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The heavy burden imposed by the COVID-19 pandemic on our society triggered the
race toward the development of therapies or preventive strategies. Among these,
antibodies and vaccines are particularly attractive because of their high specificity, low
probability of drug-drug interaction, and potentially long-standing protective effects.
While the threat at hand justifies the pace of research, the implementation of therapeutic
strategies cannot be exempted from safety considerations. There are several potential
adverse events reported after the vaccination or antibody therapy, but two are of utmost
importance: antibody-dependent enhancement (ADE) and cytokine storm syndrome
(CSS). On the other hand, the depletion or exhaustion of T-cells has been reported to
be associated with worse prognosis in COVID-19 patients. This observation suggests
a potential role of vaccines eliciting cellular immunity, which might simultaneously
limit the risk of ADE and CSS. Such risk was proposed to be associated with FcR-
induced activation of proinflammatory macrophages (M1) by Fu et al. (2020) and Iwasaki
and Yang (2020). All aspects of the newly developed vaccine (including the route of
administration, delivery system, and adjuvant selection) may affect its effectiveness and
safety. In this work we use a novel in silico approach (based on AI and bioinformatics
methods) developed to support the design of epitope-based vaccines. We evaluated
the capabilities of our method for predicting the immunogenicity of epitopes. Next, the
results of our approach were compared with other vaccine-design strategies reported in
the literature. The risk of immuno-toxicity was also assessed. The analysis of epitope
conservation among other Coronaviridae was carried out in order to facilitate the
selection of peptides shared across different SARS-CoV-2 strains and which might be
conserved in emerging zootic coronavirus strains. Finally, the potential applicability of
the selected epitopes for the development of a vaccine eliciting cellular immunity for
COVID-19 was discussed, highlighting the benefits and challenges of such an approach.
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INTRODUCTION

As of August 6, 2020, more than 19 million cases of COVID-19
were reported worldwide, leading to more than 700 thousands
deaths1. The disease was first recorded on December 26,
2019, when a 41-year-old patient with no history of hepatitis,
tuberculosis, or diabetes was hospitalized at the Central Hospital
of Wuhan due to respiratory problems (Wu F. et al., 2020). The
metagenomic RNA sequencing of bronchoalveolar lavage (BAL)
fluid sample obtained from that patient led to the identification
of the seventh coronavirus (CoV) strain known to infect humans.

Coronaviruses are well known human respiratory pathogens
associated with the common cold. Until the 21st century they
were neglected by the medical world, but the emergence and
subsequent spread of the SARS-CoV in the 2002/2003 season
raised interest in this virus family and increased awareness of the
potential threat. At present, there are four seasonal coronaviruses
infecting humans and they cluster within alphacoronaviruses
(HCoV-NL63, HCoV-229E) and betacoronaviruses (HCoV-
OC43, HCoV-HKU1) genera. Further, three zoonotic strains
were reported – severe acute respiratory syndrome coronavirus
(SARS-CoV; 2002–2003), the Middle East respiratory syndrome
coronavirus (MERS-CoV; 2012-), and SARS-CoV-2 (2019-), all
of which belong to the betacoronavirus genus (Wu A. et al.,
2020). The highly pathogenic species cluster in two subgenera –
sarbecoviruses (SARS-CoVs) and merbecoviruses (MERS-CoVs)
(Hu et al., 2018; Wu F. et al., 2020; Zhou et al., 2020).

While generally, viruses infect one host, some have broader
specificity or can cross the interspecies borders, causing
outbreaks, epidemics, and pandemics. In this context, it is worth
mentioning viruses like the Ebola virus, dengue fever virus, Nipah
virus, rabies virus, or Hendra virus. However, these are well
known and long studied animal viruses that only sometimes
enter the human population. Coronaviruses are slightly different,
as among the myriads of viral species and subspecies found
in animals, it is unlikely to predict the place, the time, and
the genotype of the coronavirus that will emerge. The classic
transmission route of these viruses encompasses the spillover of
the bat species to wild or domesticated animals, rapid evolution in
this intermediate host, and subsequent transmission to humans.
Coronaviruses emerge at different sites of the globe where the
interaction between humans and animals is broad, such as the
Asian wet markets and the dromedary camel farms in the Arabian
peninsula. While these high-risk regions were identified, the next
spillover may occur in Europe or the Americas, as sarbecoviruses
are prevalent around the globe (Andersen et al., 2020).

The coronavirus genome is a single-stranded RNA of positive
polarity, which ranges in size from 26,000 up to 32,000 bases.
Two-thirds of the genome on the 5′ end are occupied by two
large open reading frames (ORFs) that may be read along
due to the ribosomal slippery site. The resulting polyprotein
undergoes subsequent autoproteolysis, and the matured proteins
form the complete replicatory machinery and re-shape the
microenvironment of the infection. Downstream of the 1ab
ORFs, a number of ORFs are found that encode structural

1https://coronavirus.jhu.edu/map.html

and accessory proteins (Cui et al., 2019; Song et al., 2019).
Four major structural proteins are: spike surface glycoprotein
(S), envelope protein (E), membrane glycoprotein (M), and
nucleocapsid phosphoprotein (N). Of them the S protein is the
primary determinant of the species and cell tropism, interacting
with the receptors and co-receptors on the host cells (Li, 2016;
Zhu et al., 2020).

Evolutionary studies indicate that CoV genomes display high
plasticity in terms of gene content and recombination (Forni
et al., 2016). The long CoV genome expands the sequence space
available for adaptive mutations, and the spike glycoprotein used
by the virus to engage target cells can adapt with relative ease
to exploit homologs of cellular receptors in different species.
While coronaviruses are rapidly evolving, their mutation rate is
lower than expected for an RNA virus. The large genomes require
proofreading machinery to maintain their functions, and proteins
required for such activity are among the 1a/1ab proteins.

While sarbecoviruses and merbecoviruses are associated with
severe, potentially lethal diseases and are known for their
epidemic potential in humans and animals, several years of
research did not allow for the development of effective and
safe vaccines. In addition to the high variability and ability
to elude immune recognition, there are several aspects to be
considered. First, the antibody-dependent enhancement (ADE)
of the infection was previously reported for some coronaviruses,
including sarbecoviruses. ADE is based on the fact that the
virus exploits non-neutralizing antibodies to enter the host’s
cells utilizing the Fc receptor (FcR). The ADE phenomenon was
originally observed for antibodies specific to certain dengue virus
serotypes developed after a primary infection. During subsequent
dengue infections, caused by a different virus serotype, these
antibodies were able to recognize the virus but were not capable of
neutralizing it. Instead, antibodies bridged the dengue virus and
the Fc receptors of the immune cells, such as macrophages and
B-cells, mediating viral entry into these cells and transforming
the disease from a relatively mild illness to a life-threatening
infection. A similar mechanism was later observed for HIV and
Ebola infections (Takada et al., 2003, 2001; Guzman et al., 2007;
Whitehead et al., 2007; Beck et al., 2008; Dejnirattisai et al.,
2010; Willey et al., 2011; Katzelnick et al., 2017). Importantly,
ADE has also been reported for some coronaviruses. The best-
documented ADE cases are associated with feline infectious
peritonitis virus. It was shown that immunization of cats with
feline coronavirus spike protein leads to increased severity during
future infections due to the induction of infection-enhancing
antibodies (Corapi et al., 1992; Hohdatsu et al., 1998). Further,
some studies show that antibodies induced by the SARS-CoV
spike protein enhance viral entry into FcR-expressing cells (Kam
et al., 2007; Jaume et al., 2011; Wang et al., 2014). It was confirmed
that this Abs-dependent SARS-CoV entry was independent
of the classical ACE2 receptor-mediated entry (Jaume et al.,
2011). A recent study investigated the molecular mechanism
behind antibody-dependent and receptor-dependent viral entry
of MARS-CoV and SARS-CoV pseudoviruses in vitro (Wan et al.,
2019). The authors demonstrated that MERS-CoV and SARS-
CoV neutralizing monoclonal antibodies (mAbs) binding to the
receptor-binding domain region of the respective spike protein
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were capable of mediating viral entry into FcR-expressing human
cells, confirming the possibility of coronavirus-mediated ADE.
Given the critical role of antibodies in host immunity, ADE
causes serious concerns in epidemiology, vaccine design, and
antibody-based drug therapy.

The consequences of ADE may be dramatic, as it may
cause lymphopenia and induce or increase the frequency of the
cytokine storm syndrome (CSS). This may result directly from
the active infection of immune cells, which in response produce
large amounts of the inflammatory markers or indirectly,
when virus-antibody complex binds to FcR and activates pro-
inflammatory signaling, skewing macrophages responses to the
accumulation of pro-inflammatory M1 macrophages in lungs.
The macrophages secrete inflammatory cytokines, such as MCP-1
and IL-8, which lead to worsened lung injury (Fu et al.,
2020). In both animal models and patients who eventually
died from SARS, extensive lung damage was associated with
high initial viral loads, increased accumulation of inflammatory
monocytes/macrophages in the lungs, and elevated levels of
serum pro-inflammatory cytokines and chemokines (IL-1, IL-6,
IL-8, CXCL-10, and MCP1) (Channappanavar et al., 2016).
Moreover, during the SARS-CoV outbreak in Hong Kong
(2003–2004), 80% of the patients developed acute respiratory
distress syndrome after 12 days from the diagnosis, coinciding
with IgG seroconversion (Peiris et al., 2003). Another study by
Huang et al. (2020) highlighted an increased release of IL-1β,
IL-4, IL-10, IFNγ, MCP-1, and IP-10 in COVID-19 patients.
Interestingly, compared with non-severe cases, severe patients in
the intensive care unit showed higher plasma concentrations of
TNFα, IL-2, IL-7, IL-10, MIP-1A, MCP-1, and G-CSF, supporting
the hypothesis of a possible correlation between CSS and severity
of the disease. An extensive study done by Liu et al. (2019)
demonstrated that anti-spike IgGs enhanced the induction of
pro-inflammatory cytokines (i.e., IL-6, IL-8, and MPC-1) in
Chinese rhesus monkeys through the stimulation of alternatively
activated monocyte-derived macrophages (MDM) upon SARS-
CoV rechallenge. The presence of high MDM infiltrations
was shown by histochemical staining of the lung tissue from
3 deceased SARS patients. The blockade of Fc-receptors for
IgG (FcγRs) reduced proinflammatory cytokine production,
suggesting a potential role of FcγRs for the reprogramming
of alternatively activated macrophages. Putting these results in
the context of other works in literature (Pahl et al., 2014), one
has to consider that anti-S IgG may promote pro-inflammatory
cytokine production and, consequently, CSS development.

Taking into account the risk associated with the improper
humoral response and high variability of sites targeted by
the neutralizing antibodies, together with the low effectiveness
of IgG-mediated immunity during mucosal infection, it is of
importance to consider the anticoronaviral vaccine in a broader
perspective. This may include alternative delivery systems/routes
based on, e.g., virus-like particles and intranasal delivery
for the IgA mediated response, but it is also important to
consider combining the humoral response with the cell-mediated
response. Ideally, such an approach might allow for the design
of a vaccine carrying carefully selected epitopes to induce only
the neutralizing antibodies and epitopes targeted for induction

of the cellular response. While neutralizing antibodies impair
the virus entry, activated CD8+ cytotoxic T-cells can identify
and eliminate infected cells. Moreover, CD4+ helper T-cells are
required to stimulate the production of antibodies. Antibody
response was found to be short-lived in convalescent SARS-CoV
patients (Tang et al., 2011) in contrast to T-cell responses, which
have been shown to provide long-term protection (Peng et al.,
2006; Fan et al., 2009; Tang et al., 2011), up to 11 years post-
infection (Ng et al., 2016). The activation of CD8+ cytotoxic
T-cells capable of recognizing and destroying infected cells
represents a crucial second line of defense against the virus
that should be considered. The importance of both CD8+ and
CD4+ T-cell activation has been reported in several SARS-CoV
studies for both animal models and humans (Channappanavar
et al., 2014). Moreover, several recent studies indicate a strong
correlation between the reduction of lymphocyte counts (CD4+
and CD8+) and the severity of COVID-19 cases (Chen et al.,
2020; Liao et al., 2020; Wan et al., 2020).

The selection of epitopes capable of eliciting either B-cell or
T-cell responses is a critical step for the development of subunit
vaccines. Most of the efforts in this area are directed toward
the stimulation of neutralizing antibodies, whereas the cellular
immune response is less explored. Considering the importance
of T-cell activation for vaccine efficacy, the focus of the work
here presented is on the latter. Despite the apparent similarity
between SARS-CoV and SARS-CoV-2, there is still a considerable
genetic variation between these two. Thus, it is not trivial to
assess if epitopes eliciting an immune response against previous
coronaviruses are likely to be effective against SARS-CoV-2, with
the exception of identical peptides shared among subgenera.
A restricted list of SARS-CoV epitopes identical to those present
in SARS-CoV-2 and resulting positive in immunoassays, has
been recently reported (Ahmed et al., 2020). Nonetheless, the
29 T-cell epitopes described therein are mostly limited to S, N,
and M antigens and encompass an exiguous number of Class
I Human Leukocyte Antigen (HLA) alleles. In order to extend
the search area to other epitopes, computational predictive
models might be applied. Methods for the selection of vaccine
peptides are typically based on the predicted binding affinity
(or probability of presentation on the cell surface) of peptide-
HLA (pHLA) complexes or defined by the physicochemical
properties of the peptides (Baruah and Bose, 2020; Grifoni
et al., 2020; Lee and Koohy, 2020). These methods take into
account only restricted parts of processes contributing to the
final immunogenicity of an epitope, and thus their prediction
capabilities are limited. In addition to pHLA binding, proteasome
cleavage, pHLA loading, and presentation, as well as direct
activation of CD8+ T-cell to the pHLA complex should be
taken into account.

Here, we use a machine learning model for the prediction of
epitope immunogenicity. The model is trained on data including
the experimental T-cell immunogenicity data of viral epitopes.
We validate our model on publicly available immunogenicity
data of epitopes from the Coronaviridae virus family (held out
from training). Assessment of the risk of immuno-toxicity and
the analysis of epitope conservation among different strains
are also performed.
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MATERIALS AND METHODS

Presentation Data
A curated dataset containing peptides presented by class I
HLAs on the surface of host cells was extracted from publicly
available databases (Abelin et al., 2017; Di Marco et al., 2017;
Sarkizova et al., 2020). The presentation of each peptide
within the dataset was experimentally confirmed by mass-
spectroscopy experiments. All peptides were of human origin
and were presented on the surfaces of monoallelic human
cell lines (see Figure 1 and Table 1). Synthetic negative data
(non-presented peptides) were also prepared based on human
proteome (GRChg38, release 98).

Immunogenicity Data
All peptides collected from the IEDB database (Vita et al.,
2019) were of viral origin and were confirmed in experimental
immunoassays. Similar data were extracted from selected
publications (Wang et al., 2004; Chen et al., 2005; Tsao et al.,
2006; Liu et al., 2010; Zhang, 2013; Ogishi and Yotsuyanagi,
2019). The number of pHLAs (per immunoassay category) used

FIGURE 1 | Venn diagram showing the number of unique and common
peptides among datasets.

TABLE 1 | The total number of pHLAs included in our model from each dataset.

Source publication No. pHLAs

Abelin et al. (2017) 22,999

Di Marco et al. (2017) 22,889

Sarkizova et al. (2020) 146,739

for training is given in Table 2. Most of the peptides were
obtained from human hosts, with a minority obtained from
transgenic mice. Only peptides containing 8–11 amino acids were
included in the analysis. In some cases, multiple experimental
settings and protocols were used to validate immunogenicity
for a given pHLA, occasionally leading to non-consensual
results. Each pHLA was considered immunogenic if at least one
experiment conducted on human cells positively confirmed that
immunological event. If no experiments conducted on human
cells were available, the pHLA was considered immunogenic,
if at least one such confirming experiment was conducted in
transgenic mice. The remaining pHLAs were used as negative
examples. From this dataset we held out the Coronaviridae family
as a separate test set.

Predictive Model Design
Our computational methods are based on machine learning
and predict (1) the probability of pHLAs to be presented on
the host’s cell surface and (2) the immunogenicity of such
complexes. The model for pHLA presentation is based on
artificial neural networks and has been trained on a curated
collection of peptide presentation data (Abelin et al., 2017; Di
Marco et al., 2017; Sarkizova et al., 2020). Both peptide sequence
and HLA type were taken into consideration as separate inputs.
We use bootstrapping and select 80% of positive examples during
training with the remaining ones used for early stopping. We then
ensemble the results of a collection of 27 such neural networks.
Our model is pan-specific and can be used to generate predictions
for any peptide and any canonical class I HLA (i.e., A, B, and C).
Note, that the accuracy of our method depends on the considered
HLA type, as in the case of other machine learning methods for
predicting pHLA properties.

The model mentioned above was also used as a starting point
for training the immunogenicity model. The latter was fine-
tuned using the viral peptide immunogenicity data collected
from IEDB (Vita et al., 2019) and Ogishi and Yotsuyanagi
(2019). The immunogenicity model was validated using a Leave
One Group Out (LOGO) cross-validation scheme with groups
defined by viral families. The final model is an ensemble of 11
models – one per each LOGO split. An additional group “others”
was defined by aggregating data from viruses that belong to
several families, having a small number of observations. Such
an approach provides data splits according to the virus families
and leads to a better measure of performance on virus families
not seen in training (e.g., Coronaviridae). Moreover, it reveals
the differences in model performance on various virus families.

TABLE 2 | The number of pHLA complexes used for training per
immunogenic assay group.

Source publication Negative Positive

IFN(γ) 23,249 2,598

Cytotoxicity 218 524

Proliferation 7 34

cytokines/chemokines 0 13

TNF(α) 1 8
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FIGURE 2 | The number of pHLA complexes with confirmed immunogenicity in the curated database per virus family (logarithmic scale). Families counting less than
55 observations are aggregated in the “other” group.

The final predictions of our model (called ArdImmune Rank) are
obtained by combining the predictions of both models (i.e., the
pHLA presentation and the immunogenicity model).

Both models were implemented in Python 3.7 using the
keras 2.4.3 package, which is a high-level API of TensorFlow.
For our usage TensorFlow with GPU support was deployed,
i.e., tensorflow-gpu 2.2.0. For GPU-based computations we used
cudnn 7.6.5 and cudatoolkit 10.2.89 and a machine equipped with
NVIDIA Tesla V100 GPU card with CUDA R© 7.0 architecture,
640 Tensor Cores, 5,120 CUDA R© Cores and 32 GB HBM2 GPU
Memory. Additionally, scikit-learn, pandas, and numpy were used
to perform standard machine learning tasks while images were
produced using matplotlib and seaborn.

Validation Scheme
In order to validate the ArdImmune Rank model over different
virus families not seen during the training procedure, a LOGO
strategy was applied. The peptides associated with coronaviruses
were held out from the dataset and left for testing purposes
only. At each LOGO iteration, the dataset was split into training
and validation sets, and the model was tested accordingly.
Peptides within the training set highly similar to the ones in the
validation set were removed from the training set. The similarity
of peptides was assessed using a clustering algorithm classifying
their sequences into groups of peptides sharing a common root
(differing only by short prefixes or suffixes of lengths of at most
three amino acids). The number of pre-processed peptides in

each group is given in Figure 2. Finally, the immunogenicity
model (an ensemble of 11 models from the LOGO scheme) was
validated on the held-out Coronaviridae dataset.

SARS-CoV-2 Data Analysis
Selection of HLA Alleles
Class I HLA types were chosen based on their frequency
of occurrence in the United States and Europe. HLA-allele
frequency data were downloaded from2, accounting for all the
populations within the regions of choice and all ethnicities.
The overall frequency for each allele was computed as the
weighted average with weights corresponding to the size of
each population, separately for the United States and Europe,
encompassing all ethnic populations. All HLA-alleles with
frequency ≥ 0.01 were chosen for the study.

Toxicity/Tolerance Evaluation
In order to evaluate the risk for a given pHLA to be cross-
reactive or tolerogenic with respect to self-epitopes within the
human proteome, a procedure for the evaluation of potential
toxicity/tolerance was implemented. Initially, each SARS-CoV-
2 peptide was queried against the reference human proteome
(GRChg38, release 100) using the BLASTp algorithm and a
BLOSUM45 substitution matrix. All matches with E-values less
than or equal to four were included in the analysis. The selected
peptides are available in Supplementary Data 1.

2http://www.allelefrequencies.net/
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Selection of Peptides
The dataset consisting of SARS-CoV-2 peptides was generated
according to the following procedure: (1) all the reference
sequences of the virus proteins were collected from the NCBI
database3, (2) from each protein, all possible peptides of length
8–11 amino acids were selected. In addition, for proteins encoded
by the ORF1a and ORF1ab genes (i.e., pp1a, pp1ab, respectively),
the peptides within the cleavage sites were excluded. Finally, all
the peptide duplicates were removed from the dataset. A total of
47,612 peptide sequences were collected.

Estimation of SARS-CoV-2 Genome
Diversity
The analysis of conservation of SARS-CoV-2 genomic sequences
was performed using 8,639 complete genomic sequences
obtained from the GISAID database4 and GenBank5. All
sequences were aligned to the SARS-CoV-2 reference genome
(NCBI Reference Sequence: NC_045512.2). The R DECIPHER
package (Wright, 2015) v2.14.0 was used to perform the
multiple sequence alignment (MSA) of long SARS-CoV-2
whole genome sequences. The following parameters were
applied: AlignSeqs(sequences, iterations = 2, refinements = 1,
gapOpening = c(−18, −16), gapExtension = c(−2, −1),
FUN = AdjustAlignment, processors = 18). In order to align short
sequences with partial fragments of the SARS-CoV-2 genome,
the R Biostrings v2.54.0 package was used, adopting the following
parameters: Biostrings:pairwiseAlignment(pattern = sequences,
subject = reference_genome, type = “local,” and scoreOnly = F).
Next, all the nucleotides within the coding cDNA sequence
(CDS) regions of the reference genome were translated
into amino acids using the translate function available
in the R Biostring package v2.45.0 (Pagès and DebRoy,
2020) with the following parameters: Biostrings:translate
[DNAStringSet(sequences), if.fuzzy.codon = “solve”]. The
Standard Genetic Code provided by default was used for the
encoding. All the fuzzy codons were marked as unknown amino
acids by setting the if.fuzzy.codon = “solve” parameter. For each
protein, all sequences containing indels or being inconveniently
aligned were removed. Inconvenient sequences include those
having short reading frameshifts, marked as transcription
artifacts. Mutation frequencies for both long and short genomics
fragments were computed for each amino acid in the SARS-CoV-
2 proteome. The mutation frequency of each amino acid was
defined as the ratio between the number of translated protein
sequences containing the mutation and the number of sequences
containing a valid nucleotide (sequences containing unknown
nucleotides in this position were excluded). The maximum
mutation frequency score for each peptide was computed as the
maximum value of the mutation frequency scores among all
amino acid positions of the peptide. Mutation frequency values
for all positions within SARS-CoV-2 proteome are available in
Supplementary Data 2.

3https://www.ncbi.nlm.nih.gov/search/all/?term=SARS-CoV-2
4https://bigd.big.ac.cn/ncov/release_genome?lang=en
5https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/

Datasets for External Comparison
In order to highlight similarities and differences of our approach
with respect to other methods, we compare the scores of our
model with scores relative to the same pHLAs reported in a list of
selected studies. A peptide missing from the reference proteome
(“QSADAQSFLNR”) was removed. Only peptides between 8 and
11 amino acids were considered. The peptides arising from the
cleavage sites of the ORF1a/ab polyprotein were also removed
from the datasets. These sites are defined as nucleic acids within
the NCBI reference sequence: NC_045512.2 but outside the range
of the ORF1a/ab coding sequences.

The ORF1a and ORF1ab cleavage sites were corrected for
reading frameshift which occurs for ORF1ab (as opposed to
ORF1a), when independently translating RNA polymerase and
nsp11, respectively.

1. Baruah and Bose (2020): Five epitopes from the surface
glycoprotein of SARS-CoV-2 and their corresponding
HLA class I supertype representative were reported
by the authors (Table 1 in the reference publication).
Bioinformatics protocols, machine learning methods, and
structural analysis were applied in the original paper for the
selection of these pHLAs.

2. Lee and Koohy (2020): 19 A∗02:01 restricted epitopes
were selected applying TCR-specific Position Weight
Matrices (PWM) previously published by the authors.
The geometric mean of the three scores was used as
an estimator for immunogenicity (Tables 4, 5 in the
reference publication).

3. Grifoni et al. (2020):

a. 1st dataset: 386 SARS-CoV-2 CD8+ predicted
epitopes were collected (Supplementary Table 6 in
the reference publication) and 41 peptides were
excluded as a result of our filtering procedure.

b. 2nd dataset: 28 SARS-CoV-2 CD8+ epitopes
mapped to immunodominant SARS-CoV epitopes
were selected (Table 5 in the reference publication).
One peptide was excluded as a result of our filtering
procedure.

4. Gupta et al. (2020): 10 HLA-A∗11:01 restricted peptides
from the surface glycoprotein of SARS-CoV-2 were
selected by the authors (Table 4 in the reference
publication). Bioinformatics protocols, machine learning
methods, and structural analysis were used for the selection
of those pHLAs. A candidate with an optimal docking
score is reported.

5. Prachar et al. (2020): 138 peptides with pHLA complex
stability measurements performed using Immunotrack’s
NeoScreens R© assay were made available by the
authors. A peptide absent in our dataset was excluded
from the comparison.

6. Rammensee et al. (2020): 5 HLA class I peptides were used
by the authors for the experimental vaccination of self-
experimenting healthy volunteers. IFNγ ELISPOT assays
for the measurement of CD8+ activation were negative for
all these peptides.
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FIGURE 3 | Predictive performance of the selected models on the Coronaviridae dataset. ArdImmune Rank, blue bars; MHCflurry, orange bars. netMHCpan, green
and red bars for the predicted binding affinity (BA) and ligand likelihood (EL); IEDB immunogenicity, purple bars.

7. Smith et al. (2020): Predictions for ∼615 k peptides were
extracted from the Supplementary Table 1 of the reference
publication. Approximately 7,600 peptides were excluded
as a result of our filtering procedure.

The ArdImmune Rank percentile rank for the pHLAs des-
cribed in the above datasets was computed for groups of peptides
according to their HLA allele. Only pHLAs with a binding affinity
percentile rank score < 0.02 (computed using NetMHCpan 4.0)
were considered. The predictions were calculated separately for
peptides of structural and non-structural origin.

RESULTS

Model Performance
The performance of our method on the test set encompassing
Coronaviridae epitopes (excl. SARS-CoV-2 epitopes) is shown
in Figure 3. In addition, the results of our approach are
compared to those obtained by other commonly used pHLA
binding affinity and pHLA presentation probability predictors,
namely netMHCpan 4.0 (Jurtz et al., 2017) and MHCflurry
(O’Donnell et al., 2018), as well as the IEDB immunogenicity
predictor, version 3.0 (Calis et al., 2013). For both binding affinity
tools [MHCflurry and netMHCpan (BA)], the binding affinity
predictions in nanomoles (nM) are converted into (0, 1) range
with a widely used logarithmic transformation [i.e., first the
predictions are bounded from above by 50,000 nM and from
below by 1 nM and then transformed with

(
1− log10x

log1050,000

)
.

The difference in the predictive performance (measured with
ROC AUC) of our model with respect to the other methods is
statistically significant (and ranges from 0.10 to 0.39). Moreover
(as verified on our training dataset across virus families), the high
Pearson correlation between the results produced by the binding
predictors (corr. coeff. ρ = 0.88) and the low correlation of such
results with the predictions of our model (ρ = 0.45 and ρ = 0.53)

demarcate substantial differences between our approach and the
approaches based on those methods for predicting immunogenic
epitopes (see Figure 4).

We apply the LOGO cross-validation scheme according to the
procedure described in the Materials and methods section. While
we observe a significant variation in ROC AUC scores depending
on the tested groups (i.e., virus families), the performance of
each method is not correlated with the number of observations
within each group. The Pneumoviridae family might be an
outlier in our dataset as the predictive performance of all the
considered models are substantially different for this family than
those observed for the other families. Although some groups
display a noticeable correlation between pHLA immunogenicity
and pHLA binding affinity predictions (e.g., Pneumoviridae and
Orthomyxoviridae), this trend is not confirmed across all groups.
The performance (median ROC AUC across virus families) of our
method is comparable to those obtained for binding affinity and
ligand likelihood predictors, usually with a smaller variance of
prediction performance (see Figures 5, 6).

Note that the Coronaviridae dataset (Figure 3) is the most
relevant dataset to the problem at hand, but it also is a very
small dataset containing 67 epitopes. Hence, the variation of
performance of the selected methods is expected to be high
and their performance on the training set (Figures 5, 6) might
be different (note also that in the LOGO validation – in
Figures 5, 6 – we use a single immunogenicity model instead
of 11 models, as in Figure 3). On the other hand, evaluation
on the Coronaviridae dataset might still reflect performance of
the selected methods on the epitopes from the SARS-CoV-2
genome. The dataset encompassing all other virus families used in
our LOGO cross-validation procedure (training dataset) is much
larger, but is also very heterogeneous. For example the Poxviridae
family contains predominantly Vaccinia virus, which is a model
organism with mostly non-immunogenic epitopes reported in
IEDB. Namely, there are 1.6% immunogenic observations in
the Poxviridae family, whereas for Herpesviridae 62% of the
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FIGURE 4 | The pairwise relationships between the predictions of the selected models on the training set – (1) ArdImmune Rank, (2) MHCflurry, (3) netMHCpan (BA),
(4) netMHCpan (EL), and (5) IEDB immunogenicity. Lower triangle – scatterplots with linear regression models fitted (yellow lines) and Pearson’s correlation
coefficients (PCC) that measure linear correlations between two variables. Diagonal and upper triangle – the prediction distributions obtained by kernel density
estimations (1D-KDE and 2D-KDE, respectively).

observations are immunogenic. Moreover, IEDB observations
are very small in size within some families (e.g., Adenoviridae
with N = 58) and much larger in others (e.g., Poxviridae with
N = 21709). In such a situation, the large variance of performance
of predictive methods when evaluated on different viral families
is expected and originates from both the underlying biological
and experimental factors, as well as from the small number of
observations for some virus families.

The model was then used to predict the immunogenicity
of peptides from the SARS-CoV-2 proteome. Target peptides
and HLA types considered for the analysis were selected
according to the procedure described in the “Selection of
peptides” and “Selection of HLA alleles” sections, respectively.
A considerable number of peptides with high scores are observed
in both structural and non-structural proteins, encompassing
different HLA alleles. Structural epitopes are dominated by the
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FIGURE 5 | Predictive performance of the selected models obtained in a LOGO cross validation and measured with ROC AUC. ArdImmune Rank, blue bars;
MHCFlurry, orange bars; NetMHCpan (BA), green bars; NetMHCpan (EL), red bars; IEDB immunogenicity, purple bars.

FIGURE 6 | Predictive performance of the selected models, averaged across virus groups in the training dataset.

Spike protein, whereas the non-structural ones mostly originate
from the ORF1a/ORF1ab-encoded polyproteins. Peptides with
percentile rank ≤ 2 presented across the selected HLAs, were
considered for both structural (Table 3) and non-structural
(Table 4) viral proteins. We noticed that some HLA alleles
exhibit a large number of highly-ranked peptides, in particular
A∗02:01, A∗11:01, A∗24:41 and C∗12:03. Interestingly, the
presence of some of these alleles was earlier reported to be

statistically correlated with the immune protection in SARS
cases. Namely, A∗02:01 was found to present immunogenic
peptides (Ahmed et al., 2020; Lee and Koohy, 2020) whereas
A∗11:01-restricted epitopes were proposed to be included in a
SARS-CoV vaccine by Sylvester-Hvid et al. (2004). Groups of
peptides predicted to be associated with multiple HLAs are shown
in Figure 7. These epitopes originate from both structural and
non-structural antigens.
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FIGURE 7 | Peptides presented across multiple HLAs. Immunogenicity scores are reported for epitopes from both structural (top) and non-structural (bottom)
proteins. Peptide-HLA combinations marked in gray are predicted non-binders (netMHCpan 4.0 percentile rank > 2). For the remaining pHLAs, the color relates to
the percentile rank of our predictions for a given HLA type (0.95 means that the prediction is among top 5% of the predictions for that particular HLA allele).
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TABLE 3 | Peptides with ArdImmune Rank percentile rank ≤ 2 obtained from SARS-CoV-2 structural proteins, sorted by (1) the number of HLA types capable of binding
and presenting given peptide and (2) the median rank across different HLA types.

No. Peptide Prot. start Prot. end Protein HLA% rank ≤ 2 Median HLA%_rank Max mut. freq

1 TNVYADSFVIR 393 403 S 0.994 A24:41| A24:51| B39:54|
C02:02| C03:04| C12:03

0.00012

2 VGGNYNYLYR 445 454 S 0.989 A24:41| A24:51| B38:01|
C12:03

0.00013

3 YDPLQPEL 1,138 1,145 S 0.995 C04:01| C04:43| C05:01 0.00049

4 SNGTHWFVTQR 1,097 1,107 S 0.989 C02:02| C03:04| C12:03 0.00012

5 RGVYYPDKVFR 34 44 S 0.983 A24:51| B08:01| B39:54 0.00012

6 SFVIRGDEVR 399 408 S 0.989 B18:01| B56:43| C02:02 0.00012

7 SDNIALLV 214 221 M 0.995 A01:01| C05:01 0.00047

8 KRSFIEDLLF 814 823 S 0.99 C07:01| C07:02 0.00024

9 VYDPLQPEL 1,137 1,145 S 0.989 C04:01| C04:43 0.00049

10 IRGWIFGTTL 101 110 S 0.992 C06:02| C07:02 0.00012

11 VQIDRLITGR 991 1,000 S 0.992 A31:29| B08:01 0.00000

12 SAPHGVVFL 1,055 1,063 S 0.984 C04:01| C04:43 0.00024

13 NVYADSFVIR 394 403 S 0.986 B08:01| B39:54 0.00012

14 AYNVTQAFGR 267 276 N 0.989 B56:43| C03:04 0.00035

15 STGSNVFQTR 637 646 S 0.986 A24:41| B38:01 0.00000

16 LPFFSNVTW 56 64 S 0.996 B35:01 0.00024

17 AYANRNRFLYI 38 48 M 0.995 A24:02 0.00058

18 ASANLAATKM 1,020 1,029 S 0.995 A11:01 0.00024

19 RNRFLYIIKL 42 51 M 0.995 C07:01 0.00023

20 SIAIPTNFTI 711 720 S 0.995 C03:13 0.00024

21 SFKEELDKYFK 1,147 1,157 S 0.994 B18:01 0.00049

22 THWFVTQRNFY 1,100 1,110 S 0.994 B15:93 0.00012

23 HFPREGVFVS 1,088 1,097 S 0.994 B54:18 0.00012

24 KFPRGQGVPIN 65 75 N 0.993 B07:02 0.00035

25 LEPLVDLPIGI 223 233 S 0.992 A02:01 0.00000

26 LPFNDGVYF 84 92 S 0.991 B35:01 0.00049

27 EAEVQIDRLI 988 997 S 0.991 B44:02 0.00000

28 QYIKWPWYI 1,208 1,216 S 0.991 A24:02 0.00024

29 AFFGMSRIGM 313 322 N 0.991 C01:57 0.00071

30 LTDEMIAQY 865 873 S 0.99 A01:01 0.00024

31 ASAFFGMSRI 311 320 N 0.99 A11:01 0.00012

32 VVVLSFELL 510 518 S 0.989 C03:13 0.00013

33 GTHWFVTQR 1,099 1,107 S 0.989 A31:29 0.00012

34 SQRVAGDSGF 184 193 M 0.989 B15:93 0.00000

35 DLPKEITVAT 163 172 M 0.988 B54:18 0.00012

36 NATRFASVY 343 351 S 0.987 B35:01 0.00024

37 KTFPPTEPKK 361 370 N 0.993 A03:01 0.00036

38 PFGEVFNATRF 337 347 S 0.986 A24:02 0.00024

39 VFQTRAGCL 642 650 S 0.986 C01:57 0.00012

40 PRGQGVPI 67 74 N 0.986 B07:02 0.00035

41 YNSASFSTFK 369 378 S 0.986 A01:01 0.00025

42 VLNDILSRL 976 984 S 0.984 A02:01 0.00012

43 YSRYRIGNYK 196 205 M 0.984 C07:01 0.00012

44 ATSRTLSYYKL 171 181 M 0.984 A11:01 0.02876

45 IYQTSNFR 312 319 S 0.983 B18:01 0.00014

46 KFLPFQQFGR 558 567 S 0.983 A31:29 0.00036

47 IPFAMQMAY 896 904 S 0.982 B35:01 0.00000

48 LKPFERDIST 461 470 S 0.982 B54:18 0.00025

49 TQDLFLPFF 51 59 S 0.982 C05:01 0.00292

50 STEKSNIIRGW 94 104 S 0.982 B44:02 0.00073

Peptides marked in red are considered as highly variable (HV) due to maximum mutation frequency score ≥ 0.05.
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TABLE 4 | Peptides with model percentile rank ≤ 2 obtained from SARS-CoV-2 non-structural proteins, sorted by (1) the number of HLA types capable of binding and
presenting given peptide and (2) the median rank across different HLA types.

No. Peptide Prot. start Prot. end Protein HLA% rank ≤ 2 Median HLA%_rank Max mut. freq

1 LLKYDFTEER 4,662 4,671 ORF1ab 0.991 A24:51| B08:01| B18:01| B38:01| B39:54| B56:43| C02:02|
C12:03

0.00012

2 LDGISQYSLR 570 579 ORF1a 0.997 A24:41| A24:51| B08:01| B38:01| B39:54| C03:04| C12:03 0.00372

3 LVQAGNVQLR 3,330 3,339 ORF1a 0.993 A24:41| A24:51| B08:01| B18:01| B38:01| B39:54| B56:43 0.00565

4 LSHFVNLDNLR 2,518 2,528 ORF1a 0.997 A24:51| B08:01| B38:01| B39:54| C02:02| C03:04| C12:03 0.00414

5 VNGYPNMFITR 5,991 6,001 ORF1ab 0.995 A24:41| A24:51| B39:54| C02:02| C03:04| C12:03 0.00036

6 IFGADPIHSLR 1,153 1,163 ORF1a 0.993 B08:01| B18:01| B38:01| B39:54| B56:43 0.00332

7 GDYGDAVVYR 5,527 5,536 ORF1ab 0.997 A24:41| A24:51| B08:01| B38:01| B39:54 0.00084

8 EKFKEGVEFLR 633 643 ORF1a 0.986 A24:51| B08:01| B56:43| C02:02| C03:04 0.00371

9 VYMPASWVMRI 3,653 3,663 ORF1a 0.998 A24:02| A24:41| A31:29 0.00412

10 YLFDESGEFK 906 915 ORF1a 0.995 A01:01| C04:01| C04:43 0.00413

11 NRPQIGVVREF 5,813 5,823 ORF1ab 0.993 B15:93| C06:02| C07:01 0.00024

12 MRPNFTIKGSF 3,393 3,403 ORF1a 0.997 C06:02| C07:01| C07:02 0.00425

13 TFEEAALCTFL 3,174 3,184 ORF1a 0.992 B44:02| C04:01| C04:43 0.00399

14 PKVKYLYFIK 4,223 4,232 ORF1a 0.993 C02:02| C03:04| C12:03 0.00398

15 VNRFNVAITR 5,882 5,891 ORF1ab 0.991 C02:02| C03:04| C12:03 0.00000

16 STFNVPMEK 2,600 2,608 ORF1a 0.989 A03:01| A11:01| C07:01 0.00550

17 FYDFAVSKGF 4,811 4,820 ORF1ab 0.988 C04:01| C04:43| C07:02 0.00048

18 NMFITREEAIR 5,996 6,006 ORF1ab 0.99 C02:02| C03:04| C12:03 0.00060

19 PIHFYSKWYIR 38 48 ORF8 0.988 C02:02| C03:04| C12:03 0.00023

20 NYMPYFFTL 2,167 2,175 ORF1a 0.981 A24:02| C01:57| C07:02 0.00415

21 AFPFTIYSLL 8 17 ORF10 0.98 C04:01| C04:43| C07:02 0.00168

22 HVGEIPVAYR 110 119 ORF1a 0.991 A31:29| B08:01| B18:01 0.00206

23 VGILCIMSDR 5,894 5,903 ORF1ab 0.983 A24:41| A24:51| C02:02 0.00132

24 GNFYGPFVDR 3,442 3,451 ORF1a 0.983 A24:41| A31:29| B08:01 0.00467

25 AVFDKNLYDKL 1,176 1,186 ORF1a 0.998 A03:01| A11:01 0.00386

26 VFDEISMATNY 5,696 5,706 ORF1ab 0.998 C04:01| C04:43 0.00024

27 TFHLDGEVITF 1,543 1,553 ORF1a 0.997 C04:01| C04:43 0.00440

28 SSRLSFKELL 4,755 4,764 ORF1ab 0.996 C06:02| C07:01 0.00012

29 RIFTIGTVTLK 6 16 ORF3a 0.995 A03:01| A11:01 0.01995

30 VITFDNLKTLL 1,550 1,560 ORF1a 0.994 C04:01| C04:43 0.00385

31 VVYRGTTTYKL 5,533 5,543 ORF1ab 0.993 A03:01| A11:01 0.00024

32 FYDFAVSKGFF 4,811 4,821 ORF1ab 0.993 C04:01| C04:43 0.00048

33 YAFEHIVY 6,682 6,689 ORF1ab 0.993 B15:93| B35:01 0.00024

34 KTDGTLMIERF 5,241 5,251 ORF1ab 0.992 A01:01| C05:01 0.00000

35 AYITGGVVQL 599 608 ORF1a 0.991 A24:02| C01:57 0.00427

36 VPWDTIANYA 2,133 2,142 ORF1a 0.991 C04:01| C04:43 0.00401

37 SFDLGDEL 142 149 ORF1a 0.99 C04:01| C04:43 0.00014

38 RRVVFNGVSF 3,163 3,172 ORF1a 0.989 C07:01| C07:02 0.00399

39 VYMPASWVMR 3,653 3,662 ORF1a 0.992 A31:29| C01:57 0.00412

40 LYENAFLPFA 3,606 3,615 ORF1a 0.987 C04:01| C04:43 0.17819

41 QFTSLEIPR 5,910 5,918 ORF1ab 0.987 B18:01| B56:43 0.00060

42 VFPPTSFGPLV 4,712 4,722 ORF1ab 0.986 C04:01| C04:43 0.55016

43 FGADPIHSLR 1,154 1,163 ORF1a 0.999 C04:01| C04:43 0.00332

44 ILGTVSWNLR 1,367 1,376 ORF1a 0.985 C03:04| C12:03 0.00398

45 NFNVLFSTVF 4,704 4,713 ORF1ab 0.985 C04:01| C04:43 0.00012

46 VYMPASWVM 3,653 3,661 ORF1a 0.985 C01:57| C07:02 0.00412

47 AFDKSAFVNL 6,355 6,364 ORF1ab 0.984 C04:01| C04:43 0.00029

48 STFNVPMEKL 2,600 2,609 ORF1a 0.983 A03:01| A11:01 0.00550

49 SGAMDTTSYR 3,218 3,227 ORF1a 0.984 B38:01| B39:54 0.00508

50 VYDYLVSTQEF 3,810 3,820 ORF1a 0.983 C04:01| C04:43 0.00412

Peptides marked in red are considered as Highly Variable (HV) due to maximum mutation frequency score ≥ 0.05.
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TABLE 5 | The most frequently mutated positions within the SARS-CoV-
2 proteome.

No. Protein Protein position Mutation frequency

1 ORF1ab 4,715 0.5502

2 S 614 0.5478

3 ORF3a 57 0.1789

4 ORF1a 3,606 0.1781

5 N 203 0.1770

6 N 204 0.1765

7 ORF1a 265 0.1646

8 ORF3a 251 0.1439

9 ORF8 84 0.1384

10 ORF1ab 5,865 0.0926

11 ORF1ab 5,828 0.0924

12 ORF1a 765 0.0668

13 ORF1a 739 0.0590

SARS-CoV-2 Genome Diversity Analysis
In order to enable the exclusion of peptides originating from
genetically highly variable areas, the mutation frequency
of each amino acid within the SARS-CoV-2 genome was
computed (see section “Materials and Methods” for details).
The genes that those peptides originate from are likely to
mutate, hence the inclusion of such peptides might lower
the vaccine efficacy over time. From the analysis of 8,639
complete genome sequences, obtained from different SARS-
CoV-2 isolates, which then were translated into protein
sequences, the mutation frequency at each amino acid
position was computed.

For each peptide in the SARS-CoV-2 proteome, the maximum
mutation frequency was calculated (see section “Materials and
Methods”), and peptides with the resulting score ≥ 0.05 (marked
in color in Tables 3, 4) are considered to be highly variable
(HV) and should be disregarded as vaccine components. 13
amino acid positions were observed to contain mutations in
at least 5% of the selected sequences. Among these, as many
as nine amino acid positions were mutated in more than
10% of the selected sequences, while two positions showed
mutations in fully half of the samples (more than 50%). In
Table 5 we present the most frequently mutated positions within
the SARS-CoV-2 proteome. Mutation frequency values for all
positions are available in the Supplementary Data 2. Figures
presenting distribution of mutation frequency are available in the
Supplementary Data 3.

Within the top-50 immunogenic peptides originating from
the SARS-CoV-2 structural and non-structural proteins (NSPs),
1 and 3 HV peptides were found, respectively.

Toxicity/Tolerance Results
Each peptide derived from the SARS-CoV-2 proteome was
studied to ascertain the lack of similarity with peptides present
in the reference human proteome. When administered in
a vaccine, epitopes highly similar to peptides presented by
the host’s healthy tissues could either trigger an unwanted
immune self-reaction or be tolerated by the immune system.

In both cases, these peptides should be eliminated from the
vaccine composition. A total of 11 SARS-CoV-2-derived peptides
with moderate similarity to human proteins were found (E-
value ≤ 4). Of these, four were significantly similar (E-
value ≤ 1) and thus should be avoided (see Supplementary
Data 1). None of these peptides were found within the top-100
ranked peptides.

Comparison With Other Methods
Results from a list of selected publications were compared with
percentile ranks computed by our method for the same pHLAs.
We did not find any significant correlation with the in silico
predictions from Grifoni et al. (2020), Lee and Koohy (2020), and
Gupta et al. (2020) highlighting a clear distinction between our
methodology and the procedures used in these studies. Although
the best candidate selected by Gupta et al. is not among our best
candidates for HLA-A∗11:01, it is scored by the model as the
top candidate among those proposed by the authors. A moderate
negative correlation (ρ ∼= −0.45) was observed between the
percentile rank scores of our method and the scores presented
by Smith et al. (2020). Although our top peptide candidates
associated with the HLAs proposed by Baruah and Bose (2020)
do not include any of the five peptides proposed by the authors,
we noticed a consensus between the HLA percentile rank of
the pHLAs selected by the authors, and our percentile rank
scores (Figure 8).

The immunogenicity scores predicted by our model were
then compared with the experimental measurement of pHLA
binding stability done by Prachar et al. (2020). Peptide candidates
with low immunogenicity ranks are enriched in regions with
a low stability percentage. The results are shown in Figure 9,
on the left. The immunogenicity score is expressed as the
complement to 100 of the immunogenicity percentile rank.
The stability percentage is defined relative to reference peptides
(see Prachar et al., 2020 for details). The concordance between
high immunogenicity (or low immunogenicity rank) and high
stability percentage is more noticeable after the exclusion of
peptides with low predicted binding affinity (Figure 9, right).
The Spearman correlation between pHLA stability percentage
and the predicted immunogenicity (ρ = 0.392) is higher than the
correlation between the stability percentage and the predicted
binding affinity (ρ = 0.313). The binding affinity was computed
using NetMHCpan 4.0 (Jurtz et al., 2017).

A noticeable difference in the distributions of experimentally
measured pHLA stability percentage was obtained by ranking
using binding affinity predictors and our immunogenicity
predictions. A clear distinction between stable and unstable
pHLAs was obtained through the selection of the top-10%
and the bottom-10% scores predicted by the immunogenicity
model, whereas the use of filters relying on standard binding
affinity thresholds (e.g., 100 nM) leads to a less defined
separation (Figure 10).

Finally, we report low scores for all the five class I pHLAs
which were experimentally confirmed to be non-immunogenic
by Rammensee et al. (2020). None of these peptides were
recommended by ArdImmune Rank as a candidate to be included
in a vaccine formulation against SARS-CoV-2.
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FIGURE 8 | The HLA percentile ranks of the five peptides selected by Baruah et al. as computed from Baruah score and ArdImmune Rank.

FIGURE 9 | Comparison between ArdImmune Rank percentile ranks for pHLA immunogenicity and pHLA stability data measured by Prachar et al. (2020) Scatter
plots and kernel density estimations are shown with (right) and without (left) the exclusion of pHLA predicted non-binders (Kd percentile rank ≥ 2). The complement
of the ArdImmune Rank percentile rank is shown on the y-axis (higher value = lower rank), while the stability percentage as reported by Prachar et al. (2020) is shown
on the x-axis.
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FIGURE 10 | Distribution of stability percentage for different filtering procedures. The respective pHLA stability score densities of the 10% top ranked and the 10%
lowest ranked peptides in terms of predicted immunogenicity is shown on the left. The pHLA stability score densities computed according to the binding affinity
ranges reported by Prachar et al. (2020). (Kd ≥ 100 nM, Kd < 100 nM, based on predicted binding affinity) is shown on the right.

DISCUSSION

The high selective pressure exerted upon coronaviruses, caused
by the need of a viable host for survival, together with their
high genetic variability, facilitates their rapid evolution and the
prompt generation of escape mutants. Despite the vigorous effort
of the industry, vaccine design, clinical trials, and production
require at least several months and most likely several years.
Many investigations aimed at developing vaccines protecting
humans and animals from coronaviruses were initiated in the
last few decades, setting the basis for the recent scientific
advancement in COVID-19 treatment. Nonetheless, a limiting
aspect associated with the approval and commercialization of
a vaccine is that the demand for a vaccine is limited to the
outbreak period, and its market value is proportional to the
number of people affected. This represented a major issue for the
development of vaccines for SARS and MERS (Du et al., 2009;
Dhama et al., 2020). In addition, the majority of coronavirus
biotherapeutics (i.e., antibodies and vaccines) are designed to
leverage neutralizing antibodies directed against the S protein.
Safety issues such as those associated with the ADE and CSS
events, make the development of vaccine and antibody-based
therapies even more problematic.

In combination with the stimulation of humoral immune
response, which is aimed at the direct neutralization of the virus,
the targeted elimination of infected cells is a crucial element of
the immune response against viruses. This might be induced
either by the administration of a vaccine eliciting protective
CD8+ Cytotoxic T Lymphocyte (CTL) or by transferring
CD8+ cells engineered to recognize viral antigens specifically.
Previous studies have confirmed a strong correlation between
the depletion and exhaustion of T-cells and worse prognosis
in critical coronavirus patients (Diao et al., 2020) highlighting
the potential of vaccines inducing T-cell responses for COVID-
19 prevention. This strategy has beneficial features such as
a lower risk of stimulating ADE and CSS with respect to
antibody-based strategies (Jaume et al., 2011; Channappanavar
et al., 2016) and the stimulation of the immune response
against intracellular epitopes not reachable by the antibodies but
potentially highly immunogenic. In both cases, the selection of
effective immunogenic epitopes is of paramount importance.

The aim of this study was to identify SARS-CoV-2
epitopes for the development of a vaccine composition focused

on T-cell activation. We investigated several aspects pre-
determining whether viral epitopes may induce an effective
T-cell response, including the MHC-I peptide presentation and
immunogenicity potential, SARS-CoV-2 genome variability, and
possible toxicity/immune tolerance of the peptides considered.

In contrast to the majority of works on this topic either
relying of pHLA binding and presentation events or modeling
single pHLA structural interactions, the model applied herein
was designed to leverage simultaneously information about
the propensity of a peptide to be presented by its cognated
HLA and the probability that such pHLA is immunogenic,
inferred from similar experimental data. As we show in Figure 3
when evaluated on the experimentally-validated Coronaviridae
immunogenicity data, our approach has higher performance
than the widely-used predictors assessing pHLA binding affinity,
presentation or immunogenicity (i.e., IEDB).

By applying our method, a considerable amount of highly
scored T-cell epitopes was found across the SARS-CoV-2
proteome, encompassing the structural proteins and NSPs,
as shown in Tables 3, 4. The majority of selected epitopes
were conserved across different SARS-CoV-2 isolates. Only 16
epitopes were excluded because of their significant mutability
(see Table 5). The availability of epitopes from NSPs allows for
the design of vaccine components dedicated to T-cell responses,
and might be further integrated with other components focused
on B-cell responses. The adoption of such a compartmentalized
strategy might help to lower the risk of non-neutralizing
antibody production, which constituted a reason of concern
during the development of a vaccine formulation for SARS.
Moreover, during the early stages of viral infection, the expression
of non-structural proteins is significantly higher than the
expression of structural ones. The targeted stimulation of
the immune response toward epitopes originating from non-
structural proteins might be useful to induce an immune
response at the early phase of the disease. Some highly
ranked peptides were found to be presented across multiple
HLAs and could be used to increase population coverage
while decreasing the number of epitopes needed to be
included in the vaccine formulation. This aspect could be
particularly relevant for solutions relying on delivery systems of
limited capacity.

The risk of eliciting potentially harmful and sometimes deadly
(Linette et al., 2013) cross-reactivities is an issue to be carefully
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addressed in vaccine design. On the other hand, epitopes shared
with proteins from the host could also be tolerated by the
host’s immune system, being not useful for vaccine purposes.
Considering the importance of such an aspect, the analysis of
potential toxicity and tolerance was addressed in this study,
leading to the identification of four highly ranked epitopes
having a certain degree of similarity with proteins within the
human proteome. Such peptides were removed for safety and
efficacy reasons.

The substantial difference between the selection of pHLA
candidates performed by our methodology with respect to
those presented by Grifoni et al. (2020), Lee and Koohy
(2020), and Gupta et al. (2020) highlights a clear distinction
between these approaches. Nonetheless, our method supported
the selection of top candidates in small datasets obtained
by applying hand-crafted filtering stages (Baruah and Bose,
2020; Gupta et al., 2020). The mild correlation with the
results from Smith et al. (2020) might indicate the usage
of equivalent components during some steps of the selection
process. A relative concordance between the pHLA stability
scores from Prachar et al. (2020) and the associated immunogenic
scores computed by our method was observed (Figure 9).
Moreover, we show that the peptide ranks produced by our
immunogenicity model have a higher correlation with the
experimentally measured pHLA stability than the ranks obtained
by methods relying solely on binding affinity or ligand likelihood
predictions. This observation is consistent with works reported
in the literature (Harndahl et al., 2012). We also obtained low
immunogenicity scores for all five peptides which have been
experimentally confirmed by Rammensee to be unable to activate
CD8+ lymphocytes.

CONCLUSION

In this paper we suggested a SARS-CoV-2 vaccine composition
in the form of the list of epitopes optimized for their
(predicted) immunogenicity and HLA population coverage. Our
motivation is that cellular immune response is fundamental
for an effective SARS-CoV-2 vaccine and it also mitigates
the risks of ADE and CSS which are typically associated
with modalities relying on the activation of humoral immune
response. We showed that the predictive model, on which
our methodology is based outperforms, on Coronaviridae data,
other methods used to date for the design of epitope-based
vaccines against SARS-CoV-2. Our approach differs from other
existing methods and shows a higher correlation with the
measured pHLA stability in comparison with methods based
solely on binding affinity predictions. The limitations of our
method have the same roots as those found in other in silico
approaches based on predicting various pHLA properties,
i.e., the accuracy of these predictive methods. We expect
that with the increasing amount of experimentally validated
data and with further algorithmic enhancements in the field
of artificial intelligence, the accuracy of such models and
the effectiveness of vaccine design will continue to improve.
Computational methods have proven to be of considerable

support in optimizing the vaccine design process on several
occasions. Moreover, a notable improvement in the predicting
skills of such methods has been recorded in recent years,
admittedly due to the increasing advancements in machine
learning coupled with a surge in the availability of powerful
computational resources. However, it is important to mention
that such tools do not represent a substitute for the laboratory
experiments necessary to verify and optimize the safety and
efficacy of vaccines. Their role is to support the design of
such experiments in order to reduce their number, the time
needed and cost.

DATA AVAILABILITY STATEMENT

The lists containing the predicted immunogenic peptides with
percentile rank ≤ 2 are included in this study (Tables 3 and 4).
The lists of all the predicted immunogenic peptides generated
during this study are available from the corresponding author
upon reasonable request.

AUTHOR CONTRIBUTIONS

GM wrote the article with contributions from IN, PSk, and JK.
AM, PSk, IN, and KG performed the analyses and generated
figures and tables included in the article. GM, IN, AM, PSk, JK,
AS-D, KG, PK, and MD developed the applied methodology.
PSt conceived the idea for the project and coordinated the
work. AS-D, MS, and KP gave essential contributions to the
interpretation of immunological and virological aspects of the
study. All the authors reviewed, edited, contributed to the article
and approved the submitted version.

FUNDING

The study was sponsored by Ardigen. The applied methodology
was in part developed prior to this study with support from
the regional Polish grant RPMP.01.02.01-12-0301/17 (European
Funds, Regional Program) approved by the Małopolska Centre
for Entrepreneurship.

ACKNOWLEDGMENTS

Ardigen and COVID-19 Vaccine Corporation (CVC) announced
that they entered a research collaboration aimed at the
development of SARS-CoV-2 vaccine.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2021.
602196/full#supplementary-material

Frontiers in Genetics | www.frontiersin.org 16 March 2021 | Volume 12 | Article 602196

https://www.frontiersin.org/articles/10.3389/fgene.2021.602196/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.602196/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-602196 March 20, 2021 Time: 13:43 # 17

Mazzocco et al. CD8+ Epitopes for SARS-CoV-2 Vaccines

REFERENCES
Abelin, J. G., Keskin, D. B., Sarkizova, S., Hartigan, C. R., Zhang, W., Sidney, J., et al.

(2017). Mass spectrometry profiling of HLA-associated peptidomes in mono-
allelic cells enables more accurate epitope prediction. Immunity 46, 315–326.
doi: 10.1016/j.immuni.2017.02.007

Ahmed, S. F., Quadeer, A. A., and McKay, M. R. (2020). Preliminary identification
of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2)
based on SARS-CoV immunological studies. Viruses 12:254. doi: 10.3390/
v12030254

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., and Garry, R. F.
(2020). The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452. doi: 10.
1038/s41591-020-0820-9

Baruah, V., and Bose, S. (2020). Immunoinformatics-aided identification of T Cell
and B Cell Epitopes in the surface glycoprotein of 2019-nCoV. J. Med. Virol. 92,
495–500. doi: 10.1002/jmv.25698

Beck, Z., Prohászka, Z., and Füst, G. (2008). Traitors of the immune system—
enhancing antibodies in HIV infection: their possible implication in HIV
vaccine development. Vaccine 26, 3078–3085. doi: 10.1016/j.vaccine.2007.
12.028

Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette,
A., et al. (2013). Properties of MHC class I presented peptides that enhance
immunogenicity. PLoS Comput. Biol. 9:e1003266. doi: 10.1371/journal.pcbi.
1003266

Channappanavar, R., Fehr, A. R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D. K.,
et al. (2016). Dysregulated Type I interferon and inflammatory monocyte-
macrophage responses cause lethal pneumonia in SARS-CoV-infected mice.
Cell Host Microb. 19, 181–193. doi: 10.1016/j.chom.2016.01.007

Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D. K., and Perlman, S. (2014).
Virus-specific memory CD8 T cells provide substantial protection from lethal
severe acute respiratory syndrome coronavirus infection. J. Virol. 88, 11034–
11044. doi: 10.1128/JVI.01505-14

Chen, H., Hou, J., Jiang, X., Ma, S., Meng, M., Wang, B., et al. (2005). Response
of Memory CD8 + T cells to severe acute respiratory syndrome (SARS)
Coronavirus in recovered SARS patients and healthy individuals. J. Immunol.
175, 591–598. doi: 10.4049/jimmunol.175.1.591

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., et al. (2020).
Epidemiological and clinical characteristics of 99 cases of 2019 novel
Coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395,
507–513. doi: 10.1016/S0140-6736(20)30211-7

Corapi, W. V., Olsen, C. W., and Scott, F. W. (1992). Monoclonal antibody analysis
of neutralization and antibody-dependent enhancement of feline infectious
peritonitis virus. J. Virol. 66, 6695–6705. doi: 10.1128/JVI.66.11.6695-6705.
1992

Cui, J., Li, F., and Shi, Z. (2019). Origin and evolution of pathogenic Coronaviruses.
Nat. Rev. Microbiol. 17, 181–192. doi: 10.1038/s41579-018-0118-9

Dejnirattisai, W., Jumnainsong, A., Onsirisakul, N., Fitton, P., Vasanawathana, S.,
Limpitikul, W., et al. (2010). Cross-reacting antibodies enhance dengue virus
infection in humans. Science 328, 745–748. doi: 10.1126/science.1185181

Dhama, K., Sharun, K., Tiwari, R., Dadar, M., Malik, Y. S., Singh, K. P., et al.
(2020). COVID-19, an emerging coronavirus infection: advances and prospects
in designing and developing vaccines, immunotherapeutics, and therapeutics.
Hum. Vacc. Immunotherap. 16, 1232–1238. doi: 10.1080/21645515.2020.
1735227

Di Marco, M., Schuster, H., Backert, L., Ghosh, M., Rammensee, H. G., and
Stevanoviæ, S. (2017). Unveiling the peptide motifs of HLA-C and HLA-G from
naturally presented peptides and generation of binding prediction matrices.
J. Immunol. 199, 2639–2651. doi: 10.4049/jimmunol.1700938

Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., et al. (2020).
Reduction and functional exhaustion of T cells in patients with Coronavirus
disease 2019 (COVID-19). Front. Immunol. 11:827. doi: 10.3389/fimmu.2020.
00827

Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., and Jiang, S. (2009). The spike protein
of SARS-CoV — a target for vaccine and therapeutic development. Nat. Rev.
Microbiol. 7, 226–236. doi: 10.1038/nrmicro2090

Fan, Y. Y., Huang, Z. T., Li, L., Wu, M. H., Yu, T., Koup, R. A., et al.
(2009). Characterization of SARS-CoV-specific memory T cells from recovered

individuals 4 years after infection. Archiv. Virol. 154, 1093–1099. doi: 10.1007/
s00705-009-0409-6

Forni, D., Cagliani, R., Mozzi, A., Pozzoli, U., Al-Daghri, N., Clerici, M., et al.
(2016). Extensive positive selection drives the evolution of nonstructural
proteins in Lineage C Betacoronaviruses. J. Virol. 90, 3627–3639. doi: 10.1128/
JVI.02988-15

Fu, Y., Cheng, Y., and Wu, Y. (2020). Understanding SARS-CoV-2-mediated
inflammatory responses: from mechanisms to potential therapeutic tools. Virol.
Sin. 35, 266–271. doi: 10.1007/s12250-020-00207-4

Grifoni, A., Sidney, J., Zhang, Y., Scheuermann, R. H., Peters, B., and Sette,
A. (2020). A sequence homology and bioinformatic approach can predict
candidate targets for immune responses to SARS-CoV-2. Cell Host Microb. 27,
671–680.e2. doi: 10.1016/j.chom.2020.03.002

Gupta, E., Mishra, R. K., and Niraj, R. R. K. (2020). Identification of potential
vaccine candidates against SARS-CoV-2, a step forward to fight novel
Coronavirus 2019-NCoV: a reverse vaccinology approach. bioRxiv [Preprint],
doi: 10.1101/2020.04.13.039198

Guzman, M. G., Alvarez, M., Rodriguez-Roche, R., Bernardo, L., Montes, T.,
Vazquez, S., et al. (2007). Neutralizing antibodies after infection with dengue
1 virus. Emerg. Infect. Dis. 13, 282–286. doi: 10.3201/eid1302.060539

Harndahl, M., Rasmussen, M., Roder, G., Dalgaard Pedersen, I., Sørensen, M.,
Nielsen, M., et al. (2012). Peptide-MHC class I stability is a better predictor than
peptide affinity of CTL immunogenicity: antigen processing. Eur. J. Immunol.
42, 1405–1416. doi: 10.1002/eji.201141774

Hohdatsu, T., Yamada, M., Tominaga, R., Makino, K., Kida, K., and Koyama, H.
(1998). Antibody-dependent enhancement of feline infectious peritonitis virus
infection in feline alveolar macrophages and human monocyte cell line U937
by Serum of cats experimentally or naturally infected with feline Coronavirus.
J. Veter. Med. Sci. 60, 49–55. doi: 10.1292/jvms.60.49

Hu, D., Zhu, C., Ai, L., He, T., Wang, Y., Ye, F., et al. (2018). Genomic
characterization and infectivity of a novel SARS-like Coronavirus in Chinese
Bats. Emerg. Micro. Infect. 7, 1–10. doi: 10.1038/s41426-018-0155-5

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features
of patients infected with 2019 novel Coronavirus in Wuhan, China. Lancet 395,
497–506. doi: 10.1016/S0140-6736(20)30183-5

Iwasaki, A., and Yang, Y. (2020). The potential danger of suboptimal antibody
responses in COVID-19. Nat. Rev. Immunol. 20, 339–341. doi: 10.1038/s41577-
020-0321-6

Jaume, M., Yip, M. S., Cheung, C. Y., Leung, H. L., Li, P. H., Kien, F., et al. (2011).
Anti-Severe acute respiratory syndrome Coronavirus spike antibodies trigger
infection of human immune cells via a PH- and cysteine protease-independent
Fc R pathway. J. Virol. 85, 10582–10597. doi: 10.1128/JVI.00671-11

Jurtz, V., Paul, S., Andreatta, M., Marcatili, P., Peters, B., and Nielsen, M. (2017).
NetMHCpan-4.0: improved peptide-MHC class I interaction predictions
integrating eluted Ligand and peptide binding affinity data. J. Immunol. 199,
3360–3368. doi: 10.4049/jimmunol.1700893

Kam, Y. W., Kien, F., Roberts, A., Cheung, Y. C., Lamirande, E. W., Vogel, L., et al.
(2007). Antibodies against Trimeric S glycoprotein protect hamsters against
SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry
into B Cells in vitro. Vaccine 25, 729–740. doi: 10.1016/j.vaccine.2006.08.011

Katzelnick, L. C., Gresh, L., Halloran, M. E., Mercado, J. C., Kuan, G., Gordon,
A., et al. (2017). Antibody-dependent enhancement of severe dengue disease in
humans. Science 358, 929–932. doi: 10.1126/science.aan6836

Lee, C. H., and Koohy, H. (2020). In silico identification of vaccine targets for
2019-NCoV. F1000Research 9:145. doi: 10.12688/f1000research.22507.2

Li, F. (2016). Structure, function, and evolution of Coronavirus spike proteins. Ann.
Rev. Virol. 3, 237–261. doi: 10.1146/annurev-virology-110615-042301

Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., et al. (2020). Single-cell
landscape of bronchoalveolar immune cells in patients with COVID-19. Nat.
Med. 26, 842–844. doi: 10.1038/s41591-020-0901-9

Linette, G. P., Stadtmauer, E. A., Maus, M. V., Rapoport, A. P., Levine, B. L.,
Emery, L., et al. (2013). Cardiovascular toxicity and titin cross-reactivity of
affinity-enhanced T cells in Myeloma and melanoma. Blood 122, 863–871.
doi: 10.1182/blood-2013-03-490565

Liu, J., Sun, Y., Qi, J., Chu, F., Wu, H., Gao, F., et al. (2010). The membrane
protein of severe acute respiratory syndrome Coronavirus acts as a dominant
immunogen revealed by a clustering region of novel functionally and

Frontiers in Genetics | www.frontiersin.org 17 March 2021 | Volume 12 | Article 602196

https://doi.org/10.1016/j.immuni.2017.02.007
https://doi.org/10.3390/v12030254
https://doi.org/10.3390/v12030254
https://doi.org/10.1038/s41591-020-0820-9
https://doi.org/10.1038/s41591-020-0820-9
https://doi.org/10.1002/jmv.25698
https://doi.org/10.1016/j.vaccine.2007.12.028
https://doi.org/10.1016/j.vaccine.2007.12.028
https://doi.org/10.1371/journal.pcbi.1003266
https://doi.org/10.1371/journal.pcbi.1003266
https://doi.org/10.1016/j.chom.2016.01.007
https://doi.org/10.1128/JVI.01505-14
https://doi.org/10.4049/jimmunol.175.1.591
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.1128/JVI.66.11.6695-6705.1992
https://doi.org/10.1128/JVI.66.11.6695-6705.1992
https://doi.org/10.1038/s41579-018-0118-9
https://doi.org/10.1126/science.1185181
https://doi.org/10.1080/21645515.2020.1735227
https://doi.org/10.1080/21645515.2020.1735227
https://doi.org/10.4049/jimmunol.1700938
https://doi.org/10.3389/fimmu.2020.00827
https://doi.org/10.3389/fimmu.2020.00827
https://doi.org/10.1038/nrmicro2090
https://doi.org/10.1007/s00705-009-0409-6
https://doi.org/10.1007/s00705-009-0409-6
https://doi.org/10.1128/JVI.02988-15
https://doi.org/10.1128/JVI.02988-15
https://doi.org/10.1007/s12250-020-00207-4
https://doi.org/10.1016/j.chom.2020.03.002
https://doi.org/10.1101/2020.04.13.039198
https://doi.org/10.3201/eid1302.060539
https://doi.org/10.1002/eji.201141774
https://doi.org/10.1292/jvms.60.49
https://doi.org/10.1038/s41426-018-0155-5
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1038/s41577-020-0321-6
https://doi.org/10.1038/s41577-020-0321-6
https://doi.org/10.1128/JVI.00671-11
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.1016/j.vaccine.2006.08.011
https://doi.org/10.1126/science.aan6836
https://doi.org/10.12688/f1000research.22507.2
https://doi.org/10.1146/annurev-virology-110615-042301
https://doi.org/10.1038/s41591-020-0901-9
https://doi.org/10.1182/blood-2013-03-490565
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-602196 March 20, 2021 Time: 13:43 # 18

Mazzocco et al. CD8+ Epitopes for SARS-CoV-2 Vaccines

structurally defined cytotoxic T-lymphocyte epitopes. J. Infect. Dis. 202, 1171–
1180. doi: 10.1086/656315

Liu, L., Wei, Q., Lin, Q., Fang, J., Wang, H., Kwok, H., et al. (2019). Anti-Spike
IgG causes severe acute lung injury by skewing macrophage responses during
acute SARS-CoV infection. JCI Insight 4:e123158. doi: 10.1172/jci.insight.12
3158

Ng, O. W., Chia, A., Tan, A. T., Jadi, R. S., Leong, H. N., Bertoletti, A., et al. (2016).
Memory T cell responses targeting the SARS Coronavirus persist up to 11 years
post-infection. Vaccine 34, 2008–2014. doi: 10.1016/j.vaccine.2016.02.063

O’Donnell, T. J., Rubinsteyn, A., Bonsack, M., Riemer, A. B., Laserson, U.,
and Hammerbacher, J. (2018). MHCflurry: open-source class I MHC binding
affinity prediction. Cell Syst. 7, 129–132.e4. doi: 10.1016/j.cels.2018.05.014

Ogishi, M., and Yotsuyanagi, H. (2019). Quantitative prediction of the landscape
of T Cell epitope immunogenicity in sequence space. Front. Immunol. 10:827.
doi: 10.3389/fimmu.2019.00827

Pagès, A., and DebRoy, G. (2020). Biostrings: Efficient Manipulation of Biological
Strings. R Package Version 2.56.0.

Pahl, J. H. W., Kwappenberg, K. M. C., Varypataki, E. M., Santos, S. J., Kuijjer,
M. L., Mohamed, S., et al. (2014). Macrophages inhibit human osteosarcoma
cell growth after activation with the bacterial cell wall derivative Liposomal
Muramyl tripeptide in combination with Interferon-γ. J. Exper. Clin. Cancer
Res. 33:27. doi: 10.1186/1756-9966-33-27

Peiris, J. S. M., Chu, C. M., Cheng, V. C. C., Chan, K. S., Hung, I. F. N., Poon,
L. L. M., et al. (2003). Clinical progression and viral load in a community
outbreak of Coronavirus-associated SARS pneumonia: a prospective study.
Lancet 361, 1767–1772. doi: 10.1016/S0140-6736(03)13412-5

Peng, H., Yang, L. T., Wang, L. Y., Li, J., Huang, J., Lu, Z. Q., et al. (2006). Long-
lived memory T lymphocyte responses against SARS Coronavirus nucleocapsid
Protein in SARS-recovered patients. Virology 351, 466–475. doi: 10.1016/j.virol.
2006.03.036

Prachar, M., Justesen, S., Steen-Jensen, D. B., Thorgrimsen, S., Jurgons, E., Winther,
O., et al. (2020). COVID-19 vaccine candidates: prediction and validation
of 174 SARS-CoV-2 epitopes. bioRxiv [Preprint], doi: 10.1101/2020.03.20.00
0794

Rammensee, H. S., Stevanoviæ, S., Gouttefangeas, C., Heidu, S., Klein, R.,
Preuß, B., et al. (2020). Designing a therapeutic SARS-CoV-2 T-cell-inducing
vaccine for high-risk patient groups. bioRxiv [Preprint], doi: 10.21203/rs.3.rs-2
7316/v1

Sarkizova, S., Klaeger, S., Le, P. M., Li, L. W., Oliveira, G., Keshishian, H., et al.
(2020). A large peptidome dataset improves HLA class I epitope prediction
across most of the human population. Nat. Biotechnol. 38, 199–209. doi: 10.
1038/s41587-019-0322-9

Smith, C. C., Entwistle, S., Willis, C., Vensko, S., Beck, W., Garness, J., et al. (2020).
Landscape and selection of vaccine epitopes in SARS-CoV-2. bioRxiv [Preprint],
doi: 10.1101/2020.06.04.135004

Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., et al. (2019). From SARS to
MERS, thrusting coronaviruses into the spotlight. Viruses 11:59. doi: 10.3390/
v11010059

Sylvester-Hvid, C., Nielsen, M., Lamberth, K., Roder, G., Justesen, S., Lundegaard,
C., et al. (2004). SARS CTL vaccine candidates; HLA Supertype-, genome-wide
scanning and biochemical validation. Tissue Antig. 63, 395–400. doi: 10.1111/j.
0001-2815.2004.00221.x

Takada, A., Feldmann, H., Ksiazek, T. G., and Kawaoka, Y. (2003). Antibody-
dependent enhancement of ebola virus infection. J. Virol. 77, 7539–7544. doi:
10.1128/JVI.77.13.7539-7544.2003

Takada, A., Watanabe, S., Okazaki, K., Kida, H., and Kawaoka, Y. (2001).
Infectivity-enhancing antibodies to ebola virus glycoprotein. J. Virol. 75, 2324–
2330. doi: 10.1128/JVI.75.5.2324-2330.2001

Tang, F., Quan, Y., Xin, Z. T., Wrammert, J., Ma, M. J., Lv, H., et al. (2011). Lack
of peripheral memory B cell responses in recovered patients with severe acute
respiratory syndrome: a six-year follow-up study. J. Immunol. 186, 7264–7268.
doi: 10.4049/jimmunol.0903490

Tsao, Y. P., Lin, J. Y., Jan, J. T., Leng, C. H., Chu, C. C., Yang, Y. C., et al. (2006).
HLA-A∗0201 T-cell epitopes in severe acute respiratory syndrome (SARS)

Coronavirus nucleocapsid and spike proteins. Biochem. Biophys. Res. Commun.
344, 63–71. doi: 10.1016/j.bbrc.2006.03.152

Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., et al.
(2019). The Immune Epitope Database (IEDB), 2018 update. Nucleic Acids Res.
47, D339–D343. doi: 10.1093/nar/gky1006

Wan, S., Xiang, Y., Fang, W., Zheng, Y., Li, B., Hu, Y., et al. (2020). Clinical features
and treatment of COVID-19 patients in northeast Chongqing. J. Med. Virol. 92,
797–806. doi: 10.1002/jmv.25783

Wan, Y., Shang, J., Sun, S., Tai, W., Chen, J., Geng, Q., et al. (2019). Molecular
mechanism for antibody-dependent enhancement of coronavirus entry. edited
by tom Gallagher. J. Virol. 94:e02015-19.

Wang, S. F., Tseng, S. P., Yen, C. H., Yang, J. Y., Tsao, C. H., Shen, C. W.,
et al. (2014). Antibody-dependent SARS Coronavirus infection is mediated
by antibodies against spike proteins. Biochem. Biophys. Res. Commun. 451,
208–214. doi: 10.1016/j.bbrc.2014.07.090

Wang, Y. D., Sin, W. Y. F., Xu, G. B., Yang, H. H., Wong, T. Y., Pang, X. W.,
et al. (2004). T-Cell Epitopes in severe acute respiratory syndrome (SARS)
Coronavirus spike protein elicit a specific T-Cell immune response in patients
who recover from SARS. J. Virol. 78, 5612–5618. doi: 10.1128/JVI.78.11.5612-
5618.2004

Whitehead, S. S., Blaney, J. E., Durbin, A. P., and Murphy, B. R. (2007). Prospects
for a dengue virus vaccine. Nat. Rev. Microbiol. 5, 518–528. doi: 10.1038/
nrmicro1690

Willey, S., Aasa-Chapman, M. M. I., O’Farrell, S., Pellegrino, P., Williams,
I., Weiss, R. A., et al. (2011). Extensive complement-dependent
enhancement of HIV-1 by autologous non-neutralising antibodies at
early stages of infection. Retrovirology 8:16. doi: 10.1186/1742-4690-
8-16

Wright, E. S. (2015). DECIPHER: harnessing local sequence context to improve
protein multiple sequence alignment. BMC Bioinform. 16:322. doi: 10.1186/
s12859-015-0749-z

Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., et al. (2020).
Genome composition and divergence of the novel Coronavirus (2019-NCoV)
originating in China. Cell Host Microb. 27, 325–328. doi: 10.1016/j.chom.2020.
02.001

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., et al. (2020). A new
Coronavirus associated with human respiratory disease in China. Nature 579,
265–269. doi: 10.1038/s41586-020-2008-3

Zhang, X. W. (2013). A Combination of Epitope prediction and molecular
docking allows for good identification of MHC class I restricted T-Cell
epitopes. Comput. Biol. Chem. 45, 30–35. doi: 10.1016/j.compbiolchem.2013.
03.003

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W.,
et al. (2020). A pneumonia outbreak associated with a new Coronavirus
of probable bat origin. Nature 579, 270–273. doi: 10.1038/s41586-020-
2012-7

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020). A novel
Coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med.
382, 727–733. doi: 10.1056/NEJMoa2001017

Conflict of Interest: GM, IN, AM, PSk, JK, AS-D, KG, PK, MD, and PSt are
employees at Ardigen or were in the past.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Mazzocco, Niemiec, Myronov, Skoczylas, Kaczmarczyk, Sanecka-
Duin, Gruba, Król, Drwal, Szczepanik, Pyrc and Stȩpniak. This is an open-access
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