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Reorganization of brain networks 
and its association with general 
cognitive performance over the 
adult lifespan
Epifanio Bagarinao   1, Hirohisa Watanabe1,2,8, Satoshi Maesawa1,3, Daisuke Mori   1, 
Kazuhiro Hara2, Kazuya Kawabata2, Noritaka Yoneyama2, Reiko Ohdake2, Kazunori Imai2, 
Michihito Masuda2, Takamasa Yokoi2, Aya Ogura2, Toshiaki Taoka   4, Shuji Koyama1, 
Hiroki C. Tanabe5, Masahisa Katsuno   2, Toshihiko Wakabayashi3, Masafumi Kuzuya6, 
Norio Ozaki   7, Minoru Hoshiyama1, Haruo Isoda   1, Shinji Naganawa   1,4 & Gen Sobue   1

Healthy aging is associated with structural and functional changes in the brain even in individuals who 
are free of neurodegenerative diseases. Using resting state functional magnetic resonance imaging 
data from a carefully selected cohort of participants, we examined cross sectional changes in the 
functional organization of several large-scale brain networks over the adult lifespan and its potential 
association with general cognitive performance. Converging results from multiple analyses at the 
voxel, node, and network levels showed widespread reorganization of functional brain networks with 
increasing age. Specifically, the primary processing (visual and sensorimotor) and visuospatial (dorsal 
attention) networks showed diminished network integrity, while the so-called core neurocognitive 
(executive control, salience, and default mode) and basal ganglia networks exhibited relatively 
preserved between-network connections. The visuospatial and precuneus networks also showed 
significantly more widespread increased connectivity with other networks. Graph analysis suggested 
that this reorganization progressed towards a more integrated network topology. General cognitive 
performance, assessed by Addenbrooke’s Cognitive Examination-Revised total score, was positively 
correlated with between-network connectivity among the core neurocognitive and basal ganglia 
networks and the integrity of the primary processing and visuospatial networks. Mediation analyses 
further indicated that the observed association between aging and relative decline in cognitive 
performance could be mediated by changes in relevant functional connectivity measures. Overall, these 
findings provided further evidence supporting widespread age-related brain network reorganization 
and its potential association with general cognitive performance during healthy aging.

The structural and functional changes the brain undergoes due to the aging process have been studied for many 
years. Although the rate of anatomical change varies from one brain region to another, the aging brain is typi-
cally characterized by an increase in gray matter atrophy1–4 as well as an overall decline of white matter volume 
at old age1,5. Significant age-related differences in brain activation pattern can also be observed in the elderly 
adult compared to young adults6,7. Specifically, the elderly’s brain tends to exhibit increase in brain activity, often 
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seen in the frontal regions8,9, and to recruit more regions of both hemispheres leading to a decrease in functional 
lateralization10. Aging is also associated with behavioral changes, which could manifest as a reduction in the 
ability to perform tasks involving high level “executive” functions such as episodic memory11,12, working mem-
ory11,13, attention14, and task switching15. Nevertheless, some aspects of cognition such as semantic memory (e.g. 
maintenance of general knowledge and vocabulary) and emotion regulation remained intact16–18. Identifying the 
relationship among structural, functional, and behavioral changes associated with the aging process still remains 
a challenge.

Resting state functional magnetic resonance imaging (rsfMRI), which measures the intrinsic activity of the 
brain when participants are not engaged in any particular activity (task-free state), has enabled the investigation 
of the brain’s intrinsic functional organization. Using rsfMRI, large-scale resting state networks (RSNs) such as 
sensorimotor, default mode, salience, executive control, and attention networks, among others, have been iden-
tified19–23. Several studies have investigated the effects of aging in these networks across the lifespan24–29. A com-
mon finding was the observed decrease in connectivity within the default mode, salience, and executive control/
attention networks with age24–28,30–32. Findings for other RSNs such as sensorimotor and subcortical networks 
were somewhat inconsistent with some showing increases27,32, no change31, or non-linear changes28 in connec-
tivity with age. Other studies have used graph theory to identify the age-related changes in the brain’s network 
topology. In terms of network measures, modularity (a measure quantifying the degree to which a network could 
be subdivided into non-overlapping groups) and local efficiency (a measure characterizing how well a given 
neighborhood exchanged information when a node is removed)31,32 as well as global efficiency (a measure of net-
work integration quantifying how well information is exchanged across the whole network)33 have been shown to 
decrease with age. Segregation in brain systems, which reflects dense within-system but parser between-system 
connectivity and quantified using network measures such as modularity and participation coefficient (a measure 
of the extent a given node connects to nodes in other systems), has also been shown to decrease across the adult 
lifespan29, although opposite findings have also been reported34. Overall, these studies have provided insights into 
how the brain’s functional organization is altered during healthy aging. However, little is known about the effects 
of age-related network reorganization on the observed individual differences in general cognitive performance 
with age.

In this study, we aimed to assess age-related reorganization of large-scale functional networks of the brain 
and identify potential association between this reorganization and individual variability in general cogni-
tive performance. As a measure for general cognitive performance, we used the Addenbrooke’s Cognitive 
Examination-Revised (ACE-R)35,36 total score. ACE-R has been shown as one of the best screening tests for 
dementia37 and its translated versions, including the Japanese version, also showed good to excellent sensitivity 
and specificity for detecting dementia38. We used rsfMRI data from a carefully selected cohort of 129 healthy 
participants with age ranging from 21 to 86 years old to examine cross sectional changes in the functional organ-
ization of several large-scale RSNs over the adult lifespan. As the effects of age could manifest at different spatial 
or organizational scales, our analysis spanned from the voxel level to the network level to extensively characterize 
these age-related network changes: (1) We first identify the changes in connectivity patterns in several large-scale 
RSNs at the voxel level using independent component analysis (ICA) and dual regression39. We used ICA to 
help minimize the effect of head motion and other physiological variables that could affect the estimation of 
functional connectivity measures as ICA could simultaneously extract both relevant (e.g. RSNs) and structured 
noise components (e.g., motion-related, physiological, or scanner-induced noise). A global measure estimating 
the similarity of the connectivity pattern of individual RSNs compared to a given reference was used to further 
quantify the changes in network integrity and its association with age and general cognitive performance. (2) 
We then examined at the node level how the changes observed at the voxel level were affecting the whole-brain 
network topology using graph analysis. We computed several network measures and examined changes in these 
measures with age and general cognitive performance. In contrast to previous studies, we used a parcellation40 
that represents functional areas derived directly from nodes of large-scale RSNs rather than using nodes based 
on structural parcellation (e.g., AAL) or predefined coordinates. (3) We next focused our analysis on how these 
changes were also affecting the interaction of large-scale RSNs at the network level. For this, we computed the 
mean connectivity values within and between RSNs to represent network-level connectivity measures and inves-
tigated alterations of these measures with age and potential associations with general cognitive performance. (4) 
Finally, we performed mediation analysis41 for functional connectivity measures that showed correlation with 
both age and general cognitive performance to further elucidate their relationship. Our overall analysis strategy 
is outlined in Fig. 1 and detailed in the Methods section. By doing this multi-level analysis approach, we aimed to 
comprehensively investigate age-related network changes and to identify global connectivity measures that may 
be associated with general cognitive performance.

Results
Correlation between age and ACE-R.  The correlation between age and ACE-R total score, after con-
trolling for sex, was −0.20 (p = 0.027). For the different sub-scores of ACE-R, only attention (r = −0.21, p = 0.015) 
and memory (r = −0.18, p = 0.039) showed correlation with age.

Age-related voxel-level changes in large-scale canonical RSNs.  To investigate age-related changes 
in large-scale canonical RSNs at the voxel level, we used group ICA and dual regression analysis. Figure 2 shows 
voxels with functional connectivity values that significantly correlated with age for some representative canonical 
RSNs. Green regions indicate the group RSNs obtained using MELODIC. Voxels with connectivity values to the 
network that showed positive relationship with age are shown in red, while voxels with connectivity values that 
showed negative relationship are shown in blue. Positive relations were mostly observed in regions outside the 
network, while negative relations were observed in regions located within and outside the network. Networks 
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that showed widespread positive relation in connectivity with age included primary visual, high visual, medial 
sensorimotor, visuospatial, language, and ventral default mode, among others, while networks that exhibited 
negative relation included high visual, medial sensorimotor, cerebellum, and ventral default mode, among others. 
The list of all clusters showing significant (p < 0.05 corrected for multiple comparisons using family-wise error 
correction) relationship with age for each RSN is given in Supplementary Table S1. These widespread connectiv-
ity changes within and outside RSNs suggest an extensive reorganization of the canonical RSNs due to the aging 
process.

Similarity measure and its correlation with age and general cognitive performance.  To further 
quantify the observed age-related changes in the connectivity pattern of each RSN, we computed the similarity 
measure η2 of each subject-specific RSN relative to a reference connectivity map to quantify changes in network 
integrity. The result of the Kolmogorov-Smirnov test for normality of the estimated η2 values showed that we 
could not reject at 5% significance level the null hypothesis that the obtained values come from a normal dis-
tribution. Given this, we computed the partial correlations r and the corresponding p-values between the com-
puted similarity measure and age, sex, and ACE-R total score (Table 1). All RSNs except dorsal default mode, left 
executive control, and right executive control networks had similarity measures with significant negative partial 
correlation with age (corrected for multiple comparisons using 5% false discovery rate, FDR q < 0.05). Four of 
these networks including primary visual, visuospatial, high visual, and lateral sensorimotor also had similarity 
measures that positively correlated with ACE-R total score (FDR q < 0.05). No RSN had similarity measure that 
significantly correlated with sex. Results of the mediation analyses (Table 2, Similarity Measure) using the medi-
ation model given in Fig. 1b also showed that the observed correlation in general cognitive performance with age 
was mediated by the integrity, as quantified by the similarity measure, of several RSNs including primary visual 
(ab = −3.64, p = 0.0003), high visual (ab = −2.74, p = 0.0061), medial sensorimotor (ab = −2.39, p = 0.017), lat-
eral sensorimotor (ab = −2.56, p = 0.010), and visuospatial/dorsal attention (ab = −2.91, p = 0.0037) networks. 
These alterations in the network integrity of most canonical RSNs quantified using a global measure of similarity 
further support the observed age-related network reorganization. Moreover, changes in the integrity of some 
RSNs were also associated with the variability in the general cognitive performance of the participants.

Figure 1.  Outline of the overall analysis approach. (a) At the voxel level, we used group independent 
component analysis to extract large-scale canonical resting state networks (cRSNs) from resting state fMRI 
data and dual regression analysis to identify individual cRSNs. A similarity measure was then estimated for 
each cRSN relative to a reference RSN. Using clusters derived from cRSNs and the rest of the brain as nodes, 
we then examined at the node level how the changes observed at the voxel level affected the network properties 
of the brain using graph analysis. For this, we estimated several whole brain network measures including path 
length, global efficiency, and degree, among others. Finally, we focused our analysis on the nodes of well-known 
cRSNs and computed mean connectivity values within cRSNs (within-network functional connectivity, WNFC) 
and between cRSNs (between-network functional connectivity, BNFC) to investigate changes at the network 
level. For all estimated measures at all levels, we investigated the measures’ association with age and ACE-R 
total score. (b) For functional connectivity measures (FCM) that showed significant correlation (p < 0.05, 
uncorrected) with both age and ACE-R total score, we further performed mediation analysis to elucidate 
the relationship among the interacting variables. The mediation model shown in (b) was used. Details of the 
methods used in the analysis are given in the Methods section.
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Age-related alterations in whole-brain network topology and its association with ACE-R total 
score.  Next, we examined the effects of the observed age-related connectivity changes in different RSNs to 
the network topology of the whole brain using graph analysis. Several network measures including path length, 
global efficiency, network degree, and betweenness, among others, were computed. The Kolmogorov-Smirnov 
test for normality showed that the null hypothesis that these measures come from a normal distribution could 
not be rejected at 5% significance level. Figure 3 shows scatter plots of several network properties estimated using 
graph theory that significantly correlated with age (FDR q < 0.05) for network-defining connectivity thresh-
old value equal to 0.2. We observed a negative correlation between the network’s shortest path length and age 
(r = −0.37, p = 2.53 × 10−5, Fig. 3a). On the other hand, global efficiency positively correlated with age (r = 0.37, 
p = 2.24 × 10−5) as shown in Fig. 3b. Similarly, the network degree (Fig. 3c) representing the mean of the degree 
(number of connections) of all nodes in the network also exhibited positive correlation (r = 0.29, p = 0.0011), 
although not as strong as that of the global efficiency. Finally, a more robust decrease in betweenness, a centrality 

Figure 2.  Cross sectional increases and decreases in functional connectivity within and outside canonical 
resting state networks (RSN) with age. Green regions indicate RSN (group IC thresholded at z > 3.0 for display), 
blue for negative correlation with age, and red for positive correlation with age. dDMN – dorsal default mode 
network; RECN – right executive control network; Visu – visuospatial network; pVis – primary visual network; 
hVis – high visual network; vDMN – ventral default mode network; aSal – anterior salience network; Lang – 
language network; Cer – cerebellum; Prec – precuneus network; mSMN – medial sensorimotor network; lSMN 
– lateral sensorimotor network.
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measure representing the fraction of all shortest paths passing through a given node in the network, with age 
(r = −0.42, p = 1.03 × 10−6) can be observed in Fig. 3d. This association between network measures and age 
persisted, but appeared to decline, even for higher network-defining thresholds as shown in Table 3 except for 
network degree, which was no longer correlated with age for threshold values greater than 0.3. In terms of the net-
work measures’ association with ACE-R total scores, the shortest path length, network hierarchy, and between-
ness exhibited positive correlation with ACE-R total score, while global efficiency showed negative correlation 
(FDR q < 0.05) for connectivity threshold value set to 0.2 (Table 4). This association, however, disappeared for 
higher network-defining connectivity threshold values. Moreover, when adjusting for age and sex, the signif-
icance also disappeared. Mediation analyses results only showed mediation effect of path length (ab = −1.97, 
p = 0.048) to the relationship between age and ACE-R total score and not as significant as that observed when 
using similarity measures (Table 2, Network Measures). Together, these findings suggest that the observed reor-
ganization tends to progress towards a more integrated network topology. The association with general cognitive 
performance, however, was not as robust as compared to that of the other measures.

RSN

Age Sex ACE-R Total

r p r p r p

Dorsal DMN −0.1385 0.1204 0.1394 0.1181 0.1416 0.1122

Primary Visual −0.3681 0.0000 −0.0480 0.5922 0.3466 0.0001

LECN −0.1399 0.1166 −0.1195 0.1808 0.0688 0.4421

RECN −0.1332 0.1354 −0.0878 0.3263 0.1725 0.0525

Anterior Salience −0.3081 0.0004 0.0659 0.4614 0.0398 0.6567

Visuospatial −0.5178 0.0000 0.1378 0.1224 0.3103 0.0004

High Visual −0.3391 0.0001 0.0456 0.6107 0.2428 0.0059

Precuneus −0.2998 0.0006 −0.0699 0.4346 0.0578 0.5189

Language −0.3427 0.0001 −0.0365 0.6835 0.1573 0.0775

Medial SMN −0.4520 0.0000 0.0520 0.5618 0.2141 0.0156

Cerebellum −0.3414 0.0001 0.0440 0.6233 0.1717 0.0536

Lateral SMN −0.4146 0.0000 0.0828 0.3545 0.2440 0.0057

Ventral DMN −0.3808 0.0000 0.0788 0.3787 0.1656 0.0628

Table 1.  Partial correlation values r of the similarity measure η2 with age, sex, and ACE-R total score using 
reference RSNs constructed from the mean subject-specific RSNs of the young subgroup of participants 
(age < = 30 years old). Highlighted p-values are significant after correction for multiple comparisons using 5% 
false discovery rate (FDR q < 0.05). RSN – resting state network, DMN – default mode network, LECN – left 
executive control network, RECN – right executive control network, SMN – sensorimotor network, ACE-R – 
Addenbrooke’s Cognitive Examination – Revised.

Model Param

a b c’ c ab

z p z p z p z p z p

Similarity Measure

pVis −3.8796 0.0001 3.6077 0.0003 −0.4874 0.6260 −2.1125 0.0346 −3.6431 0.0003

Visu −3.4577 0.0005 3.1698 0.0015 0.0178 0.9858 −2.0682 0.0386 −2.9065 0.0037

hVis −3.8864 0.0001 3.0076 0.0026 −1.1004 0.2711 −2.1487 0.0317 −2.7406 0.0061

mSMN −3.7305 0.0002 2.7337 0.0063 −0.8887 0.3742 −2.1026 0.0355 −2.3858 0.0170

lSMN −3.6269 0.0003 2.7589 0.0058 −0.8218 0.4112 −2.0405 0.0413 −2.5633 0.0104

Network Measures

Path length −3.8565 0.0001 1.5860 0.1127 −0.9646 0.3348 −1.9797 0.0477 −1.9739 0.0484

WNFC/BNFC

Aud −3.2347 0.0012 3.6457 0.0003 −1.1871 0.2352 −2.1320 0.0330 −3.0275 0.0025

Lang – pVis −2.0236 0.0430 −2.4032 0.0163 −2.5009 0.0124 −2.1569 0.0310 2.1190 0.0341

Table 2.  Results of mediation analysis for the model (Fig. 1b) where a given connectivity measure (similarity, 
network, or within- and between-network functional connectivity measures) mediated the relationship 
between age and ACE-R total score. Sex was controlled in all regression analyses. a is the coefficient relating 
the independent variable (age) to the mediator (connectivity measure), b is the coefficient relating the 
mediator to the dependent variable (ACE-R total score), c’ is the coefficient relating the independent variable 
to the dependent variable adjusted for the mediator, c is the coefficient relating the independent variable 
and the dependent variable without mediation, and ab is the (mediated) indirect effect. z corresponds to the 
standardized value and p the corresponding p-value computed using bootstrap method (10,000 samples). pVis 
– primary visual; Visu – visuospatial; hVis – high visual; mSMN – medial sensorimotor network; lSMN – lateral 
sensorimotor network; Aud – auditory network; Lang – language network; WNFC – within-network functional 
connectivity; BNFC – between-network functional connectivity.
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Network level age-related changes and its relationship with general cognitive performance.  
Finally, we also examined network-level measures to identify indications of age-related changes at the network 
level and its potential association with general cognitive performance. For this, we computed network-level 

Figure 3.  Scatter plots of several network measures exhibiting significant correlation with age after adjusting for 
sex and ACE-R total score: (a) shortest path length (r = −0.37, p = 2.53 × 10−5), (b) global efficiency (r = 0.37, 
p = 2.24 × 10−5), (c) degree of network (r = 0.29, p = 0.0011), and (d) betweenness (r = −0.42, p = 1.03 × 10−6). 
Network measures were estimated using a network-defining correlation threshold set to 0.2.

Network-defining correlation threshold r = 0.2 r = 0.25 r = 0.3 r = 0.35 r = 0.40

Shortest path length −0.37 (2.53 × 10−5) −0.35 (5.24 × 10−5) −0.33 (2.16 × 10−4) −0.29 (8.95 × 10−4) −0.25 (5.23 × 10−3)

Global efficiency 0.37 (2.24 × 10−5) 0.36 (4.22 × 10−5) 0.33 (1.61 × 10−4) 0.30 (6.40 × 10−4) 0.26 (3.45 × 10−3)

Degree 0.29 (0.0011) 0.26 (0.0038) 0.23 (0.012) NS NS

Betweenness −0.42 (1.03 × 10−6) −0.40 (3.71 × 10−6) −0.37 (2.15 × 10−5) −0.34 (1.25 × 10−4) −0.29 (1.00 × 10−3)

Table 3.  Partial correlation values between different network measures and age after adjusting for sex and 
ACE-R total score. Network measures were estimated using different values of network-defining connectivity 
threshold r. NS – no significant correlation was observed after correcting for multiple comparisons using FDR 
q < 0.05. (*) p-values.

Network Measures Correlation Coefficient (p-value)

Shortest path length 0.22 (0.0135)

Global efficiency −0.22 (0.0127)

Network hierarchy 0.22 (0.0129)

Betweenness 0.27 (0.0021)

Table 4.  Correlation between network properties and ACE-R total score. Network measures were estimated 
using a network-defining connectivity threshold value set to r = 0.2 (FDR q < 0.05, no adjustment for age and 
sex).
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measures corresponding to the mean within-network functional connectivity (WNFC) as well as the mean 
between-network functional connectivity (BNFC). Figure 4a shows the relationship between WNFC/BNFC 
and age. At the network level, only the visuospatial network’s BNFC values showed significant (FDR q < 0.05) 
association with age. Negative partial correlation (blue line) was observed in the BNFC of visuospatial and lan-
guage networks with age. On the other hand, positive partial correlations between BNFC and age (red lines) were 
observed in visuospatial with sensorimotor, primary visual, precuneus, and salience networks. These findings 
further support the results using ICA and dual regression analyses signifying the widespread reorganization of 
canonical RSNs with age with increasing between-network connectivity.

In terms of general cognitive performance, Fig. 4b shows the relationship between WNFC and BNFC with 
ACE-R total score after accounting for the contribution of age and sex using partial correlations. Independent of 
age and sex, significant (FDR q < 0.05) positive partial correlation was observed between WNFC of the primary 
visual and auditory networks with ACE-R total score as indicated by the red nodes in Fig. 4b. The mean connec-
tivity values among (left/right) executive control, (posterior) salience, and dorsal default mode as well as (left/
right) executive control, basal ganglia, and dorsal default mode were also positively correlated with ACE-R total 
score. On the other hand, the mean connectivity values between (primary/high) visual and sensorimotor with 
salience, precuneus with language, as well as primary visual with basal ganglia were negatively correlated with 
ACE-R total score. Generally, the BNFC among core neurocognitive networks (salience, dorsal default mode, 
and executive control) and basal ganglia positively correlated with ACE-R total score, while that between core 
neurocognitive networks/basal ganglia and primary processing networks (visual and sensorimotor) negatively 
correlated with ACE-R total score. Results of the mediation analyses showed that the WNFC of the auditory 
network and the BNFC between language and primary visual networks mediated the relationship between age 
and ACE-R total score (ab = −3.03, p = 0.0025 and ab = 2.12, p = 0.034, respectively; see Table 2, WNFC/BNFC).

Discussion
We examined cross sectional changes in the organization of large-scale functional networks in the brain over the 
adult lifespan using rsfMRI data from a carefully selected cohort of healthy participants in order to reduce factors 
that may influence the reliability of the results. In addition, we investigated the association between the estimated 
functional connectivity measures and ACE-R total score to identify potential connectivity-related correlates of 
the individual differences in general cognitive performance observed across participants.

Converging results from multiple analyses showed large-scale reorganization of functional brain networks 
with advancing age. In particular, (1) positive correlation between functional connectivity and age was mostly 
observed between networks, while negative correlation was observed both within and between networks; (2) 

Figure 4.  Network graphs showing the correlation between (a) network-level functional connectivity and age 
as well as (b) network-level functional connectivity and ACE-R total score. Only significant (FDR q < 0.05) 
partial correlation values are indicated. Red nodes in (b) indicate significant positive partial correlation of 
within-network functional connectivity (WNFC) with ACE-R total score, while green nodes in both (a,b) 
indicate no correlation. Red links between two nodes indicate significant positive partial correlation of between-
network functional connectivity (BNFC) with either age (a) or ACE-R total score (b), while blue links indicate 
significant negative partial correlation. Line thickness represents the relative strength of the correlation. SMN 
– sensorimotor network; RECN – right executive control network; Aud – auditory; BG – basal ganglia; dDMN 
– dorsal default mode network; HVis – high visual; Lang – language; LECN – left executive control network; 
pSal – posterior salience; Prec – precuneus; PVis – primary visual; Sal – salience; vDMN – ventral default mode 
network; Visu – visuospatial.
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compared with reference connectivity maps derived from the mean RSNs of the young adult subgroup, all canon-
ical RSNs except the left and right executive control and dorsal default mode networks had similarity measures 
that negatively correlated with age; and (3) network measures estimated using graph theory showed progression 
towards a more integrated network topology as indicated by a decreasing shortest path length and an increas-
ing global efficiency with age. In terms of the connectivity’s association with general cognitive performance, 
(4) primary processing networks including (primary/high) visual and (lateral) sensorimotor networks, and the 
visuospatial network have similarity measures that positively correlated with ACE-R total score suggesting the 
potential relevance of the integrity of these networks in maintaining normal cognitive function. Moreover, (5) 
between-network connectivity among higher level cognitive networks including executive control, salience, and 
(dorsal) default mode networks, and basal ganglia network were significantly correlated with ACE-R total score, 
implicating the potential role of the interaction between these networks in the observed individual differences 
in general cognitive performance. Interestingly, the interconnections between these networks were minimally 
affected by age-related connectivity alterations. Since aberrant functioning and organization of these networks 
have been implicated in several psychiatric and neurological disorders42, the relative preservation of the connec-
tivity within and between these networks may be indicative of the importance of these connections in preserving 
cognitive function during healthy aging. Finally, (6) results of the mediation analyses further indicated that the 
observed relationship between aging and the relative decline in general cognitive performance could be mediated 
by changes in relevant functional connectivity measures.

Previous studies have shown alterations in functional connectivity of canonical RSNs, reflecting functional 
network reorganization (e.g., see Sala-Llonch and colleagues43 for a review). Our results show that generally, 
within-network connectivity values tended to be lower in advanced age, while between-network connectivity 
values tended to be higher. This general observation is consistent with the findings of other studies that have been 
reported in the literature28,29,44. In particular, the reported decrease in within-network connectivity in the execu-
tive control and visual networks and increase in between-network connectivity in the dorsal attention/visuospa-
tial, sensorimotor, and salience networks28 are consistent with our findings (see Figs 2 and 4). Other studies also 
reported decreased within-network connectivity in executive control31, visual45, and default mode24,27,31 networks 
consistent with our voxel-level results. Discrepancies in the details of the reported changes in other studies may 
be present but the general observation remains the same. These differences could be attributed to variations in 
defining the network (e.g., using ICA or pre-defined nodes), in defining nodes (using fixed MNI coordinates, or 
data-driven such as clusters derived from ICA decomposition, or other parcellations), and in methods defining 
connectivity/network measures (e.g., using seed-based, ICA, or graph theory), among others.

Results of the network analysis using whole brain parcellation also reflect greater functional reorganization 
in the brain that tended to progress towards a more integrated network. These findings are consistent with the 
observed increased in connectivity with age with regions outside the network at the voxel level. Measures that 
can be used to quantify network integration include shortest path length, global efficiency, and node degree, 
among others. Decrease in shortest path length with age indicates that information travels from one node to 
another using shorter path, suggesting that the network becomes more integrated. This is further supported by 
the observed increase in global efficiency (GE), indicating a more efficient pathway from one node to another. 
Previous studies had also examined differences in GE in young and older adults and found similar results33,46. 
Higher level functions that require integration of information from different sources could benefit from the 
increase in global efficiency across the whole network47. The observed increase in network degree also means 
more nodes were linked together and decrease in betweenness also suggests less clustering of nodes, again point-
ing to a higher network integration with age. Intriguingly, the overall increase in global efficiency or whole-brain 
network integrity was associated with a negative correlation in ACE-R total score (Table 4), which appeared to 
be contradictory. However, most of the connectivity increases we observed were driven by the primary process-
ing systems. It is therefore not surprising if these increases in between-network connectivity drove the overall 
increase in global efficiency (or whole-brain network integration). These connectivity increases, however, were 
also associated with the decrease in these networks’ integrity, which in turn, was associated with general cognitive 
performance. Thus, in spite of the increased in global efficiency with age, the overall effect in general cognitive 
performance was negative.

At the network level, only the visuospatial network, also known as the dorsal attention network, exhibited a 
more widespread cross sectional increased connectivity towards other networks (Fig. 4a). This is also reflected 
in the estimated similarity measure (voxel-level analysis) relative to that of the young adult subgroup, which 
showed negative correlation with age. This suggests a weakening network integrity, which could be driven by 
the increase in connectivity with nodes from other networks. Association systems typically direct and integrate 
information from a wide range of tasks and across modalities. It is therefore not surprising that the connectivity 
of the visuospatial network with sensorimotor and visual processing networks (sensorimotor, visual, and basal 
ganglia networks) as well as other association systems (salience and precuneus) would increase with age. What 
is intriguing is that the estimated similarity measure of this network positively correlated with ACE-R total score 
suggesting that the preservation of the integrity of this network with age may be important for the individual’s 
overall cognitive performance. This observation is further supported by the result of the mediation analysis where 
the similarity measure of this network had significant mediation effect on the relationship between aging and 
general cognitive performance.

Like the visuospatial network, the precuneus, which is a subsystem of the classical default mode network, 
also exhibited tendency towards higher connectivity with other networks (visuospatial, right executive control, 
and salience networks) with advanced age accounting for the increasing dissimilarity of the connectivity pattern 
relative to that of the young adult subgroup. However, unlike the visuospatial network, we did not observe sig-
nificant correlation between the similarity measure and ACE-R total score. Moreover, its connectivity with other 
networks was also not correlated with ACE-R total. This result seemed to contradict several studies showing the 

https://doi.org/10.1038/s41598-019-47922-x


9Scientific Reports |         (2019) 9:11352  | https://doi.org/10.1038/s41598-019-47922-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

involvement of the precuneus/posterior cingulate cortex in Alzheimer’s disease (AD) and connectivity alter-
ations in this region in AD are often associated with cognitive decline48–50. In light of this, we speculated that 
the observed increased connectivity with age in the precuneus could be a form of compensatory mechanism 
in support to other networks given that this region is also a major connectivity hub in the brain. In this cohort, 
all participants are cognitively normal and therefore should have a well-functioning compensatory mechanism 
especially in advanced age. We could therefore interpret findings related to AD with regards to the precuneus 
as a possible failure of compensation, which could then lead to cognitive decline. A recent paper by Schultz and 
colleagues51 showing an initial hyperconnectivity phase in the default mode and salience networks in the course 
of preclinical AD, then followed by a hypoconnectivity phase, could lend support to this interpretation. Moreover, 
Jones and colleagues52 also proposed that failure in the posterior default mode (equivalent to the precuneus net-
work) could trigger a series of downstream network failures leading to Alzheimer’s disease. Elucidating the role of 
the precuneus network in cognition during healthy aging is currently beyond the scope of this paper.

In terms of general cognitive performance, we observed that the relatively well-preserved between-network 
connections of the higher level cognitive networks were positively correlated with ACE-R total score (Fig. 4b). 
This could imply that better general cognitive performance is closely associated with the strong interaction among 
default mode, salience, and executive control networks (red solid lines). These 3 RSNs have been considered 
as core neurocognitive networks due to the critical role these networks play across a wide range of cognitive 
tasks23,42. The default mode network, usually de-activated during task performance, has been linked with inter-
nally oriented or self-related processes such as stimulus-independent thoughts53, mind wandering54, introspec-
tion55, and social cognition56, among others, while the executive control network, activated during cognitively 
demanding tasks, is associated with the active maintenance and manipulation of information in working memory 
and in making judgment and/or decision during goal-directed behavior57,58. On the other hand, the salience 
network has been implicated to play a role in switching between the activation and deactivation of the externally 
oriented executive control network and the internally oriented default mode network59,60. Our findings identify-
ing the connectivity between these networks being correlated with general cognitive performance reinforces the 
significance of the role these networks play in general cognition.

Aside from the core neurocognitive networks, our results also suggested the potential role of the interac-
tion between basal ganglia and executive control networks as well as between basal ganglia and default mode 
networks for the maintenance of general cognition. This relationship is akin to that of the core neurocognitive 
networks with the basal ganglia network switching place with the salience network. This interaction is not without 
precedent and previous studies have shown examples of the interaction among these 3 networks. Using intra/
extradimensional set-shifting tasks measuring cognitive flexibility, Vatansever and colleagues61 have shown that 
participants with greater functional connectivity between default mode and basal ganglia achieved better task 
performance. Anatomically, the striatum is also known to have reciprocal connections with the dorsolateral pre-
frontal cortex (dlPFC) and the posterior parietal cortex (PPC)62,63, regions belonging to the executive control 
network. In Parkinson’s disease (PD), which primarily affects the striatum, the dlPFC and PPC have been shown 
to display abnormal activity during cognitively demanding tasks64,65 and decrease in connectivity between the 
striatum and the default mode network, shown to correlate with the symptom’s severity, has also been reported66. 
Given that the interaction among these 3 networks also correlated with ACE-R total score in this study could lend 
support to the possible role of basal ganglia network in general cognition.

Compared to the core neurocognitive networks, the primary processing networks’ integrity, rather than 
between-network connectivity, is associated with general cognitive performance. The estimated similarity meas-
ures of these networks negatively correlated with age, suggesting the connectivity patterns are becoming more 
dissimilar compared to the reference. These changes could be driven by the networks’ increased connectivity with 
regions outside the network (in particular, with nodes of the visuospatial network as shown in Fig. 4a). Moreover, 
this changing connectivity pattern is also positively correlated with ACE-R total score suggesting the poten-
tial role of the integrity of these networks in maintaining normal cognitive performance. As an example, recent 
work from our group67 showed that non-demented PD patients with multiple cognitive domain deficits exhibited 
greater reductions in connectivity in the visual network compared to healthy controls. Mediation analysis further 
confirmed the role of the integrity of these networks on the relationship between aging and ACE-R total score. 
In addition to the similarity measure, the connectivity of these networks with the salience and basal ganglia net-
works also negatively correlated with ACE-R total score, an indication that direct integration of these networks to 
the core neurocognitive networks during aging could be maladaptive.

Finally, we would like also to address the issue on the use of ACE-R total score as the main measure for general 
cognitive performance. Here, our aim was not to examine sources of global cognition per se, which is beyond the 
scope of the paper, but rather to investigate whether the observed changes in measures of functional connectivity 
(similarity index, network measures, BNFC, and WNFC) could be associated with general cognitive performance. 
There are several tests currently in use to measure general cognition. Among these cognitive tests, we used ACE-R 
total score. ACE-R is a brief battery providing evaluation of six cognitive domains, could take about 20 minutes to 
complete, includes the Mini Mental State Examination (MMSE)68 with the additional non-MMSE items shown to 
improve estimates of cognitive ability by 16%69 and with lower ceiling effect (as compared to MMSE). ACE-R has 
also been shown to have the best diagnostic performance (sensitivity and specificity) for dementia37 including its 
various translations. Since aging is a main risk factor for several neurodegenerative disorders leading to dementia, 
we consider the use ACE-R total score as a measure of general cognitive performance reasonable. Recent stud-
ies70,71 have also started looking at age-related neurological disorders as “syndromes of accelerated brain aging 
process.” Viewed this way, using a cognitive measure that would span the “brain aging” spectrum (from healthy 
aging to mild cognitive impairment to dementia) may also be helpful in identifying relevant connectivity-based 
biomarkers that could be associated with cognitive dysfunction.
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Limitations
In this study, all participants are cognitively normal with ACE-R total score above 88. The observed 
connectivity-related correlates of the variability in general cognitive performance may therefore be limited to 
normal cognition. Studies involving clinical population would be needed to verify whether the observed associ-
ation between functional connectivity and cognitive performance has general applicability and are predictive of 
any age-related cognitive decline. However, some studies cited above do indicate that this association may have 
more general applicability even in neurodegenerative cases and may serve as an important template in identifying 
the relevant connectivity correlates that could lead to cognitive degeneration. Another limitation of the study is 
the sample size. The current sample size may not be adequate considering the range of age being investigated. 
However, we did strive to have each decade of age reasonably represented except for the 8th decade, which has 
only 1 participant. In addition, there is also an imbalance in the number of male and female participants with 
more of the latter than the former. This could be a reflection of the overall proportion of men and women in the 
general population given the longer average life expectancy of women (87.26 years) as compared to men (81.09 
years) in Japan. The higher stroke prevalence, whether ischemic or hemorrhagic, in men also led to the higher 
number of excluded male participants compared to females. Other contributing factors include availability as 
well as interest in participating research studies. To account for this difference, we included sex as a co-variate/
regressor in most analyses to minimize its potential effects in our results. The presented results should therefore 
be interpreted in view of these limitations.

Conclusion
We examined the relationship between functional connectivity in large-scale brain networks and age over the 
adult lifespan. Our results showed significant alterations in the functional connectivity patterns characterized 
by weaker within-network connectivity and higher between-network connectivity in advanced age. Estimated 
network properties also tend to suggest a progression towards a more integrated network topology as the brain 
aged. Between-network interactions among the so-called core neurocognitive networks plus the basal ganglia 
network, integrity of within-network connectivity pattern, as estimated by the similarity measure η2, of primary 
processing networks and visuospatial network and possible compensatory action of the precuneus network were 
all associated with general cognitive performance. Taken together, these findings provide further evidence sup-
porting age-related reorganization of large-scale functional brain networks and its potential association with 
general cognitive performance during healthy aging.

Methods
Participants.  For this study, healthy volunteers from Nagoya City and neighboring areas were recruited 
through public relations efforts and information dissemination campaigns via posters, flyers, and word-of-mouth 
advertising in collaboration with local communities. As a consequence, our healthy volunteers participated in this 
aging cohort study4 at their own initiative. A total of 445 healthy adults volunteered from July 2014 to March 2016. 
Japanese board-certified neurologists, neurosurgeons, and speech therapists performed clinical assessments that 
included the Mini-Mental State Examination (MMSE)68 and the Japanese version of Addenbrooke’s Cognitive 
Examination-Revised (ACE-R) for evaluating general cognitive performance35,36 and the Beck Depression 
Inventory for mood disturbances72. Although we also assessed MMSE, it was only used for additional screening of 
the participants. Demographic data including education, past medical history, medication, drinking and smoking 
habits, and family history of neurodegenerative diseases were also collected. The study conformed to the Ethical 
Guidelines for Medical and Health Research Involving Human Subjects as endorsed by the Japanese Government 
and was approved by the Ethics Committee of Nagoya University Graduate School of Medicine. All participants 
gave written informed consent before joining the study.

Of the 445 participants initially recruited, 6 were unable to complete the ACE-R and were not scanned, 84 
were excluded due to asymptomatic cerebral infarction or hemorrhage, benign brain tumor, leptomeningeal 
cyst, cavum septum pellucidum, cavum vergae, and apparent motion artifact, and an additional 44 were further 
excluded due to obvious brain atrophy or WM abnormalities characterized by hyperintensities in T2-weighted 
images that were grade 2 or 3 based on the Fazekas hyperintensity rating system. Of the remaining 311 partici-
pants, 16 had MMSE scores less than 26 or ACE-R score less than 89 and 2 had incomplete imaging data and were 
also excluded. To control for the effect of head motion, a critical confounder in the computation of functional 
connectivity measures using rsfMRI data, we further performed additional screening based on the amount of 
head motion measured using framewise displacement (FD)73. We rigorously excluded the datasets with mean 
FD equal or greater than 0.2 mm and the number of volumes with FD > 0.2 mm was more than 20% of the total 
number of volumes. With this very strict head motion criterion, 164 participants were further excluded. The final 
number of participants included in the analysis was 129 with age ranging from 21 to 86 years old. The partici-
pants’ characteristics are summarized in Table 5.

MRI data.  All MRI scans were performed using a Siemens Magnetom Verio (Siemens, Erlangen, Germany) 
3.0 T scanner with a 32-channel head coil at Nagoya University’s Brain and Mind Research Center. For each par-
ticipant, a high resolution T1-weighted (T1w) image was acquired using a 3D MPRAGE (Magnetization Prepared 
Rapid Acquisition Gradient Echo, Siemens) pulse sequence74. The imaging parameters used were as follows: 
repetition time (TR)/MPRAGE TR = 7.4/2500 ms, echo time (TE) = 2.48 ms, inversion time (TI) = 900 ms, 192 
sagittal slices with a distance factor of 50% and 1-mm thickness, FOV = 256 mm, 256 × 256 matrix dimension, 
in-plane voxel resolution of 1.0 × 1.0 mm2, flip angle (FA) = 8 degrees, and total scan time equal to 5 min and 
49 s. Aside from T1w images, rsfMRI data were also acquired using an ascending gradient echo (GE) echo planar 
imaging (EPI) sequence with the following imaging parameters: TR = 2.5 s, TE = 30 ms, 39 transverse slices with 
a 0.5-mm inter-slice interval and 3-mm thickness, FOV = 192 mm, 64 × 64 matrix dimension, FA = 80 degrees, 
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and total scan time of 8 min and 15 s. Participants were instructed to close their eyes but not to fall asleep during 
the scan. Other MRI scans were also acquired during the same imaging session, but the analysis of these images 
will be reported elsewhere.

Image preprocessing.  The anatomical T1w and rsfMRI data were preprocessed using Statistical Parametric 
Mapping (SPM12, Wellcome Trust Center for Neuroimaging, London, UK) running on Matlab (R2016a, 
MathWorks, Natick, Mass, USA). The T1w images were first segmented into component images including gray 
matter (GM), white matter (WM), and cerebrospinal fluid (CSF), among others, using SPM12’s segmentation 
approach75. Bias-corrected T1w images together with the transformation information from subject space to MNI 
(Montreal Imaging Institute) space were then obtained. For each rsfMRI dataset, we excluded the first 5 volumes 
in the series to account for the initial scanner inhomogeneity. The remaining volumes were then slice-time cor-
rected relative to the middle slice (slice 20), and then realigned relative to the mean functional volume. The mean 
volume, together with the realigned functional images, were then co-registered to the bias-corrected T1w image. 
Using the transformation obtained during segmentation, the functional images were normalized to the MNI 
space, resampled to have an isotropic voxel resolution equal to 2 × 2 × 2 mm3, and smoothed using an isotropic 
8-mm full-width-at-half-maximum (FWHM) 3D Gaussian filter. To correct for head motion and contribution 
from other nuisance signals, we regressed out 24 motion-related regressors [Rt Rt

2 Rt−1 Rt−1
2], where R = [x, y, z, 

roll, pitch, yaw] represents the estimated motion parameters (3 translations and 3 rotations). Signals extracted 
from spherical ROIs within the CSF (center’s MNI coordinate = [20, −32, 18], radius = 4 mm) and WM (center’s 
MNI coordinate = [24, −12, 34], radius = 4 mm), the global signal, as well as the signals’ derivatives were also 
removed. Finally, the preprocessed data were then bandpass filtered within 0.01–0.1 Hz. These additional pre-
processing were performed using in-house Matlab scripts. The resulting dataset were used in the succeeding 
analysis.

Analysis of large-scale canonical RSNs.  To extract the canonical RSNs from the preprocessed rsfMRI 
dataset, we used group independent component analysis (ICA) as implemented in MELODIC, a component 
software from the FSL package76. All preprocessed rsfMRI datasets were temporally concatenated and 20 spatial 
independent components (ICs) were extracted. We only extracted 20 ICs to minimize the fractionation of the 
canonical RSNs into several ICs. ICs with significant overlapped with established RSN templates77 including 
dorsal and ventral default mode network, left and right executive control networks, salience network, primary 
and high visual networks, lateral and medial sensorimotor network, language network, visuospatial network 
(also known as dorsal attention network), precuneus network, and cerebellum network were then identified. 
A dual regression analysis39 was then performed to extract subject-specific RSNs using the group ICs. Briefly, 
the extracted group ICs were used as spatial regressors for each participant’s rsfMRI dataset and regression 
parameters were estimated at each time point. This gave a series of parameters associated with each group IC. 
The computed parameter time series for all ICs were then entered into a second regression analysis to generate 
subject-specific RSNs associated with the group RSNs.

We then performed regression analyses with age and sex as regressors using the computed subject-specific 
RSNs. We used FSL’s randomise tool78,79 to fit the model and compute the model parameters’ significance using 
a nonparametric permutation testing with 5000 permutations. A threshold-free cluster enhancement (TFCE) 
technique80 was applied in the resulting statistical images. The final statistical maps were corrected for multiple 
comparisons using family-wise error (FWE) correction with p < 0.05.

Estimation and analysis of the similarity measure.  To measure the integrity of each RSN, a global 
measure quantifying changes in the connectivity pattern of each RSN relative to a reference was also computed. 
For this, we used a spatial similarity measure given by η2 81,82:
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Age 
Range Count M F

Mean 
MMSE (SD)

Mean ACE-R (SD)

Total Attn Mem Flncy Lang Visu

20–29 28 13 15 29.9 (0.4) 96.7 (1.9) 18.0 (0.0) 24.3 (1.1) 13.9 (0.4) 24.8 (1.3) 15.8 (0.6)

30–39 16 4 12 30.0 (0.0) 97.9 (2.4) 18.0 (0.0) 24.9 (1.3) 13.6 (1.1) 25.4 (0.9) 16.0 (0.0)

40–49 12 4 8 29.6 (0.5) 96.9 (2.8) 18.0 (0.0) 24.2 (2.2) 13.6 (1.0) 25.2 (0.9) 15.8 (0.6)

50–59 26 4 22 29.7 (0.5) 97.5 (1.7) 18.0 (0.2) 24.7 (1.5) 13.7 (0.6) 25.3 (0.7) 15.8 (0.5)

60–69 30 8 22 29.4 (0.7) 96.5 (2.5) 17.9 (0.4) 23.8 (2.3) 13.8 (0.6) 25.2 (0.8) 15.8 (0.8)

70–79 16 3 13 28.9 (1.0) 95.1 (3.0) 17.9 (0.3) 23.5 (2.0) 13.4 (1.0) 24.8 (1.1) 15.6 (0.7)

80–89 1 0 1 28.0 (-) 91.0 (-) 17.0 (-) 20.0 (-) 14.0 (-) 25.0 (-) 15.0 (-)

Total 129 36 93

Table 5.  Participants’ characteristics. M – male; F – female; MMSE – Mini-Mental State Examination; ACE-R 
– Addenbrooke’s Cognitive Examination-Revised; Attn – attention; Mem – memory; Flncy – fluency; Lang – 
language; Visu – visuospatial; SD – standard deviation.
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where ai and bi are values at voxel i in connectivity maps a and b, respectively, mi is the mean value of the two 
maps at voxel i, M  is the grand mean value across the mean image m, and V is the total number of voxels in the 
maps. Here, a represents a subject-specific RSN (e.g., ventral DMN) and b is the corresponding reference RSN 
(e.g., reference ventral DMN). For reference RSNs (RSNREF), we used the mean of subject-specific RSNs from a 
subgroup of young adults (age < = 30 years old, N = 31 participants). The choice of 30 years old as the cut-off age 
to generate the reference RSNs was arbitrary but was motivated by the assumption that at this stage of develop-
ment, the RSNs are optimally developed and could therefore serve as a good reference for changes occurring 
during the aging process. We also performed the same analysis using 40 years old as the cut-off age and obtained 
approximately the same findings and so will not be presented in the results. Finally, we note that η2 can vary from 
0 to 1, with 0 indicating no similarity and 1 being identical. This measure enables the quantification of the simi-
larity, not just the correlation, between two images. Moreover, this measure can also capture within- and 
between-network connectivity pattern differences and is therefore suitable for assessing alterations in the connec-
tivity pattern of large-scale RSNs. The relations between the estimated η2 and age, sex, and ACE-R total score were 
computed using partial correlations as implemented in Matlab’s partialcorri() function. Correlations were consid-
ered significant after correcting for multiple comparisons using a 5% false discovery rate (FDR q < 0.05). We 
further verified whether the estimated values of η2 were normally distributed using the Kolmogorov-Smirnov test 
as implemented in Matlab’s kstest() function.

Graph analysis of whole-brain network topology.  Aside from canonical RSN analysis, we also per-
formed whole brain connectivity analysis to investigate age-related connectivity changes across the entire brain 
at the cluster/node level and identify alterations in whole-brain network topology. For this, we used a parcellation 
that divided the brain into 499 ROIs40. This parcellation extended the original 90 functional ROIs (https://findlab.
stanford.edu/functional_ROIs.html) representing the nodes of 14 RSN templates77 obtained using group ICA by 
further subdividing very large nodes in the RSN templates and adding more ROIs to cover the rest of the cortex 
and subcortical areas. Of the 499 ROIs, 4 were from the auditory network, 7 from basal ganglia, 21 from dorsal 
default mode, 13 from ventral default mode, 4 from high visual, 9 from language, 10 from left executive control, 
14 from right executive control, 12 from sensorimotor, 13 from posterior salience, 6 from precuneus, 2 from 
primary visual, 12 from anterior salience, and 15 from visuospatial/dorsal attention network. The remaining 357 
ROIs were from the rest of the cortex and other subcortical areas. A complete list of the 499 ROIs including MNI 
coordinates, cluster sizes, and labels is given in Supplementary Table S2.

BOLD signals from all voxels within a given ROI were extracted and averaged. Each ROI represented a node 
in the whole-brain network and the averaged BOLD signal as the node’s time series. The connectivity matrix for 
each participant was then computed using Pearson’s correlation coefficient between the time series of pairs of 
nodes giving a 499 × 499 connectivity matrix. From the computed connectivity matrix, several network measures, 
including shortest path length, global efficiency, network degree, betweenness, and modularity, among others, 
were estimated using GRETNA83. Note that the resulting values of these measures could depend on the value 
used to threshold the connectivity matrix to define the network. Consequently, we used several network-defining 
connectivity threshold values given by r = 0.20, 0.25, 0.30, 0.35, and 0.40 to validate the consistency of our find-
ings across different threshold levels. The correlation between the computed network measures and age, sex, and 
ACE-R total score was estimated using Matlab’s partialcorri() function. Correlations were considered significant 
after correcting for multiple comparisons using FDR q < 0.05. Testing for normality of the different network 
measures was also performed using Kolmogorov-Smirnov test as implemented in Matlab’s kstest() function.

Estimation and analysis of network-level connectivity measures.  To examine the relationship 
between functional connectivity and age at the network level, we further assessed the connectivity within and 
between canonical RSNs using a subset of nodes (142 nodes from the 14 RSNs) from the 499 ROIs. For this anal-
ysis, we transformed the estimated correlation coefficients into z-scores, representing connectivity values, using 
Fisher’s transform. We then computed for each RSN the within-network functional connectivity (WNFC), which 
represents the mean of all connectivity values between nodes within the same RSN. Furthermore, we also com-
puted the between-network functional connectivity (BNFC) represented by the mean of all connectivity values 
between nodes in one network and that in another network. We then computed the correlation between WNFC 
and age as well as between BNFC and age after controlling for sex and ACE-R total score using partial correla-
tions. We also assessed the relationship between WNFC and ACE-R total score as well as BNFC and ACE-R total 
score after controlling for age and sex. This is implemented using Matlab’s partialcorri() function. Correlation 
values were considered significant after correcting for multiple comparisons using FDR q < 0.05.

Mediation analysis.  To further elucidate the relationship among the different functional connectivity meas-
ures, age, and general cognitive performance, we performed mediation analysis41 for functional connectivity 
measures that showed correlation (p < 0.05, uncorrected) with age and with ACE-R total score. We tested the 
model where age was used as the independent variable, the functional connectivity measure (similarity measure, 
network properties, WNFC, or BNFC) as the mediator, and ACE-R total score as the dependent variable (Fig. 1b). 
We note that alternative models (e.g., the connectivity measure was used as the independent variable, age as the 
mediator, and ACE-R total score as the dependent variable) were also considered for completeness but did not 
show significant mediation effect and therefore would not be discussed further. We used the Mediation Toolbox84 
(https://github.com/canlab/MediationToolbox) to estimate the different model parameters. Sex was controlled in 
all regression analyses and p-values were estimated using bootstrap method (10,000 samples).
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Data Availability
The datasets generated and analyzed in the current study are not publicly available due to privacy and legal rea-
sons. The data are however available from the corresponding author upon reasonable request and with permis-
sion from the Ethics Committee of Nagoya University Graduate School of Medicine.
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