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Abstract: The use of nanodiamonds as anticancer drug delivery vehicles has received much
attention in recent years. In this theoretical paper, we propose using different esterification
methods for nanodiamonds. The monomers proposed are 2-hydroxypropanal, polyethylene glycol,
and polyglicolic acid. Specifically, the hydrogen bonds, infrared (IR) spectra, molecular polar surface
area, and reactivity parameters are analyzed. The monomers proposed for use in esterification
follow Lipinski’s rule of five, meaning permeability is good, they have good permeation, and their
bioactivity is high. The results show that the complex formed between tamoxifen and nanodiamond
esterified with polyglicolic acid presents the greatest number of hydrogen bonds and a good amount
of molecular polar surface area. Calculations concerning the esterified nanodiamond and reactivity
parameters were performed using Density Functional Theory with the M06 functional and the basis
set 6–31G (d); for the esterified nanodiamond–Tamoxifen complexes, the semi-empirical method
PM6 was used. The solvent effect has been taken into account by using implicit modelling and the
conductor-like polarizable continuum model.

Keywords: nanodiamonds; esterification; molecular polar surface area; hydrogen bond; Density
Functional Theory

1. Introduction

Breast cancer is a leading cause of death worldwide. This disease is mainly characterized by high
levels of estrogen receptor (ER) and progesterone receptor (PR) expressions [1]. One of the treatments
prescribed for patients with breast cancer is tamoxifen (TAM) [2], which belongs to the family of
selective estrogen receptor modulators (SERMs) [3]. Nonetheless, prolonged use of TAM causes
adverse effects such as endometrial cancer, thromboembolisms, and menopause symptoms [4,5].

Fortunately, nanomedicine has demonstrated exceptional promise for improving the delivery
of therapeutic agents for the treatment of breast cancer through nanomaterials and, in particular,
with nanodiamonds (ND). These nanomolecules are being studied due to their unique characteristics
that make them suitable as a platform for diagnosis and therapeutics [6]. In addition, ND are
stable and dispersible in water, making them a promising and clinically important modality for
improving the efficacy of the treatment of diseases, and even some cancers, at the molecular
level [7]. This carbon-based material is medically relevant because of its biological applications
and its physical and chemical properties including stability, scalability, small size, good adsorption,
and biocompatibility [6,8,9]. ND are known for easily forming complexes with biopolymers [10]

Molecules 2017, 22, 1740; doi:10.3390/molecules22101740 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-9583-4256
https://orcid.org/0000-0002-4836-233X
http://dx.doi.org/10.3390/molecules22101740
http://www.mdpi.com/journal/molecules


Molecules 2017, 22, 1740 2 of 12

and for their many uses [11]. All these properties allow for the modification of its surface with
functional groups through covalent and non-covalent bonds and through the attachment of medically
relevant agents onto the particle [6]. In practice, ND have been used with a range of polymers such
as polyethylene glycol (PEG), polylactide-co-glycolide, and polysaccharide- and amino acid-based
polymers. These uses have been successfully implemented, particularly for delivering bioactives
through the circulatory system [12]. No use of ND has been reported with 2-hydroxypropanal (2HP)
because this monomer has been used as a biocatalyst for the stereoselective production of a compound
that allows it to have therapeutic action [13]. Meanwhile, polyglicolic acid (PGA) has been used to yield
a variety of different structures, including fibers, follow tubes, porous sponges [14,15], and non-woven
meshes, which are materials used in cell delivery [16].

The functional groups on the surface of ND can also interact electrostatically or chemically
with other molecules in a sample under study for cell-specific interaction and targeting [17].
This electrostatic interaction or hydrogen bonds (HBs) between the drug and a carboxyl or hydroxyl
group of functionalized ND [18–21] are studied in this research. Theoretical studies on the chemical
properties of the ND-TAM complex are important for gaining a better understanding of the interaction
between this complex and hormonal receptors. Several studies have investigated using the Density
Functional Theory (DFT) to calculate properties of carbon-based nanostructured materials with
excellent approximations when compared to experimental data. Gueorguiev et al. compared the energy
cost for the formation of dangling bonds in fullerene-like Carbon Nitride (CNx), Phosphorus-Carbide
(CPx), and amorphous Carbide (a-C) [22]; probed the energy cost obtained by the Synthetic
Growth Concept (SGC) based on the DFT on P atoms inserted in fullerene-like Phosphorus Carbide
(FL-CPx) [23]; and made a comparison of the DFT predictions of the infrared (IR) spectra of clusters of
Ti8C12 Zr8C12 [24].

Additionally, recent studies developed the M06 functional and 6–31G(d) basis sets to load
tamoxifen onto the surface of ND by molecular modeling techniques [25]. Some theoretical studies
have been reported for polymers, including the mechanism of the addition of organomagnesium
reagents to 2HP through an ab-initio analysis [26], the addition of organomagnesium compounds
to 2HP with the semi-empirical method PM3 and HF/3–21G to identify the stationary points on the
potential energy surface [27], and comparative studies of the differences between the normal modes of
polyethylene and polyethylene glycol with the B3LYP and Hartree–Fock methods with several basis
sets [28]. Kimani et al. [29] carried out a theoretical analysis of mono-, di-, and tri-PEG conjugated with
chlorine for the removal of ovarian cancer cells. Finally, a comparison of the theoretical energy of PGA
has been calculated with MP2, B3LYP, and BLYP techniques with the 6–31G(d) basis set [30].

The main objective of this study is to investigate new methods for esterification in
nanodiamonds through molecular modeling techniques, using 2-hydroxypropanal, polyethylene
glycol, and polyglicolic acid. The esterification facilitates the loading of tamoxifen onto the
nanodiamond by means of electrostatic interactions, particularly hydrogen bonds (HB). These HBs
are formed between the linear chain generated with the esterification and the linear chain of TAM,
composed of an ether and a tertiary amine. This coupling allows the drug to be delivered specifically
to the hormone receptors, thus improving its efficacy.

2. Materials and Methods

The computational studies of the construction of esterified nanodiamond (NDE), esterified
nanodiamond complexes (NDE-TAM), and electronic properties were performed using Gaussian
09 software [31]. Some of the systems were developed using the Density Functional Theory (DFT)
method [32,33] while the systems with a huge number of atoms were optimized with semi-empirical
methods. The details are in the next subsections:
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2.1. Esterified Nanodiamond (NDE)

Analysis and characterization of the esterified nanodiamond (NDE) was calculated with the
hybrid meta-generalized gradient approximation (meta-GGA) functional M06 [34,35] combined with
the basis set 6–31G(d) [36], and the conductor-like polarizable continuum model [37] was used with
water as solvent.

2.2. Esterified Nanodiamond Complexes (NDE-TAM)

The optimization of the esterified nanodiamond complex (NDE-TAM) was performed using the
semi-empirical method PM6 [38] (to achieve convergence of the multi-atom complex), taking into
account the good past results on the structural parameters of the method [39–41]. Water was used as
the solvent with the conductor-like polarizable continuum model.

2.3. Reactivity Parameters

The electronic properties of NDE and the NDE-TAM complex were calculated by means of
M06/6–31G(d). The solvation model was a conductor-like polarizable continuum model, with water
as the solvent. The DFT approach has been successfully used for chemical descriptors such as
electron affinity (EA), ionization potential (IP), chemical hardness (η) [42], electronegativity (χ) [43,44],
chemical potential (µ) [45], and electrophilicity (ω) [46]. These reactivity descriptors were obtained
by single point calculations, considering the energy (E) as a function of the number of electrons,
N: E(N − 1), E(N), and E(N + 1). Approximations were also done of IP and AE to HOMO and LUMO
energies obtained from the Kohn–Sham scheme.

2.4. Molecular Polar Surface Area

The molecular polar surface area (PSA) was obtained using a commercial package based on
Bayesian statistics (Molinspiration miscreen toolkit) [47]. To obtain the PSA, the NDE and the
NDE-TAM complex were encoded with SMILE (Simplified Molecular Input Line System), which is a
chemical notation system designed for modem chemical information processing [48].

3. Results and Discussion

3.1. Construction of the Proposed Systems

Nanodiamond is often described as a crystalline diamond core with a perfect diamond lattice
surrounded by an amorphous shell with a combination of sp2 and sp3 bonds [49]. The constructed
ND for this work is octahedral with 351 atoms with 111 facets and a lattice constant of 3.56 Å. The size
of the nanodiamond used is 1.5 nm due to the stability of the NDs in the range between 1.5 and
2.0 nm [50,51].

The functionalization of the ND begins with the creation of carboxyl functional groups on
its surface, simulating acid treatment [52,53]. Three different molecules were used to create the
esterification: 2-hydroxypropanal (2HP), polyethylene glycol (PEG), and polyglicolic acid (PGA)
monomers. The construction of the esterified structures was carried out following the reaction protocol
established by Landeros-Martinez et al. [25]. This process involves bonding the carboxyl group on the
surface of the nanodiamond in a covalent bond with the different monomers proposed in this work.
This generates an available extended linear chain on the surface of the nanodiamond.

Also, the analysis of nucleophilicity index of the alcohols and the electrophilicity index of the ND
was taken into account in the reactivity section. The simplest approach was used: considering that
high (low) nucleophilicities are associated with low (high) ionization potentials, nucleophilicity was
related with a negative IP value. The nucleophilicity index was calculated in the manner introduced by
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Domingo et al. [54]. Tetracyanoethylene (TCE) is taken as a reference for this scale of nucleophilicity
because it presents the lowest HOMO energy in a large series of molecules already considered.

N(Nu) = EHOMO(Nu) (eV) − EHOMO(TCE) (eV) (1)

EHOMO(TCE) = −9.13 eV calculated with the methodology mentioned in the computational details
section (M06/6–31G(d)).

The alcohols showed low nucleophilicity index values and high values of electrophilicity,
characterizing them as marginal nucleophiles and strong electrophiles according to Domingo et al. [55].
However, the ND has a strong nucleophile character with N > 3.0 eV. Results are in Table 1.

Table 1. Nucleophilicity N and electrophilicityω indexes of esterification reaction.

Molecules N (eV) ω (eV)

Nanodiamond (ND) 6.18 0.81
2-Hydroxypropanal (2HP) 1.87 2.82
Polyethylene glycol PEG 1.91 4.28
Polyglicolic acid (PGA) 1.78 5.96

After the construction of the systems, they were optimized in aqueous phase and named ND2HP,
NDPEG, and NDPGA. Once the optimization was reached, frequency calculations were performed to
ensure that the structures were at their lowest energy level. The structures are shown in Figure 1 where
the view is from the top of the ND. We observed that the structure of the ND did not change before or
after optimization. However, the linear chain of esterification had significant changes in its dihedral
angles. These changes will outline the position of the TAM drug for its loading in the nanoparticle.
After optimization in 2HP the D1 (O352–C351–O353–C354) changed from 3.314 to −14.42 degrees.
PEG with dihedral D2 (O352–C351–O353–C354) changed from 3.314 to −1.88. The dihedral D3
(O353–C354–C355–O356) in PGA changed from −118.47 to −1.57 degrees. The dihedrals D1, D2,
and D3 are in Figure 2 and identified with a blue line.
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3.2. Reactivity Parameters of the NDE

The following reactivity parameters were obtained: electron affinity (EA), ionization potential
(IP), electronegativity (χ), chemical potential (µ), chemical hardness (η), and electrophilicity (ω).
The reactivity parameters mentioned above were obtained using two different approximations.
As stated in the computational details section, the first considered the energy (E) as a function of the
number of electrons, and the second one used the approximation of IP and EA to HOMO and LUMO
energies. Results are in Table 2, where the second approximation values are in cursive font.

Table 2. Reactivity parameters of esterified ND calculated with energies approximation/HOMO-
LUMO approximation.

NDEsterified EA (eV) IP (eV) η (eV) χ = −µ (eV) ω (eV)

ND2HP 0.53/0.50 2.73/2.99 1.11/1.25 1.64/1.74 1.21/1.22
NDPEG −0.25/−0.35 2.71/2.96 1.48/1.66 1.23/1.30 0.51/0.51
NDPGA 0.07/−0.11 2.72/2.99 1.32/1.55 1.39/1.44 0.73/0.67

The values in Table 2 suggest greater reactivity for ND2HP. It has the lowest hardness in both
approximations, and has the highest value for electrophilicity index even when the three of the
esterified systems are classified as moderate electrophiles, in accordance with Domingo et al. [55] with
ω < 1.5 eV. In this work, the main area of interest is that the reaction with TAM and ND2HP showed
the highest tendency to attract electrons and presented better stability with the electrons that were in
the surrounding area.

Another important feature that quantifies permeation is polar surface area (PSA). This property
is defined as the surface sum of all the polar atoms, including the oxygen, nitrogen, and hydrogen
attached to these atoms [56]. PSA is a useful parameter for the prediction of drug transport properties.
Molecules with value greater than 140 Å2 are poorly absorbed at cell membranes, while those with a
value less than 90 Å2 are completely absorbed [57]. The results were 63.60 Å2 for ND2HP and NDPGA,
and 55.70 Å2 for NDPEG, meaning that all the proposed systems have good cell permeability.

3.3. Construction of the NDE-TAM Complex

To build the NDE-TAM complex, it was necessary to find the equilibrium distance between the
NDE and the drug. With the optimized structure obtained in the previous section, an equilibrium
distance analysis was performed. This exploration involved searching for the distance requiring
the least energy to bind a pair of molecules—in this case, NDE and TAM. The analysis consisted
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of single-point energy calculations across a rectangular grid involving a scan of previously selected
internal coordinates. When a scan was requested, the variables in the molecular structure, and the
range of values which they could take, had to be specified. These variables were defined according
to the structure systems and the intended bond type. The scan was performed in 15 steps with
approximations of 1 Å. The atoms involved in the approximation are a hydrogen of the NDE, an oxygen
in TAM in ND2HP and NDPEG, and two oxygens in NDPGA. The rest of the atoms remained fixed.
The energy curve results were 4 Å for ND2HP-TAM and NDPEG-TAM, and 6 Å for NDPGA-TAM.
The three different curves obtained are shown in Figure 3.
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Considering that the scan helps to determine the approximate location of the minimum energy
structure, but does not include optimized geometry [58], all the NDE-TAM complexes were optimized.
In this case, the geometry optimization and the frequency calculation were developed using the PM6
semi-empirical method, using water as solvent due to the size of the system. The results on the binding
bonds are 7.79 Å for ND2HP-TAM, 4.21 Å for NDPEG-TAM, and 2.18 Å for NDPGA-TAM.

3.4. Hydrogen Bonds

The hydrogen bond is also one of the most important intermolecular interactions because it
determines molecular conformation, molecular aggregation, and the function of a vast number of
chemical systems ranging from inorganic to biological [59]. Based on the optimized structures of the
NDE-TAM complexes, the counting analysis led to the definition of different HBs such as C=O—H-C,
H-O—-C, C-H—-N, and C-H—-O. See Figure 4.

The distance and angles observed in the HBs are classified as weak, according to Jeffrey
classification [60]. The results in Table 3 show the type of HBs and the interaction type, where the
groups C–H and O–H act as proton donors. These kinds of interactions are possible, even when the
groups have slight polarity, as stated by Steiner [59]. N and O act as acceptors.
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Table 3. Hydrogen bonding in NDE-TAM complexes.

Complex Interaction
Type

Bond Lengths
A—-B (Å)

Bond Angles
(A-H—-B) (◦) Type

ND2HP-TAM

C-H—-O 3.38 164.48 Weak
C-H—-O 3.38 110.75 Weak
C-H—-N 4.69 149.21 Weak
C-H—-O 4.2 124.87 Weak

NDPEG-TAM

C-H—-O 4.2 89.35 Weak
O-H—-C 4.01 132.79 Weak
C-H—-O 3.31 158.41 Weak
C-H—-N 3.96 129.22 Weak

NDPGA-TAM
C-H—-O 3.12 138.53 Weak

C-H—-O=C 3.57 91.74 Weak
C-H—-O=C 4.07 92.05 Weak
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The presence of the hydrogen bonds found was corroborated qualitatively with an analysis of
the IR spectra of the free A–H group with no HB group. According to Desiraju, in a comparison
of the IR spectrum of a free A–H group and another one with a HB, in the HB, the A–H stretching
frequency is reduced. This indicates a hydrogen bonding [61]. For our study, we compare the TAM’s
interaction with the A-H—-B hydrogen bond group in the NDE-TAM complexes. The bonding of
the atoms to H decreases the vibration frequency. Figure 5 shows the IR spectrum of TAM at the
M06/6–31G(d) level [25] versus the IR spectra of the ND2HP-TAM, NDPEG-TAM, and NDPGA-TAM
complexes. The latter three use the PM6 semi-empirical method. The comparison shows the energy
reduction on the frequencies as follows: The C–H stretching frequency of 2935 cm−1 in TAM decreases
to 2769, 2745, and 2769 cm−1 for ND2HP-TAM, NDPEG-TAM, and NDPGA-TAM, respectively. C–H
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stretching at 2915 cm−1 in TAM decreases to 2764 cm−1 in ND2HP-TAM, 2737 cm−1 in NDPEG-TAM,
and 2762 cm−1 in NDPGA-TAM.

The ring vibration is present at 1475 cm−1 in TAM, and at 1393 cm−1 and 1464 cm−1 in the
NDPGA-TAM complex. The R-O-R vibration in TAM is 1098 cm−1, while in the ND2HP-TAM,
NDPEG-TAM, and NDPGA-TAM complexes the R-O-R vibration is 1067 cm−1, 1078 cm−1,
and 1060 cm−1, respectively.
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Figure 5. Infrared (IR) spectra of (a) TAM; (b) ND2HP-TAM complex (PM6); (c) NDPEG-TAM complex;
and (d) NDPGA-TAM complex.

According to Lipinski´s rule of five, which states that poor permeation is more likely when there
are more than five HB, the number of these bonds plays a crucial role in determining if a drug will be
more active [62]. The three analyzed NDE-TAM complexes fulfill this rule.

The PSA was calculated at 12.47 Å2 for the three complexes. This is due to the number of polar
oxygen and nitrogen atoms and number of hydrogen atoms attached to the oxygen. The three systems
have the same number of these atoms, creating good cell permeability.

3.5. Chemical Reactivity Descriptors of NDE-TAM

A quantitative analysis of the reactivity of the NDE-TAM complexes was performed by means of
the global reactivity descriptors. The values of the global reactivity descriptors, calculated for each
of the NDE-TAM complexes using the vertical electron affinity and ionization potential, are shown
in Table 4.
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Table 4. Reactivity parameters of complexes calculated with energies approximation/HOMO-
LUMO approximation.

Complex EA (eV) IP (eV) η (eV) χ = −µ (eV) ω (eV)

ND2HP-TAM 0.75/0.64 2.84/3.08 1.05/1.22 1.79/1.86 1.53/1.42
NDPEG-TAM 0.66/0.35 2.75/3.00 1.05/1.33 1.72/1.67 1.39/1.05
NDPGA-TAM 0.70/0.41 2.73/2.98 1.02/1.29 1.72/1.69 1.45/1.11

The results of chemical reactivity show similar values for each of the complexes studied.
ND2HP-TAM shows the highest value for EA and IP, therefore, the highest electrophilicity index
with 1.53/1.42 eV. The value calculated with the energies approximation places ND2HP-TAM as
strong, while the result for the HOMO-LUMO approximation places it as a moderate electrophile,
and therefore close to the level of strong electrophiles. The Nucleophilicity indices calculated for these
systems are 6.06, 6.14, and 6.16 eV for NDE2HP, NDEPEG, and NDEPGA, respectively. All three are
classified as strong nucleophiles.

4. Conclusions

The esterification of nanodiamond with 2-hydroxypropanal, polyethylene glycol, and polyglicolic
acid allowed the generation of a longer linear chain in the carrier vehicle that interacts electrostatically
with the linear chain of the drug tamoxifen. The nanodiamond esterified with 2-hydroxipropanal
showed the highest reactivity. The three molecular systems proposed as new esterification models
have good permeability in cells according to their PSA. The hydrogen bond analysis showed that
NDPGA-TAM generates a greater number of hydrogen bonds. The presence of HBs was corroborated
with the vibrational frequencies analysis. The reactivity parameters show ND2HP-TAM as the
only strong electrophile. NDPEG-TAM and NDPGA-TAM are classified as moderate electrophiles,
in accordance with classification criteria by Domingo et al. The three proposed complexes have good
biodistribution, permeability, and pharmacological action on cancer cells, according to Lipinski’s Law.
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