reverse processes were applied to
obtain the decrypted and decompressed image. Fig 3D1-2 illustrate object recognition using
the SURF method, where the template image of the QR code and the 100 strongest feature
points that were selected. These feature points were matched to an in-plane rotated image of
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Fig 3. (A) Image acquisition: The captured colour is a function of ambient illuminant (D65 in this study), the
replayed colour of the holographic sensor and the spectral sensitivity (characteristics) of the camera (Samsung
GT-S5660); (B) An example of captured image of the holographic sensor in the centre of a logo QR code
(encoded data: The Lowe Group, Institute of Biotechnology, University of Cambridge); (C) Encrypted and
compressed image uploaded to the cloud, followed by decryption and decompression for further image
processing; (D) Object recognition in a scene using the SURF method: (D1) Matched the strongest feature
points (yellow lines) from the template image in the greyscale to an in-plane rotated image (outlined in green);
(D2) Detected QR code with the embedded sensor in the scene (outlined in yellow); (E) Camera characterisation
to convert the device-dependent RGB colour values to device-independent CIEXYZ tristimulus values; (F) The
corresponding region of interest (ROI); (G) Regression analysis using a multilayer perceptron to derive the
analyte of concentration (e.g. pH).

https://doi.org/10.1371/journal.pone.0187467.9003

the QR code containing the embedded sensor, where the embedded sensor was detected in the
overall scene.

The next stage of the algorithm centres around camera characterisation to convert the
device-dependent colour features to the device-independent tristimulus values. The captured
image of the ColorChecker under illuminant CIED65 was processed to extract the RGB values
of the grey patches. The maximum values of red, green and blue channels are 220, 219 and 213
implying that the full 8-bit capacity of the camera is almost entirely exploited. Afterwards, the
RGB values of the grey patches were used to determine the nonlinear nature of the camera.
The gamma values for each red, green and blue channels were obtained by fitting power func-
tions with degree exponents 1.987, 1.899 and 1.791, respectively. The gamma corrected image
was processed for the spatial non-uniformity analysis and the calibration constants of 0.393,
0.408 and 0.421 were obtained for the RGB channels, respectively. Once the camera RGB
responses were linearized and the spatial non-uniformity effect was compensated, camera
characterisation using the polynomial method was performed. The accuracy of the camera
characterisation improved as the number of RGB terms increased and the median AE,;, was
minimised (0.045) for 22 terms in the transformation matrix which assures precise modelling.
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Other polynomial models lead to a noticeable colour difference compared with the reference.
However, RGB terms above 14 with AE,,<4 may provide adequately precise camera character-
isation in less demanding commercial applications. Accordingly, the polynomial model with
22 RGB terms was considered to convert the captured RGB values of the holographic sensors
in response to test solutions into the independent CIEXYZ tristimulus values which, were sub-
sequently converted to CIEL*a*b*.

The pixel clouds of one candidate image in RGB, HSI and CIEL*a*b* colour spaces is
shown in Fig 4. The clusters of colour features possess a low degree of compactness and separa-
bility, which are caused by highlights and shadows. Although there is not an obvious choice of
colour space in terms of compactness and separability, the RGB colour space presents a softer
separability in comparison with HSI and CIEL*a*b* which the intensity/lightness is separated
from the hue coordinate.

The segmentation performance of k-means and FCM clustering methods on the direct
image data set was evaluated. The validity measure VM was computed for images of the sensor
response to buffer solutions in the range of pH 3.00-6.50 and the average for each set of images
was driven. The best results in terms of average VM were obtained with 5 clusters in the
CIEL*a*b colour space for both segmentation methods. The light reflection on the surface of
the buffer solution, which was captured as highlights, and also shadows creates various false
shades of colours and therefore a colour space that excludes the lightness from the hue such as
the CIEL*a*b* outperforms the RGB colour space. The number of clusters was considered 5
for an optimised performance.

Investigations were made to identify a robust colour space to segment the hologram images
reliably. Once the colour images were segmented, each image was represented by its corre-
sponding segmented regions and identified by their corresponding colour descriptors. A
comparative study was undertaken to select the most suitable colour space for the colour iden-
tification approach. Three colour spaces including RGB, HIS and CIEL*a*b* were investigated.
The quantitative metric J was computed for image data sets within the pH range of 3.00-6.50
and the average value across the pH range described the separability of each colour space for
each method (Table 1). Since a higher value of ] determines the classes are more separated, the
HSI and CIEL*a*b colour spaces, which decouple the luminance and chromaticity, are more
successful than the RGB model.

The discriminative classifier, self-organising map (SOM), returned the appropriate label for
each object. Classification on the image data set resulted in an accuracy of 93%. The accuracy
could be improved up to 96.5%, but at the cost of decreasing specificity. Fig 4 demonstrates an
example of implementing the object recognition algorithm on a captured image at pH 3.00.

The average intra-class correlation coefficient (ICC) across the pH range of 3.00-6.50 was
calculated for the ROI of each colour segmentation method in the RGB, HSI and CIEL*a*b*
colour spaces. The maximum intra-class correlation in between two segmentation methods
of k-means and FCM was for the CIEL*a*b* colour space with the ICC value of 0.652 followed
by the HSI (0.472) and RGB (0.461) colour spaces. The Bland and Altman plots were used to
assess the agreement between two segmentation methods for the pair of the coordinates of the
CIEL*a*b* colour space (Fig 5). The mean of the difference between each pair was within the
+1.960 range that confirms the agreement in between these segmentation methods for this col-
our space. Since the segmentation methods can be applied interchangeably, k-means, which is
computationally less demanding, was selected as the candidate segmentation method.

The mean colour coordinates of the ROI of the image datasets were computed in the CIExy
colour space and were displayed on the standard CIE1931 chromaticity diagram as shown in
Fig 6A. The colour of the holographic sensors in response to buffer solutions within the pH
range 3.00-6.50 varies clockwise from blue to red. Once the optimised neural network was
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Fig 4. A sample of captured images from the colour of holographic grating sensor at pH 3.00. (A) and
the corresponding pixel colour distributions in RGB (B), HSI (C) and CIEL*a*b* (D) colour spaces.

https://doi.org/10.1371/journal.pone.0187467.9004

obtained using a database of 44 images, the response of the digital image based colour quantifi-
cation to changing the pH of buffer solutions in the range of pH 3.00-6.50 was determined for
two independent datasets including 2 sensors at 11 pH levels. Fig 6B illustrates the perfor-
mance of the proposed colour digital image-based colorimetry versus the true pH values of the
buffer solutions which is strongly linear.

Discussion

The proposed digital image based colorimetry achieved nearly perfect colour quantification
under controlled conditions (Fig 6). Images of holographic sensors in different pH buffers
show quantifiable colour changes in relation to analyte concentration. The digital image based
colorimetry was demonstrated to achieve nearly perfect colour quantification in an image
database containing images of the colour response of the sensor to pH buffer solutions within
the range of 3.00-6.50. This relationship between the response of the algorithm and true pH
values was established by the use of a supervised neural network. The threshold of sigmoidal
activation functions of the hidden neurones of the network was optimised to minimise the
residual standard error, which points to the difference between the actual and predicted
values.

Although the algorithms were selected with an understanding of the minimum memory
requirements, the computational cost of the proposed algorithm is high, and therefore, a
cloud-based system was preferred to maintain the accuracy in the determination of the analyte
concentration.

One of the modules that has increased the complexity level of the proposed algorithm in
comparison with other studies on digital image-based colorimetry is the camera characterisa-
tion module. The accuracy of colour rendering using a digital camera is partially determined
by the sensitivity of the image sensor to each red, green and blue colour feature. Accordingly,
the captured RGB colour coordinates are device-dependent and this necessitates camera char-
acterisation to derive the camera model. Previous studies used the CIE1931 standard conver-
sion matrices to transfer the colour coordinates between each pair of colour spaces based on
the assumption of an ideal imaging device [38-52]. Unlike the existing studies, the proposed
algorithm in this study used the camera model to convert the device-dependent RGB coordi-
nates to the CIE1931XYZ colour space. Moreover, an understanding of the un-representable
colours of an imaging device is essential to determine the physical limitation imposed by the
imaging device because the colour gamut mismatch results in mapping out of gamut colours
within the destination space for rendering and, ultimately, introduces a systematic error in the
process. This systematic error was observed at the pH range above 5.00 for the imaging device
that was used for this work. This is evident from the fact that above pH 5.00, the pH reader
recorded close data points for two slightly different pH standard measurements of 0.25 pH

Table 1. The average of the quantitative metric J for three colour spaces of RGB, HSI and CIEL*a*b*
for the pair of segmentation method.

Segmentation method k-mean FCM
RGB 1.62 1.52
HSI 2.25 2.34
CIEL*a*b* 4.88 4.79

https://doi.org/10.1371/journal.pone.0187467.t001
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Fig 5. The Bland-Altman plot for the colour coordinates of the CIEL*a*b* colour space for k-means
and FCM segmentation methods.

https://doi.org/10.1371/journal.pone.0187467.9005
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quantification algorithm and the true pH value of the buffer solutions (2 sensors at 11 pH levels).

https://doi.org/10.1371/journal.pone.0187467.9006

units apart. The knowledge of this physical limitation assists with the design of a more readable
sensor using commercially available imaging devices embedded in smartphones. Given the
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variety of commercially available smartphones and their camera characteristics, identifying the
limitations of this instrumentation method for a universal camera is required. This challenge
will be further investigated in future work.

The response time of the algorithm is another dimension of interest because of its ultimate
application for the real-time measurement of clinically important analytes. The optimisation
process is challenging because it is necessary to make a trade-off between processing accuracy
and computational complexity. For instance, speed enhancement can be achieved by employ-
ing relatively inexpensive computational image processing techniques such as low-degree
polynomial camera modelling [53], but at the cost of low processing accuracy. Moreover, the
performance of each algorithm was evaluated to determine execution of each specific module
using the built-in algorithm profiling feature of the MATLAB, while the quantitative evalua-
tion of the overall image processing results assured the accuracy of the performance.

The performance efficiency of the algorithm in different colour spaces was investigated.
The HSI and CIEL*a*b* colour spaces are more efficient than the RGB model to separate clus-
ters. However, nonlinear colour models have non-removable singularities [54], whereas the
linear RGB space does not have such problems. Instead, the high correlation of the tristimulus
components of linear colour models makes them dependent on each other and associate
strongly with intensity. To make a trade-off between these two, a hybrid colour space [55],
including a combination of colour features, was used in this work to improve the overall per-
formance of the proposed colour image processing techniques.

The cloud-based nature of the proposed colour image processing algorithm demands
image data transformation from the smartphone of the user/patient to a secure cloud and
returning the results back to the user. This may raise concerns regarding the security and
broadband infrastructure requirements. Assuming a secure network, data transition encryp-
tion is of particular importance which can be addressed by solutions such as a virtual private
network or firewalls to control the access to the service based on the network. These solutions
are not applicable in the case of remote monitoring which demands anywhere and anytime
access. An alternative approach is data encryption which was explored in this work to provide
a reliable transfer of image data across the network to the default cloud of the healthcare pro-
vider for colour processing. The image compression step allows transporting the image data
with a low bandwidth which is of critical importance in limited-resource settings. Moreover,
the image compression algorithm provides an efficient and robust image transfer to the cloud
of the healthcare provider by reducing the size and hence the overall transportation time.
Accordingly, the demands of a prompt, often real-time, response of this platform as a self-
monitoring technique are addressed.

A key step of the proposed digital image-based colour quantification is identifying the
sensor in a captured image which is based on a colour cue. Although the colour-based object
recognition accurately identified the sensor in the image data sets, this is not necessarily appli-
cable in real-world applications because the colour coordinates of the background objects
might be similar to the operational colour range of the sensor. Therefore, automatic sensor
recognition in a scene demands incorporating features such as geometrical dimensions and
pattern into the object recognition algorithm. A pattern-based technique using a QR code was
explored in this work. However, the platform is still accessory-free because the QR code will be
incorporated into the design of the holographic grating sensor substrates for the blood and
urine samples. The information of the QR code can be personalised for the patient and there-
fore, the captured image of the sensor would provide also a unique identification number
which facilitates the electronic health record. The object recognition algorithm for other forms
of the holographic sensors merely will use the colour cue, such as the skin colour cue for smart
tattoos, or the geometrical dimensions.
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Conclusions

This work has confirmed the feasibility of integrating a smartphone-based instrumentation
method with the holographic sensor platform. Holographic sensors can be utilised to detect
chemicals and biomarkers by tuning the properties of the functionalised matrix (analyte recep-
tor) and the holographic grating (refractive index and grating spacing) and consequently the
location of the spectral peak in the diffracted light representing the colour. It is envisioned that
the user captures the image of the holographic sensor and uploads the image to the app which
executes automatically the image encryption and compression and, subsequently, transfers the
output image to the colour for colour image processing. Further studies are required to estab-
lish the robustness of the proposed algorithm for real-world settings.

Supporting information

S1 Fig. Colour image database of six pH-sensitive holographic grating sensors (11 pH lev-
els).
(TIFF)
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