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Abstract: Natural rubber (NR), with its excellent mechanical properties, has been attracting consid-
erable scientific and technological attention. Through molecular dynamics (MD) simulations, the
effects of key structural factors on tensile stress at the molecular level can be examined. However,
this high-precision method is computationally inefficient and time-consuming, which limits its ap-
plication. The combination of machine learning and MD is one of the most promising directions to
speed up simulations and ensure the accuracy of results. In this work, a surrogate machine learning
method trained with MD data is developed to predict not only the tensile stress of NR but also
other mechanical behaviors. We propose a novel idea based on feature processing by combining our
previous experience in performing predictions of small samples. The proposed ML method consists
of (i) an extreme gradient boosting (XGB) model to predict the tensile stress of NR, and (ii) a data
augmentation algorithm based on nearest-neighbor interpolation (NNI) and the synthetic minority
oversampling technique (SMOTE) to maximize the use of limited training data. Among the data
enhancement algorithms that we design, the NNI algorithm finally achieves the effect of approaching
the original data sample distribution by interpolating at the neighborhood of the original sample,
and the SMOTE algorithm is used to solve the problem of sample imbalance by interpolating at the
clustering boundaries of minority samples. The augmented samples are used to establish the XGB
prediction model. Finally, the robustness of the proposed models and their predictive ability are
guaranteed by high performance values, which indicate that the obtained regression models have
good internal and external predictive capacities.

Keywords: natural rubber; tensile stress; XGBoost; molecular dynamics simulation; nearest-neighbor
interpolation; SMOTE

1. Introduction

It is well known that natural rubber (NR) is an essential biopolymer with unique proper-
ties, including excellent elasticity and effective heat dispersion, abrasion, impact resistance
and resilience [1–5]. Notably, due to its outstanding properties, NR cannot be replaced by
synthetic rubber, especially in many fields, such as military and medical devices [6].

The excellent properties of vulcanized NR are closely related to its special structures.
To clarify the structure–mechanics relationship, it is necessary to investigate the effects
of the non-rubber components, especially proteins and phospholipids, on the mechanical
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properties of NR more precisely. The effects of phospholipids [7,8] and proteins [9,10]
on the properties of NR have been reported. For instance, an analysis of rheological and
stress relaxation spectra revealed that the hydrogen bonds between phospholipids and
proteins at the chain ends reinforce the formation of the physical entanglement network
of NR, while the reinforcement of this network is significantly weakened in NR with a
low protein content [8]. In addition, it has also been shown that non-rubber components
can promote the nano-dispersion of rubber particles and reinforce the tensile strength of
vulcanized NR [11]. It is obvious that phospholipids and proteins have a great influence on
mechanical properties, with the possible influencing factors being phospholipid and protein
content (ω), and the strength of hydrogen bond interactions (εH) and the strength of non-
hydrogen bond interactions (εNH) (strength of the interaction between phospholipids and
proteins with the rubber matrix, respectively). Thus, adjusting the optimum configuration
of ω-εH-εNH is critical to improve the mechanical properties of NR.

However, although various types of advanced experimental characterization equip-
ment and means are available, and many analyses have been conducted on the principles of
the superior performance of NR, a systematical understanding of the structure–mechanics
relationship of NR is still lacking. Furthermore, it is far from the goal of accurately and
quantitatively establishing the relationship between the microstructure and macroscopic
properties of NR, which seriously limits the performance optimization of elastomeric
materials. In previous studies, it has been realized that molecular dynamics (MD) sim-
ulation is a powerful technique that can be used to provide insight into materials with
complex compositions and reveal the structure–mechanics relationship at the molecular
level [12–16]. Evidently, we have previously investigated the various effects of compos-
ites using MD simulations, such as filler morphology, interfaces between polymers and
fillers, and polymer networks [17–19]. However, we have also found that in materials
and chemistry science, the experimental data are usually concentrated in one or several
particular regions of the data space because of the constraints of actual manufacturing
and experimental design. This means that the dataset is generally not large or is even
almost without high-quality data points [20]. This is also the case for MD simulations,
which seem to be a general problem in most property prediction problems. The traditional
methods for polymer material research often confront both problems, not only involving
expensive and lengthy experimental periods but also requiring complex and laborious
calculations. Fortunately, with the rapid development of machine learning (ML) theory and
applications, increasingly more ML techniques have been applied in the polymer material
field, especially after a great project called the “Materials Genome Initiative” was proposed
in 2011 [21]. ML models have been widely applied to predict molecular properties and
develop force fields for MD simulations [22–25], and they are beginning to receive attention
in the design of bio-inspired composites. For example, Chen analyzed the results of MD
simulations using ML and developed a new density-based trajectory clustering (DTC)
method to elucidate the Li diffusion mechanism within a Li7La3Zr2O12 (LLZO) crystal
lattice [26]. Lu combined ML techniques and density flooding theory calculations in order
to develop a target-driven approach to predict undiscovered hybrid organic–inorganic
perovskites (HOIPs) in photovoltaics [27]. Moreover, A. Rahman developed a novel convo-
lutional neural network (CNN)-based framework to predict the shear strength of carbon
nanotube–polymer interfaces based on molecular dynamics simulation data [28].

From the above discussion, it is clear that MD simulation-based mechanical perfor-
mance prediction for NR requires a large number of high-quality data points. Herein, for
the first time, we employ a molecular dynamics simulation to examine the effects of the key
structural factors on the tensile stress of NR at the molecular level. We use coarse-grained
molecular dynamics (CGMD) simulations to study the stress–strain behavior of NR with
a focus on three factors: phospholipid and protein total mass fraction (ω), the strength of
the hydrogen bond interaction (εH) and the strength of the non-hydrogen bond interaction
(εNH). Since molecular dynamics simulations of natural rubber are computationally too
time consuming and it is difficult to fully examine the effects of various factors on me-
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chanical properties, an alternative method is needed to accurately and efficiently simulate
molecular dynamics simulations. In this work, based on the data we obtain by simulating
NR via MD simulations, we propose a brand-new framework combined with MD simu-
lations, a data augmentation algorithm based on nearest-neighbor interpolation (NNI), a
synthetic minority oversampling technique (SMOTE) and an extreme gradient boosting
(XGB) model to predict the tensile stress of NR. The objectives of the framework we design
are (i) to accelerate the prediction of the tensile stress of NR; (ii) to analyze the importance
index of the ω, εH and εNH variables in the system with respect to the tensile stress of NR; and
(iii) to use the methods and results of this this study as benchmarks for subsequent studies
focusing on ML models to predict other mechanical properties of NR based on MD data.

As with the majority of problems encountered in the materials and chemical sciences,
we encounter a situation of insufficient experimental data for MD. In general, with very
small training samples (hundreds, tens or even a few samples), existing machine learning
and deep learning models are commonly unable to achieve complex model building
through iteration, and models trained with small samples can easily fall into overfitting
small samples and underfitting the target task, resulting in poor overall model performance.
Models built in such a form may even yield completely wrong results. Currently, there
are three mainstream approaches that can be used to solve the small sample problem:
data augmentation (Data), reducing the space that the model needs to search (Model)
and optimizing the process of searching for the optimal model (Algorithm) [29]. We
choose data augmentation, which is a relatively intuitive and effective method, to solve the
problem of small sample size. NNI and SMOTE, which are traditional data enhancement
algorithms originally applied to image processing, are employed in our data enhancement
algorithms. They are used to solve the problems of sample insufficiency and imbalance,
respectively. After data enhancement, the original samples are expanded from 86 to 2188.
Meanwhile, the data points are more evenly distributed in the sample space, which is
more favorable for XGB to learn information and predict target values, and the enhanced
samples are used to build XGB prediction models. As a comparison, we establish multiple
linear regression (MLR) and Support Vector Regression (SVR) models with the same
enhanced data to compare the prediction results and model performance of each model.
After obtaining the tensile stress prediction results, we also use the SHapley Additive
exPlanation (SHAP) method to conduct feature importance analysis, and the results show
that εH contributes the most to tensile stress, followed by ω and εNH . Finally, the robustness
of the proposed models and their predictive ability are guaranteed by high performance
values. These values indicate that the obtained regression models have good internal and
external predictive capacities.

2. Molecular Modeling

MD simulation is an accepted computational method, and we apply it in this research
to establish an NR coarse-grained model aimed at generating the raw input data for XGB.
For the proposed method, MD is applied to simulate the tensile stress of NR.

2.1. NR Modeling

We establish the NR coarse-grained model, as shown in Figure 1. The NR molecular
chains are represented by the bead-spring model, in which the monomers are simplified
into spherical beads and the beads are connected through harmonic potential. The NR sin-
gle chain consists of three kinds of beads, namely, a phosphate group, cis-1,4-polyisoprene
repeating unit and a polypeptide. Furthermore, to simulate the supramolecular network
inside the NR, we introduce phospholipids and proteins into the system, where hydrogen
bonds form between phospholipids or proteins and the chain ends (phosphate groups and
polypeptides), as shown in Figure 1a. At the same time, hydrogen bonds also form among
the phospholipids or proteins themselves. The supramolecular network can be finally
constructed due to the hydrogen bonds (Figure 1b), which help form two kinds of clusters
serving as temporary cross-linked sites (Figure 1c). In our systems, the number of phospho-
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lipid and protein beads are set to be identical, and when the number of phospholipid and
protein beads is 0, it corresponds to a PIP system.
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Figure 1. The coarse-grained model of NR. (a) The single chain, phospholipids and proteins of NR
system; (b) the condensed state of NR; (c) the clusters formed by hydrogen bonds in the system.

To simplify the coarse-grained NR model, the mass of all five kinds of beads mentioned
above is identical. The single chain consists of 331 beads, whose molar mass is 22,508.0 g·mol−1.
The NR system contains 100 identical single chains, and the number of free phospholipids and
proteins is a variable. In addition, we also establish a system consisting of only 100 identical
PIP chains, whose molar mass is 22,508.0 g·mol−1, as a comparison [30].

We investigate the mechanical properties of the cross-linked systems. To obtain cross-
linked NR and PIP networks, extra cross-linked bonds are introduced to the above systems.
The cross-linking in our model refers to the formation of the covalent bonds between
adjacent coarse-grained beads from different chains. Specifically, the cross-linked network
is formed by the random selection of two beads with a distance of less than 5.5 Å. Since
it is not our aim to study a specific cross-linking or vulcanization process, we merely
build the cross-linked network and do not invoke a probabilistic approach to introduce
the cross-linked bonds [30,31]. To keep the cross-linked density identical in every system,
468 covalent bonds, regarded as 2 phr sulfur in the form of a trisulfide bond, are introduced
to every system (100 phr).

In our coarse-grained simulations, the non-bonded interaction between polymer beads
is described by the LJ 12-6 potential [32]. Meanwhile, to simplify the system, the hydrogen
bond interaction is also modeled as follows:

Uij(r) = 4ε

[(σ0

r

)12
−
(σ0

r

)6
]

, r < rc (1)

where ε is the depth of the potential well, σ0 is the finite distance at which the inter-particle
potential is zero, rc is the cutoff distance, and r is the distance between the beads for the LJ
potential. Among the pair interactions, two factors, namely, (i) the strength of the hydrogen
bond interaction (εH) and (ii) the strength of the pair interaction of cis-1,4-polyisoprene
repeating unit with phospholipids and proteins (non-hydrogen bond interaction, εNH), are
investigated. All the other non-bonded interaction strength values are set to 0.38 kcal·mol−1,
except for the two interaction strength factors mentioned above. For all systems, the over-
zero distance of the potential is 4.89 Å and the cutoff distance is 12.5 Å.30. The detailed
corresponding force field parameters of the hydrogen bond and non-bonded interaction
are shown in Tables 1 and 2.
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Table 1. Potential parameters of the hydrogen bond interaction. The strengths of all hydrogen bonds
are set to be identical, and the strength of the hydrogen bond is a variable in our study.

Hydrogen Bond Interaction

Hydrogen Bond Pair εH/kcal·mol−1 σ0/Å rc/Å

Phosphate group Phospholipid 3.80 4.89 12.5
Polypeptide Protein 3.80 4.89 12.5

Phospholipid Phospholipid 3.80 4.89 12.5
Protein Protein 3.80 4.89 12.5

Table 2. Potential parameters of the non-hydrogen bond interaction. The strength of interaction
between phospholipid or protein and cis-1,4-polyisoprene repeating unit (set to be identical) is a
variable in our simulations.

Non-Hydrogen Bond Interaction

Non-Hydrogen Bond Pair εNH/kcal·mol−1 σ0/Å rc/Å

cis-1,4-polyisoprene repeating unit Protein 0.38 4.89 12.5
cis-1,4-polyisoprene repeating unit Phospholipid 0.38 4.89 12.5

The bond stretching energy between the adjacent beads is modeled via the harmonic
potential:

Ustretch(l) = kstretch(l − l0)
2 (2)

where kstretch is the stiff constant for bond stretching, l is the current bond length, and l0
is the equilibrium bond length. To simplify the simulation, kstretch and l0 in all types of
covalent bonds are set to 3.2 kcal·mol−1 and 4.6 Å, respectively [30].

The angle potential in all our systems is fitted with the harmonic potential:

Ubend(θ) = kbend(θ − θ0)
2 (3)

where kbend is the spring constant for angular motion, θ is the current angle, and θ0 is the
equilibrium angle. All angle potentials in all our systems are set to kbend = 1.53 kcal·mol−1,
θ0 = 121◦ [30].

2.2. Molecular Dynamics Simulation Methods

Our CGMD simulations start from a nonoverlapping configuration of all beads in a
large simulation box. Periodic boundary conditions in three directions are also employed in
the simulations. Then, we use an NPT ensemble to equilibrate all systems by adjusting the
Nosé–Hoover temperature thermostat and pressure barostat. The temperature and pressure
in the simulations are set to 298 K and 0.1 MPa, respectively. The velocity-Verlet algorithm
is used to integrate the equations of motion to describe the motion of all beads with the
time unit δ∗ = 1 fs. The obtained structure is further equilibrated under the NPT ensemble
to ensure that each molecular chain moves at least 2Rg (Rg is the root-mean-squared radius
of gyration of the polymer). Finally, the size of the systems becomes gradually steady. After
that, the systems are annealed at 400 K to relax the conformation for 10 ns and further
equilibrated in the NPT ensemble to collect trajectory and essential data.

After equilibration, uniaxial tensile deformation is performed to obtain stress–strain
(σT-εT) curves in the CGMD simulations, and it was also utilized in our previous studies [30,31].
The simulation box is stretched in the Z-direction at a constant engineering strain rate

.
εT

(Equation (4)), while the lengths in the X-directions and Y-directions are decreased to keep the
volume of the simulation box constant.

.
εT = (LZ(t)− LZ(0))/(LZ(0)·t) = εT/t (4)
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where LZ(t) and LZ(0) are the box length in the Z-direction at time t and the beginning,
respectively, and εT is the tensile strain. The strain rate is set to 10−9/s [32]. The tensile
stress is expressed through the bias tensor of the pressure as [33]

σT = (1 + ν)

(
−PZZ + ∑

i
Pii/3

)
≈
(
−3PZZ + ∑

i
Pii

)
/2 (5)

where ∑i Pii/3 represents the isostatic pressure of the system and ν represents Poisson’s
ratio of the system.

All CGMD simulations are carried out using the large-scale atomic/molecular mas-
sively parallel simulator (LAMMPS), developed by Sandia [34].

3. Proposed Machine Learning Framework

Each MD simulation of NR tensile stress requires a significant amount of computa-
tional effort and time (approximately 300–1500 core hours). Therefore, we aim to accelerate
the predictions of tensile stress by developing a novel XGB-based framework. We describe
our proposed method in detail in this section.

3.1. MD Experimental Data Collection

As an elastic material, NR is widely used in industry. Tensile capacity is one of the
most important properties of NR, and it is of great significance to study the tensile capacity
of NR composites. In this work, we obtain 86 sets of data for NR using the method in
Section 2, where ω, εH and εNH are the feature values, and tensile stress is the label value.
In this experiment, we select 600% tensile stress.

3.2. Data Preprocessing and Feature Engineering

One of the challenges of the problem presented in this research is the limited size of
data arising due to the high computational cost associated with MD simulations. Therefore,
we need to design a method to extract high-value information from the limited training
data. In this work, we leverage the NNI-SMOTE algorithm to augment our original dataset.
The algorithm is a basic structure, and it can be divided into two steps. In the first step, the
dataset is enhanced with the NNI algorithm. In the second step, after data enhancement,
the imbalance samples are processed with the SMOTE algorithm. NNI and SMOTE are the
traditional algorithms used for data enhancement, and they were originally applied in image
processing [35,36]. The former is a k-dimensional tree (KD-tree)-based interpolation algorithm,
and the latter is an oversampling technique proposed by Chawla in 2002 [37]. In this study,
they are used to solve the problems of sample insufficiency and imbalance, respectively.

3.2.1. Data Expansion

Before proceeding NNI, we first construct an interpolation grid based on the original
samples and then achieve the effect of approaching the original data sample distribution
by interpolating at the neighborhood of the original sample, aiming to fully obtain the
information in a small neighborhood of each sample point. We assume that all interpolation
points obey the normal distribution N

(
µ, σ2) when we interpolate. The mean and variance

values are described as
µ = xij (6)

σ2 =
λ

m
Σm

i=1xij (7)

where xij is the value of the j-th feature of the i-th sample, m is the number of samples,
and λ is an interpolation parameter that can change the size of the interpolated area and is
positively correlated with the interpolated area. Choosing a suitable λ value is essential for the
following work. After several experimental comparisons, we select the optimal interpolation
parameters; the value of λ is set to 0.1, and 20 points are interpolated for each sample.
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The chosen interpolation parameter λ is neither too large nor too small. Obviously, as
the interpolated area continuously increases with λ, although more information is obtained,
this also means that more noise is introduced. However, when the interpolation parameter
λ is small, the newly interpolated points overlap on the original sample, meaning that
we cannot fully obtain the information in the small neighborhood of each sample point.
In order to analyze the interpolation results properly, we use principal component analysis
(PCA) to reduce the dimensionality of the new dataset and to plot the sample distribution.
Figure 2 presents a comparison of the data distribution after choosing a different interpolation
parameter λ. The total number of samples in the dataset increases from 86 to 1806 after NNI.
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3.2.2. Solving Sample Imbalance

In practice, due to the constraints of actual manufacturing and experimental design,
experimental data are usually concentrated in one or several particular regions of the data
space. Therefore, during the experiment, no matter how much effort we put into making the
dataset evenly distributed, the data distribution will still be unbalanced. This phenomenon
is even more obvious after interpolation. It is worth noting that the sample imbalance
reduces the learning ability of the model for clustered minority samples, because the
learning target of ML prioritizes larger clustered samples. Hence, for better ML predictions,
the Borderline-SMOTE algorithm is employed in this experiment to solve the problem of
sample imbalance.

We divide the present work into two steps: First, we require a clustering analysis
of our imbalanced dataset, and K-means is chosen as the clustering algorithm. Then, we
use the SMOTE algorithm to interpolate at the clustering boundaries of minority samples.
K-means has a critical parameter K (the number of clusters), and different K parameters
will affect the effect of SMOTE interpolation. For the discussion of parameter K, please refer
to Supplementary Material (Section S1). After a series of experiments and comparisons,
parameter K is set to 2. Therefore, the whole dataset is divided into two clusters, and the
numbers of samples in the two clusters are 757 and 1049.
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According to the results of the K-means algorithm, we use Borderline-SMOTE to
further interpolate at the clustering boundaries of minority samples. For visualization of
the results, we also use PCA to reduce the dimensionality and plot the distribution after
SMOTE interpolation (Figure 3). The numbers of samples in the two clusters are 1007 and
1181 after Borderline-SMOTE interpolation.
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3.3. Model Establishment and Improvement

In this work, an XGB model was established after adequate preprocessing of the
original dataset. In order to ensure the predictive capability and stability of the XGB model,
the 10-fold-cross-validation method was applied during the training/testing process. The
10-fold-cross-validation was performed as follows: (i) the whole dataset was randomly
divided into 10 groups; (ii) then, 9 out of the 10 groups were randomly selected for training,
and the remaining groups were used as test sets; (iii) in each iteration, the training-test
was performed 10 times till each vector was used in the test set once; and, finally, (iv) the
results of the 10 evaluations were averaged to reduce the error caused by the unreasonable
selection of the test set.

For the XGB model to achieve the overall optimum value, we used the learning curve
method to find the optimal parameters. In Figure 4, the different plots correspond to the
different learning curves of the parameters. The abscissa axis represents different parameter
values, and the ordinate axis represents the average R2 of the 10-fold-cross-validation. R2

is a value used to evaluate the performance of the model, and it is between 0 and 1; the
closer the value is to 1, the better the model performance. Details about R2 are described in
Section 3.4. The final optimal parameter combination was the number of trees (“n tree”) = 55
(Figure 4a), the learning rates (“eta”) = 0.16 (Figure 4b), the maximum length from the root
node to leaf node (“max depth”) = 8 (Figure 4c) and the L2 regularization parameters (“reg
lambda”) = 120. All other parameters were selected as default values for the calculations.
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3.4. Model Performance

As mentioned above, MD simulations can be expensive in computation. Therefore,
the number of data points in the original dataset for this research is relatively small
(86 data points). Hence, the performance of the MD-XGB model may vary depending
upon the split of the training and test data. To investigate the variance in performance
due to the methods of data segmentation, we evaluate 999 random instantiations of the
train/test split. The metrics used to evaluate the performance of the established MD-XGB
framework include the coverage (Cov) and coefficient of determination (R2) [38].

R2 = 1− ∑N
i=1
(
Xi − X̂i

)2

∑N
i=1
(
Xi − X

)2 (8)

Cov =
1
N

N

∑
i=1

h

[ ∣∣Xi − X̂i
∣∣

2× sd(|Xi|)

]
, h(x) =

{
1, x ≤ 1
0, otherwise

(9)

where X̂i and Xi are the predicted and the experimental values, respectively; X is the mean
of experimental values; and sd(|Xi|) is the standard deviation of the experimental values.
Both R2 and Cov are in the range of 0 and 1; larger values indicate that the model has a
higher accuracy and robustness.

4. Results and Discussion
4.1. Performance Analysis of MD-XGB

With the performance metrics described in Section 3.4, we can now evaluate the
predictive capability and stability of the established MD-XGB framework. The entire
dataset is randomly divided into training and test sets 999 times. Figure 5 shows the
regression plots for four of these instances (out of the 999 mentioned in Section 3.4). The
plots show a comparison of the MD-XGB predicted results and the MD experimental
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data. If the regression line is nearer to the y = x line, the predicted value is closer to the
true value, which means that the model performance is superior. We can see that the
distribution between the XGB predictions and the MD experimental data remains generally
consistent. The majority of the points are clustered near the regression line and are within
the 95% confidence limit line. Only some scattered predictions largely deviate from the
experimental values of MD, but the impact on the model is negligible.
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Figure 5. Sample regression plots comparing the MD experimental data with the MD-XGB predictions.
Each plot in (a)–(d) corresponds to a different split of the training and test data. The R2 and Cov
values corresponding to each plot are (a) R2 = 0.960, Cov = 0.916; (b) R2 = 0.962, Cov = 0.863;
(c) R2 = 0.962, Cov = 0.898; (d) R2 = 0.968, Cov = 0.897.

The robustness of the proposed models and their predictive ability are guaranteed by
the high R2 based on bootstrapping, repeated 999 times, as shown Figure 6. The plots show
that the R2 values are found in the range of 0.94–0.98 and that the Cov values are 0.82–0.92.
These values indicate that the obtained regression models have good internal and external
predictive capacities.

XGB adds a regular term to the objective function to control the complexity of the
model. It makes the learned model simpler and prevents overfitting. XGB has more
accuracy and stability than other traditional machine learning algorithms. For proof of this,
we perform two other experiments to compare the regression results of XGB with those
of multiple linear regression (MLR) and Support Vector Regression (SVR), with all three
models using the same training set and test set. Table 3 shows the Cov and R2 of the three
models. It can be clearly seen from Table 3 that XGB has the highest performance metrics,
and this means that XGB has an absolute advantage in dealing with this type of problem.
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Figure 6. The evaluation of robustness using R2 and Cov of predictive models. (a) The minimum,
maximum and average values of R2 are 0.941, 0.981 and 0.964, respectively; (b) The minimum,
maximum and average values of Cov are 0.821, 0.922 and 0.878, respectively.

Table 3. Comparison of the R2 and Cov of three types of models.

Metrics
Training Set Testing Set

XGB SVR MLR XGB SVR MLR

R2 0.968 0.905 0.826 0.964 0.876 0.792

COV 0.886 0.828 0.800 0.878 0.835 0.787

4.2. Analysis of Variable Feature Importance

For the XGB model, we determine the importance of the features by the magnitude of
the SHAP value of each variable. SHAP is a framework specifically designed to interpret
model results, and it is widely used in machine learning, such as ensemble and deep
learning models [39]. Figure 7a shows the ranking of feature importance. The features
are ranked according to the average absolute value of SHAP. Among the three feature
descriptors, εH has the most significant effect on the tensile stress of NR, followed by ω and
εNH . We can analyze this in more detail by examining Figure 7b, where a density scatter
plot is drawn for all samples, and the x-axis represents different SHAP values. The wide
areas indicate that there is a large number of aggregated samples. The colors on the right
indicate the magnitude of the feature values, with red indicating high feature values and
blue indicating low feature values. We can see that all variables show a positive correlation
for the tensile stress of NR. Most of the sample points of εH greatly affect the variation in
tensile stress, because the SHAP value obviously increases or decreases with the value of εH.
Additionally, ω is similar to εH, but ω has a portion of samples clustered around the 0 value
of SHAP, so it has a much smaller effect on tensile stress than εH. For εNH, however, its effect
on tensile stress is minimal because it has the vast majority of samples clustered around the
0 value of SHAP, and it can be seen that changes in εNH barely affect tensile stress.

The mechanical reinforcement of bionic natural rubber relies mainly on orientation
and strain-induced crystallization during stretching, which are strongly related to the
adsorption of clusters to the chain ends [40]. Therefore, the mechanical reinforcement
effect is mainly related to the strength (not easily pulled apart during stretching) and
the number of clusters adsorbed to the chain ends. εNH is the strength of the interaction
of phospholipids and proteins with the rubber matrix and has almost no effect on the
adsorption of clusters to the chain ends and, thus, on the orientation and crystallization
of the molecular chains, so it has minimal effect on the mechanical properties. Both εH
and ω have a significant effect on the mechanical properties because increases in both εH
and ω favor the adsorption of clusters to the chain ends. εH has the greatest influence
on the information of clusters, because when εH is small, clusters do not yet form and



Polymers 2022, 14, 1897 12 of 16

have little effect on the mechanical properties, while as εH increases, clusters gradually
form, the number of attractive chain ends increases, and the strength of the attraction
becomes stronger. ω mainly affects the size of the clusters and does not affect the strength
of cluster adsorption on the chain ends. As the cluster size increases, the number of
clusters adsorbed on the chain ends increases, which plays a greater role in the mechanical
properties. Therefore, we obtain a reasonable result indicating that εH has the greatest
effect on the mechanical properties, followed by ω and finally εNH .
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4.3. Model Visualization and External Validation

According to results of feature importance in Section 4.2, we know that the value
of εNH has the least significant effect on the tensile stress of NR. This is also the case in
practice, but we are more concerned with changes in the two variables εH and ω and their
effects on tensile stress (TS). Therefore, we first set the value of εNH to any value between 0
and 1 (in the present research, we set εNH = 0.38), then predict 2.5 million combinations of
εH-ω-TS using the established model and finally plot the 3-dimensional surface (Figure 8).
We can see that there is an overall upward trend in the surface; this corresponds to the
previous SHAP feature importance analysis. There are many other details that confirm the
correct ranking of the importance of the features. For example, when εH reaches a high
value, a slight change in ω creates a huge change in TS. However, this is not the case when
εH reaches a low value.

We randomly select four intervals and simulate a new sample of 30 points as a vali-
dation set by MD within the interval. These points are used for external validation of the
model (Figure 9a–d). The four panels in Figure 9 correspond to the four regions of A,B,C
and D in Figure 8a. The plots show a comparison between the MD experimental values
of the validation set and the predicted results. Most of the validation points are close to
the predicted results; only some scattered predictions deviate from the predicted values.
This also further verifies that previously mentioned: our models have good internal and
external predictive capacities.



Polymers 2022, 14, 1897 13 of 16

Polymers 2022, 14, x FOR PEER REVIEW 12 of 15 
 

 

of clusters to the chain ends and, thus, on the orientation and crystallization of the molec-
ular chains, so it has minimal effect on the mechanical properties. Both 𝜀ு and 𝜔 have a 
significant effect on the mechanical properties because increases in both 𝜀ு and 𝜔 favor 
the adsorption of clusters to the chain ends. 𝜀ு has the greatest influence on the infor-
mation of clusters, because when 𝜀ு is small, clusters do not yet form and have little effect 
on the mechanical properties, while as 𝜀ு increases, clusters gradually form, the number 
of attractive chain ends increases, and the strength of the attraction becomes stronger. 𝜔 
mainly affects the size of the clusters and does not affect the strength of cluster adsorption 
on the chain ends. As the cluster size increases, the number of clusters adsorbed on the 
chain ends increases, which plays a greater role in the mechanical properties. Therefore, 
we obtain a reasonable result indicating that 𝜀ு has the greatest effect on the mechanical 
properties, followed by 𝜔 and finally 𝜀ேு. 

4.3. Model Visualization and External Validation 
According to results of feature importance in Section 4.2, we know that the value of 𝜀ேு has the least significant effect on the tensile stress of NR. This is also the case in prac-

tice, but we are more concerned with changes in the two variables 𝜀ு and 𝜔 and their 
effects on tensile stress (TS). Therefore, we first set the value of 𝜀ேு to any value between 
0 and 1 (in the present research, we set 𝜀ேு = 0.38), then predict 2.5 million combinations 
of 𝜀ு-𝜔-TS using the established model and finally plot the 3-dimensional surface (Figure 
8). We can see that there is an overall upward trend in the surface; this corresponds to the 
previous SHAP feature importance analysis. There are many other details that confirm 
the correct ranking of the importance of the features. For example, when 𝜀ு reaches a 
high value, a slight change in 𝜔 creates a huge change in TS. However, this is not the case 
when 𝜀ு reaches a low value. 

We randomly select four intervals and simulate a new sample of 30 points as a vali-
dation set by MD within the interval. These points are used for external validation of the 
model (Figure 9a–d). The four panels in Figure 9 correspond to the four regions of A,B,C 
and D in Figure 8a. The plots show a comparison between the MD experimental values of 
the validation set and the predicted results. Most of the validation points are close to the 
predicted results; only some scattered predictions deviate from the predicted values. This 
also further verifies that previously mentioned: our models have good internal and exter-
nal predictive capacities. 

 
Figure 8. (a) MD-XGB predicted 3D image; (b) contour map of the predicted 3D image. Figure 8. (a) MD-XGB predicted 3D image; (b) contour map of the predicted 3D image.

Polymers 2022, 14, x FOR PEER REVIEW 13 of 15 
 

 

 
Figure 9. Comparison of the errors of the validation set and MD-XGB predictions, where (a), (b), (c) 
and (d) correspond to the four panels in Figure 8a. 

5. Conclusions 
In this paper, we established an XGB model trained with MD data to predict the ten-

sile stress of NR. Based on the MD dataset with the sample number of only 86 data points, 
the NNI algorithm was first used to enlarge the original data space. Then, K-means clus-
tering analysis was performed on the expanded dataset, and the result showed that there 
was a problem of sample imbalance. In order to solve this problem, the SMOTE algorithm 
was applied to the dataset to perform a secondary interpolation, which further improved 
the distribution of data. Then, we established an XGB regression model consisting of ten-
sile stress and three other factors (𝜔, 𝜀ு and 𝜀ேு) of NR, and we analyzed the importance 
of the three factors on tensile stress using SHAP. Finally, the robustness of the establish 
model and its predictive capability were guaranteed by high performance values. These 
values indicate that the obtained regression models have excellent internal and external 
predictive capacities. We showed that the established framework can predict the tensile 
stress of NR based on MD data with reasonable accuracy. 

The methods and the results of this this study can be used as benchmarks for subse-
quent studies focusing on ML models to predict other mechanical properties of NR based 
on MD data. The method is a framework, and the tensile stress is a label value in this 
experiment, and it can also be replaced by crystallinity or other mechanical properties. 
Our future work will focus on the development of ML methods that enhance the inter-
pretability of ML models. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Section S1. the introduction of the K-means algorithm and the selection of 
parameter K. References [41,42] are cited in the supplementary materials. 

Author Contributions: Conceptualization, Y.H. and Q.C.; methodology, Y.H. and Q.C.; formal anal-
ysis, Q.C. and Z.Z.; investigation, Q.C., Z.Z. and K.G.; data curation, Y.H., Q.C. and A.H.; writing—
original draft preparation, Y.H.; writing—review and editing, J.L. and Y.D; supervision, J.L., Y.D. 
and L.C. All authors have read and agreed to the published version of the manuscript. 

Figure 9. Comparison of the errors of the validation set and MD-XGB predictions, where (a–d)
correspond to the four panels in Figure 8a.

5. Conclusions

In this paper, we established an XGB model trained with MD data to predict the tensile
stress of NR. Based on the MD dataset with the sample number of only 86 data points, the
NNI algorithm was first used to enlarge the original data space. Then, K-means clustering
analysis was performed on the expanded dataset, and the result showed that there was a
problem of sample imbalance. In order to solve this problem, the SMOTE algorithm was
applied to the dataset to perform a secondary interpolation, which further improved the
distribution of data. Then, we established an XGB regression model consisting of tensile
stress and three other factors (ω, εH and εNH) of NR, and we analyzed the importance of
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the three factors on tensile stress using SHAP. Finally, the robustness of the establish model
and its predictive capability were guaranteed by high performance values. These values
indicate that the obtained regression models have excellent internal and external predictive
capacities. We showed that the established framework can predict the tensile stress of NR
based on MD data with reasonable accuracy.

The methods and the results of this this study can be used as benchmarks for subse-
quent studies focusing on ML models to predict other mechanical properties of NR based
on MD data. The method is a framework, and the tensile stress is a label value in this
experiment, and it can also be replaced by crystallinity or other mechanical properties. Our
future work will focus on the development of ML methods that enhance the interpretability
of ML models.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym14091897/s1, Section S1. the introduction of the K-means algorithm
and the selection of parameter K. References [41,42] are cited in the supplementary materials.
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