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Abstract: It is estimated that up to 80% of the human genome is transcribed into RNA molecules
but less than 2% of the genome encodes the proteins, and the rest of the RNA transcripts that are
not translated into protein are called non-coding RNAs (ncRNAs). Many studies have revealed
that ncRNAs have biochemical activities as epigenetic regulators at the post-transcriptional level.
Growing evidence has demonstrated that transposable elements (TEs) contribute to a large percentage
of ncRNAs’ transcription. The TEs inserted into certain parts of the genome can act as alternative
promoters, enhancers, and insulators, and the accumulation of TEs increases genetic diversity in the
human genome. The TEs can also generate microRNAs, so-called miRNA-derived from transposable
elements (MDTEs), and are also implicated in disease progression, such as infectious diseases and
cancer. Here, we analyzed the origin of ncRNAs and reviewed the published literature on MDTEs
related to disease progression.
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1. Introduction

The human genome consists of both protein-coding genes and non-protein-coding
DNA, that is not used to encode protein. For many years, the non-protein-coding DNA
was regarded as junk DNA that does not have any biological function in the organism [1].
However, since the Human Genome Project revealed that the protein-coding genes account
for only 1.5% of the human genome, many scientists have been concerned with non-protein-
coding DNA, which occupies the rest of the genome. Subsequently, two large-scale genomic
projects, the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of
the Mammalian Genome (FANTOM) have reported that the majority of non-protein-coding
DNA is transcribed, and produces biologically active RNA molecules, called non-coding
RNA (ncRNA) [2,3]. In recent years, with the great advances in sequencing technologies,
tens of thousands of ncRNAs have been identified and classified in the human genome [4,5].
Research on the biological roles of ncRNAs has also exploded, and ncRNAs have been found
to be associated with various biological processes, such as chromatin modification and
transcriptional regulation as the epigenetic regulators of gene expression [6,7]. Although
many studies have revealed the function of ncRNAs, little is known about ncRNAs related
to transposable elements (TEs), which contribute to a huge percentage of the origin of the
ncRNA transcripts [8–10].

The transposable elements (TEs) are a type of non-protein-coding DNA that has the
ability to insert into certain parts of the genome. Based on the transposition mechanism,
TEs can be divided into two major classes. Class 1 elements, also called retrotransposons,
transpose their positions in the genome through a ‘copy-and-paste’ mechanism. They
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are transcribed from DNA to RNA, and the RNA intermediate is reverse-transcribed into
complementary DNA (cDNA). Then, the cDNA copy is inserted back elsewhere in the
genome [11]. Retrotransposons are subdivided into subclasses: LTR or non-LTR retrotrans-
posons, based on the presence of the long terminal repeat (LTR) elements at either end of
a retrotransposon. The LTR retrotransposons have similar characteristics to retroviruses,
which either contain LTR that encode proteins, such as reverse transcriptase, and inte-
grase for integration [12]. The non-LTR transposons are composed of long interspersed
nuclear elements (LINEs) and short interspersed nuclear elements (SINEs). The LINEs are
autonomous retrotransposons that can move by themselves in the genome, and encode
reverse transcriptase for transposition. SINEs are non-autonomous retrotransposons that
do not encode proteins and require LINEs for their propagation [13]. The transposition
mechanism of the class 2 elements, also known as the DNA transposons, is a so-called
‘cut-and-paste’ mechanism, using a DNA intermediate [14]. Each TE subclass is further
divided into superfamilies that are generally found in almost all of the major groups of eu-
karyotes. The major superfamilies of the LTR retrotransposons are Ty3/gypsy, Ty1/copia,
and endogenous retrovirus (ERV) elements, and in the case of the DNA transposons,
Tc1/mariner, hAT (hobo-Ac-Tam3), and MULEs (mutator-like elements) are the three major
superfamilies that are typically identified across the eukaryotic species [15]. The most
detailed classification levels of the TEs are the subfamilies, which represent the history of
replication and divergence of a family [16].

Several studies have revealed the close association of ncRNAs with TEs, which occu-
pies a large proportion of the ncRNAs production [17–19]. However, most of the informa-
tion about the TE-derived ncRNAs from these studies was analyzed by earlier versions
of genomic databases and bioinformatic tools. Moreover, although the ncRNAs are in the
spotlight as the diagnostic biomarkers for diseases, relatively few studies have investigated
how this TE-derived ncRNA is involved in the onset of disease. In this review, we analyzed
the TE-derived ncRNAs, using the latest updated versions of genomic databases, and
reviewed the papers on the role of ncRNAs in various human diseases.

2. Most Long Non-Coding RNAs Contain TE Sequences

Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides (nt), known to be
processed through 5′ capping, 3′ polyadenylation, and spliced-like mRNAs [20]. LncRNAs
are further divided into several types, based on the genomic location where they are tran-
scribed. The lncRNAs transcribed from the intergenic region between the protein-coding
or non-protein-coding genes are called long intergenic ncRNAs (lincRNAs), and those
transcribed from an intronic region of a protein-coding gene are named intronic lncRNAs.
The antisense lncRNAs (NATs) are transcribed from a complementary strand of protein-
coding genes, and the bidirectional lncRNAs originate from the bidirectional transcription
of protein-coding genes [7]. Many of the studies have revealed the several types of lncRNA
controls that regulate the gene expression, such as: (1) inducing chromatin and chromosome
condensation through histone modification; (2) recruiting chromatin-modifying complexes
or transcription factors; (3) binding to RNA polymerase (pol) II; (4) regulating alternative
splicing; (5) acting as miRNA sponges and inhibiting the functional interaction of miRNA
with mRNA [7,21–23].

Several studies have investigated the contributions of TEs to human lncRNAs. One
study revealed that approximately 75% of the human lncRNA transcripts identified from
GENCODE v13 contain at least one exonized TE sequence, which shows a remarkably
high percentage compared to any other types of RNA transcript [8]. A subsequent study
reported that 83% of the lncRNA transcripts analyzed using GENCODE v21 (released
on October 2014) contained TE sequences [24]. In this review, we analyzed the lncRNAs
overlapping with exonized TEs, using the current version of the GENCODE v40, released
in April 2022 [25].

The lncRNA annotations used in this study were downloaded from the GENCODE
v40 database in GTF format, and the RepeatMasker annotations with genomic information
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about TEs were obtained from the UCSC table browser on the human genome (version
hg38) [26]. To identify the TE coordinates that overlapped with the chromosomal position
of the lncRNA, the IntersectBed module from Bedtools was used [27]. According to the
previous studies, we also inferred the content of TE in lncRNAs by calculating the fraction
of the lncRNA transcripts with the exons overlapping with the sequences of DNA annotated
as TE by RepeatMasker. As a result, it was found that approximately 82.5% of the transcripts
from a total of 53,029 human lncRNA transcripts, identified from GENCODE v40, contained
at least partial sequence of TEs in the exon region. Based on the number of TEs overlapping
with the exon region of lncRNAs, we found 140,447 TE elements. The most abundant TE
subclass being LTR, accounting for 31% of the total number of TE elements, followed by
SINE (30%), LINE (28%), and DNA transposon (11%). Figure 1A represents the relative
percentage of TEs produced on each chromosome. The chromosomes with the largest
proportion of LTR were chr 4, 5, 6, 7, 8, 10, 13, 14, 19, 20, 21, and Y, accounting for within
the range of 31.2% to 42.6%. The chromosomes with the highest number of SINE were
chr 1, 2, 9, 11, 12, 15, 16, 17, and 22 with the range of 33.7% to 42.8%. LINE were the most
common TEs in the remaining chromosomes, chr 3, 18, and X. These data indicate that
most of the non-coding RNAs are occupied by transposable elements. Figure 1B shows the
number of TE subfamilies overlapping the ncRNA transcripts from each TE subclass. The
more detailed information about all of the lncRNA transcripts overlapping TEs is listed in
Table S1 (Supplementary Materials).
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Figure 1. Percentage and composition of lncRNA transcripts overlapping TE sequences. (A) The
percentage of TE subclasses produced by each chromosome; (B) The number of TE superfamilies
overlapping with lncRNA transcripts from each TE subclasses: LTR, SINE, LINE, and DNA transposon.

3. Biogenesis of microRNAs

Small non-coding RNAs (sncRNAs) are RNA transcripts less than 200 nts in length,
that consist of small interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs), small
nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and mi-
croRNAs (miRNAs). Among them, the microRNAs (miRNAs) are known as the key
regulators of gene expression, which post-transcriptionally repress the expression of their
target genes by binding to the 3′ untranslated region (UTR) [28,29]. The biogenesis of
the miRNAs can occur through canonical or non-canonical pathways, and the schematic
illustration is represented in Figure 2.
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3.1. Canonical Biogenesis of miRNAs

Most of the animal miRNAs are transcribed into long primary miRNAs (pri-miRNAs)
by RNA pol II. The DNA sequences transcribed into the miRNAs are found in the intragenic
or intergenic regions of the human genome. The intragenic miRNAs are processed mostly
from the introns or even the exons of protein-coding genes in a sense orientation. The
intergenic miRNAs can either be coordinately expressed with their host genes by the same
promoter, or independently transcribed from the host gene by their own promoter [30,31].

The pri-miRNA transcript forms the hairpin structure that contains 5′ cap, as well as
poly(A) tails at the 3′ end [32]. The first processing step of the pri-miRNAs occurs in the
nucleus. The stem of the hairpin structure is recognized by the multiprotein complex called
a microprocessor, consisting of the RNase III enzyme Drosha and its cofactor, DGCR8,
the double-stranded RNA-binding domain (dsRBD) protein. The pri-miRNA recognized
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by the microprocessor is cleaved into a 60–70 nts in the length of the hairpin structure,
known as precursor-miRNA (pre-miRNA). Then, the export factor, Exportin-5, recognizes
the 2 nt 3′ overhang, the feature of the RNase III-mediated cleavage, and transports the pre-
miRNA into the cytoplasm where the second processing takes place. Within the cytoplasm,
the pre-miRNA is subsequently cleaved into an 18–25 nt mature miRNA duplex by the
endonuclease cytoplasmic RNase III enzyme Dicer with the dsRBD protein, TRBP. Only
one strand of the miRNA duplex associates with the Argonaute (Ago) protein, to assemble
the RNA-induced silencing complex (RISC), and this miRISC exerts as the regulator of
the gene expression. Generally, the strand with a relatively lower stability of base-pairing
at the 5′ end is selected as the guide strand and the other strand, called the passenger
strand, is degraded. Since either strand of the miRNA duplex may potentially act as a
functional miRNA, the two mature miRNAs originating from the opposite arms of the
same pre-miRNA are distinguished by a -3p or -5p suffix [33].

3.2. Non-Canonical Biogenesis of miRNAs

In the past few years, several non-canonical miRNA biogenesis pathways have been
elucidated. One of the well-known atypical miRNA biogenesis pathway is the mirtron
pathway. Mirtrons are a class of short introns originating from pre-miRNA, sized with
hairpin structures. The difference between the canonical miRNAs found within the introns
and the mirtrons is that the maturation of the mirtron is initiated by splicing through a
Drosha-independent mechanism. Then, the spliced intron products are recognized by
the lariat debranching enzyme and processed into a pre-miRNA fold. The subsequent
processes are identical to those of the canonical miRNAs, in which the pre-miRNA is
transferred to the cytoplasm by Exportin-5, cleaved by Dicer, and incorporated into the
RISC complex [34–36].

The miRNAs can also originate from TEs, and are called miRNA-derived from trans-
posable elements (MDTE). The model for the molecular origin of MDTEs was first proposed
by Smalheiser and Torvik in 2005, starting with the hypothesis that the insertion of two
similar TEs into neighboring positions within the genome can lead to the formation of the
hairpin structures that might function as miRNA [37]. The second mechanism for miRNA
formation from converging TEs was reported in study conducted by Piriyapongsa and
Jordan in 2007. They found that the miR-548 family derived from the MADE1, a subfamily
of DNA transposons, contains potential sequences that form the palindromic structure of
the imperfect RNA hairpins as pri-miRNA mimics [38]. The additional research has shown
that the MER53 elements, a subfamily of DNA transposons, have palindromic sequences
that form miRNA hairpins, and generates all of the members of the miR-1302 gene fam-
ily [39]. Moreover, two distinct studies have revealed, respectively, that the TE-derived
miRNAs interact with the catalytic AGO proteins, and are incorporated into the RISC
complex, and participate in the regulation of gene expression in the same way as the other
non-TE-derived miRNAs [40,41].

3.3. Analysis of MDTEs in Human

The most recently published paper on the investigation of MDTEs was conducted
using an earlier version of miRbase (version 20) [10]. Here, we present the latest analysis of
MDTEs using the current version of the miRBase v22 database, updated in 2019 [42].

To investigate the miRNAs-derived from TEs (MDTEs) in the human genome, a total
of 2883 mature miRNAs with chromosomal locations were obtained from the miRBase and
intersected with the repeat sequences of the human genome, in the same way as mentioned
above. Considering the multi-copy MDTEs that originated from the different pre-miRNAs
but had the same mature miRNA sequences, 474 MDTEs that completely or partially over-
lapped with the TEs were identified. Each copy in the multi-copy MDTEs originates from
the same family of TEs, but the subfamilies might be the same or different. For instance, all
77 members of the hsa-miR-548 family were derived from DNA_TcMar-Mariner/MADE1,
and the 11 copies of hsa-miR-1302 were also all derived from DNA_hAT/MER53, but
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four copies of hsa-miR-3118 were derived from the same TE family but different subfami-
lies. Of the four hsa-miR-3118 copies, one was derived from LINE_L1/L1PA12, two from
LINE_L1/L1PA13, and the other from LINE_L1/L1PA14. The detailed information all of
the MDTEs is listed in Table S2 (Supplementary Materials).

When the multi-copy MDTEs were excluded, 405 unique MDTEs were identified,
based on the mature miRNAs. Among the 405 MDTEs, 352 were completely overlapped
with TE sequences and the rest of the MDTEs were partially overlapped with TEs. Consid-
ering the total of 2652 miRNAs in humans, the MDTEs account for about 15% of the total
miRNAs (Figure 3A). Among the four TE subclasses (DNA transposons, SINE, LINE, and
LTR transposons), the DNA transposons were most frequently responsible for the MDTE
generation, generating a total of 144 MDTEs in the human genome. Then, they are followed
by LINE, which generates 116 MDTEs, 90 are generated by SINE, and 50 are generated by
the LTR transposon. At a more detailed level, the most abundant subfamily for DNA trans-
posons is TcMar-Mariner, which occupies 58% of the DNA transposon-derived miRNAs.
For LINE, SINE, and LTR, it is the L1, MIR, and the ERVL-MaLR subfamily, accounting for
55%, 60%, and 44% of the total TE-derived miRNAs, respectively. The detailed number of
TE superfamilies constituting MDTEs for each TE subclass is shown in Figure 3B.
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4. MDTEs in Human Diseases

Numerous studies have shown that miRNAs are involved in many biological processes,
as well as disease progression including cancer, and have reported about the possibility
of biomarkers for the diagnosis and prognosis of diseases [43–45]. However, there have
been relatively few studies on MDTEs related to disease progression. Here, we searched
for recent articles on disease-related MDTEs, and presented some of them in this review.
To identify the recent literature on MDTEs studied in association with disease, all of the
disease-related miRNA data reported since 1 January 2017 (papers published within recent
5 years), were downloaded from the Human microRNA Disease Database (HMDD) v3.2,
and only those about MDTEs were selected [46]. We surveyed in two parts: either MDTEs
related to infectious diseases, or cancer. Within the output files of Bedtools, the list of the
miRNAs corresponding to the MDTEs related to diseases were selected and modified by
in-house Python codes, to visualize their coordinates on the human chromosomes using
web-based PhenoGram (http://visualization.ritchielab.org/phenograms/plot) (accessed

http://visualization.ritchielab.org/phenograms/plot
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on 30 June 2022). Each of the MDTEs related to infectious diseases or cancer are represented
in Figure 4.
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4.1. MDTEs in Relation to Pathogen-Associated Diseases

Infectious diseases are disorders caused by the infection of pathogens, such as viruses,
bacteria, fungi, and parasites. Many of the studies have shown that the miRNAs are
closely associated with pathogen infections. When infected with pathogens, the miRNAs
could response in two conflicting ways: Either act as an assistant of the pathogen to avoid
host immune responses, or act as a guardian of the host to fight against the pathogen by
regulating the expression of the genes related to the immune response [47–49]. Numerous
studies have indicated that alterations of miRNAs can be used as diagnostic biomarkers of
diseases. Here, several MDTEs were suggested as potential biomarkers for the diagnosis of
infectious diseases (Table 1).

Table 1. MDTEs in relation to pathogen-associated diseases.

miRNA Subclass Superfamily Subfamily Disease Dysregulation Ref.

hsa-mir-1246 LTR ERVL-MaLR MLT1M Plasmodium Falciparum Malaria upregulated [50]

hsa-mir-130a LINE RTE-BovB MamRTE1 Hepatitis C Virus Infection upregulated [51]

hsa-mir-151a-3p LINE L2 L2c
Chronic Hepatitis B downregulated [52]

Helicobacter pylori Infection upregulated [53]

hsa-mir-28-3p LINE L2 L2c Helicobacter pylori Infection upregulated [53]

hsa-mir-3909 LINE L2 L2c Rheumatic Heart Diseases downregulated [54]

hsa-mir-3135b SINE Alu FRAM Plasmodium Falciparum Malaria upregulated [50]

hsa-mir-345-5p SINE MIR MIRc Respiratory Syncytial Virus
Pneumonia downregulated [55]

hsa-mir-378a-3p SINE MIR MIRc Hepatitis C Virus Infection upregulated [56]
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A study on adult-imported falciparum malaria (AIFM) revealed that the expression
of hsa-miR-1246 and hsa-miR-3135b is significantly upregulated in the blood of patients
infected with AIFM, and suggests these miRNAs as potential biomarkers of AIFM diagnosis.
The gene ontology analyses of the putative target genes of these two MDTEs showed
that most of the target genes were involved in multiple immune responses, such as the
TNF, and T-cell receptor signaling pathways [50]. The study on the hepatitis B virus
(HBV) has identified that the expression of hsa-miR-151a-3p is downregulated in the
plasma samples of chronic hepatitis B (CHB) patients and suggested hsa-miR-151a-3p
as a potential biomarker for liver injury among CHB patients with persistently normal
alanine aminotransferase levels (PNALT) [52]. Hsa-miR-151a is also related to Helicobacter
pylori (H. pylori) infection with hsa-miR-28-3p. H pylori is a Gram-negative pathogen that
is involved in many gastroduodenal diseases, and the related study revealed that the
expression of miR-151a-3p and hsa-miR-28-3p were significantly elevated in the plasma of
H. pylori-infected patients [53].

The following studies have identified biomarkers for infectious diseases, with the
investigation of target gene regulation mechanisms of MDTEs during disease onset. Along
with the HBV, the hepatitis C virus (HCV) is also a leading cause of liver diseases, such as
hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The related study has
revealed that the upregulated hsa-miR-130a in the liver tissues of HCV-infected patients
regulates the expression of pyruvate kinase L/R (PKLR), the target gene of hsa-miR-130a,
and it leads to the suppression of pyruvate production, which plays a key role in the
regulation of HCV replication [51]. In addition, the expression of hsa-miR-378a-3p was
significantly upregulated in the plasma samples of HCV patients, which is known to target
key components of cytolytic granules [56]. A study of hsa-miR-3909 has verified that the
miRNA is involved in rheumatic heart disease, caused by rheumatic fever resulting from
streptococcal throat infection [54]. They have revealed that the expression of hsa-miR-3909
was significantly downregulated in the plasma of patients with rheumatic heart disease,
and that the result of the hsa-miR-3909 downregulation enhanced the IL1 pathway induced
by interleukin 1 receptor type 1 (IL1R1), the target gene of hsa-miR-3909. A study on
respiratory syncytial virus (RSV) infection conducted by Eilam-Frenkel reported that the
RSV downregulates the expression of the host miRNA, hsa-mir-345-5p that targets p21, an
inhibitor of the cell cycle, to allow the viral infection to persist [55].

4.2. MDTEs in Relation to Cancer

Table 2 shows the list of MDTEs related to various types of cancers identified through
literature surveys. For the comparative analysis of the lists of MDTEs found in the literature
with the differentially expressed MDTEs in cancer patients, we downloaded the miRNA
sequencing data of various types of cancers from The Cancer Genome Atlas (TCGA) Data
Portal (https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm) (accessed on 14 June
2022). Twenty breast invasive carcinomas (BRCA), kidney renal clear cell carcinoma (KIRC),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), and stomach ade-
nocarcinoma (STAD) samples were used in this study. Additionally, 19 bladder urothelial
carcinoma (BLCA) samples, 8 colon adenocarcinoma (COAD) samples, 4 pancreatic ade-
nocarcinoma (PAAD) samples, and 3 cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC) samples were downloaded with the same number of the matched
normal samples. R language packages were applied for miRNA sequencing data processing.
Firstly, the mean raw counts less than 50 in both of the normal and tumor samples were
removed to avoid a lower expression level. Then, the differentially expressed miRNAs
(DEmiRNAs) between the normal and tumor tissues were analyzed using the DESeq2
package in R, according to the cut-off criteria (p < 0.05, and |log2FC| ≥ 1.0). Among
the total DEmiRNAs, only the results for the MDTEs were confirmed as shown in Table 3
and Figure 5.

https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
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Table 2. MDTEs in relation to human cancers.

miRNA Subclass Superfamily Subfamily Target Gene Disease Ref.

hsa-mir-1202 LTR ERV1 MER52A CDK14 Hepatocellular cancer [57]

hsa-mir-646 LTR ERVL LTR67B FOXK1 Gastric cancer [58]

hsa-mir-1271-5p LINE L2 L2a
DIXDC1 Prostate cancer [59]

Foxk2 Non-small-cell lung cancer [60]

hsa-mir-130a-3p LINE RTE-BovB MamRTE1
FOSL1

Breast cancer
[61]

RAB5B [62]

hsa-mir-374b-5p LINE L2 L2c

AKT1 Colon cancer [63]

JAM2 Cervical cancer [64]

ZEB2 Bladder cancer [65]

hsa-mir-421 LINE L2 L2c PDCD4 Breast cancer [66]

hsa-mir-577 LINE L2 L2a WNT2B Non-small-cell lung cancer [67]

hsa-mir-582-5p LINE CR1 L3 AKT3 Endometrial cancer [68]

hsa-mir-608 LINE L2 L2
BRD4 Hepatocellular cancer [69]

MIF Lung cancer [70]

hsa-mir-23c SINE MIR MIRb ERBB2IP Hepatocellular cancer [71]

hsa-mir-330-3p SINE MIR MIRb CCBE1 Breast cancer [72]

hsa-mir-345-5p SINE MIR MIRc AKT2 Acute myelogenous
leukemia [64]

hsa-mir-3908 SINE Alu AluSx AdipoR1 Breast cancer [73]

hsa-mir-4317 SINE MIR MIR FGF9, CCND2 Non-small-cell lung cancer [74]

hsa-mir-575 SINE MIR MIR ST7L Hepatocellular cancer [75]

hsa-mir-612 SINE MIR MIR1_Amn ME1 Bladder cancer [76]

hsa-mir-224-3p

DNA DNA MER135

ST3GalIV Renal Cell cancer [77]

hsa-mir-224-5p

RASSF8 Gastric cancer [78]

TXNIP Pancreatic cancer [79]

PTX3 Cervical cancer [80]

hsa-mir-326 DNA hAT-Tip100 Arthur1B TWIST1 Hepatocellular cancer [81]

hsa-mir-340-5p DNA
TcMar-

Mariner MARNA

CDK4 Non-small-cell lung cancer [74]

RhoA Squamous Cell cancer [82]

LGR5 Breast cancer [83]

hsa-mir-3664-3p DNA TcMar-Tigger MER46C UGT2B7 Hepatocellular cancer [84]

hsa-mir-645 DNA hAT-Charlie MER1B SOX30 Hepatocellular cancer [85]

As a result, there were 11 MDTEs, the expression of which is changed in nine types
of cancer. In particular, hsa-miR-28 and hsa-miR-378a showed a tendency to decrease in
expression in four types of cancers: BLCA; CESC; COAD; and STAD for hsa-miR-28, and
BLCA; BRCA; COAD; and LUAD for hsa-miR-378a, respectively. The expression of hsa-
miR-342 was also changed in four types of cancers, but the tendency was not identical; its
expression was upregulated in BRCA and KIRC, but downregulated in COAD and PAAD.
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Compared with the results of the previous studies presented in Table 2, only hsa-mir-
582 was matched as a DEmiRNA in cancer. However, the expression of the hsa-miR-582
was upregulated in endometrial cancer in the previous study, but downregulated in BLCA
patients from the TCGA dataset; therefore, the results are not completely identical. Despite
the apparent expressional difference in various cancers, no study on the other 10 MDTEs
has been conducted. These MDTEs would be good candidates for cancer biomarkers,
especially hsa-miR-28 and hsa-miR-378a, which tend to be downregulated in various types
of cancers.



Int. J. Mol. Sci. 2022, 23, 8950 11 of 15

Table 3. Differentially expressed miRNAs in the tissue of each of 9 types of cancer obtained from the
TCGA database.

Types of
Cancer Expression miRNA Subclass Superfamily Subfamily log2FC p-Value

BLCA

up hsa-mir-584 DNA hAT-Blackjack MER81 2.406 1.1 × 10−11

down

hsa-mir-28 LINE L2 L2c −1.276 3.8 × 10−9

hsa-mir-582 LINE CR1 L3b −1.058 4.7 × 10−5

hsa-mir-378a SINE MIR MIRc −1.426 7.2 × 10−5

BRCA

up hsa-mir-342 SINE tRNA-RTE MamSINE1 2.392 5.2 × 10−18

down
hsa-mir-378a SINE MIR MIRc −2.078 1.4 × 10−12

hsa-mir-335 SINE MIR MIRb −1.759 2.2 × 10−7

CESC
up hsa-mir-625 LINE L1 L1MCa 1.590 1.6 × 10−3

hsa-mir-708 LINE L2 L2c 1.116 2.3 × 10−2

down hsa-mir-28 LINE L2 L2c −1.389 2.0 × 10−3

COAD

up hsa-mir-151a LINE L2 L2c 1.010 6.6 × 10−8

hsa-mir-584 DNA hAT-Blackjack MER81 1.420 1.1 × 10−3

down

hsa-mir-361 DNA hAT-Charlie MER5A −2.503 9.6 × 10−37

hsa-mir-378a SINE MIR MIRc −3.311 4.3 × 10−33

hsa-mir-28 LINE L2 L2c −1.122 2.7 × 10−6

hsa-mir-342 SINE tRNA-RTE MamSINE1 −1.454 1.1 × 10−4

hsa-mir-625 LINE L1 L1MCa −1.484 1.9 × 10−4

KIRC
up hsa-mir-342 SINE tRNA-RTE MamSINE1 1.085 5.8 × 10−8

down hsa-mir-891a SINE MIR MIRc −3.789 4.7 × 10−7

LIHC up hsa-mir-151a LINE L2 L2c 1.084 2.8 × 10−16

LUAD down hsa-mir-378a SINE MIR MIRc −1.386 6.9 × 10−7

PAAD down hsa-mir-342 SINE tRNA-RTE MamSINE1 −1.289 2.1 × 10−2

STAD down hsa-mir-28 LINE L2 L2c −1.346 2.3 × 10−9

5. Conclusions

It is now considered that the transposable elements are important regulators that have
an impact on genome evolution, gene function, and disease. Among the diverse functions
of the TEs, this review mainly focuses on the ncRNAs overlapping TEs. Bioinformatic
analyses indicated that over 80% of the lncRNA transcripts contained the TE sequences. For
the miRNAs-derived from TEs, about 15% of the total miRNAs are derived from TEs. Many
of the studies have revealed that the ncRNAs play important roles in the pathogenesis of
diseases; therefore, the TE-containing ncRNAs are also expected to act as a key regulator
of disease onset. However, relatively few studies have been published on MDTEs in
relation to human diseases, compared with the numerous studies on non-MDTEs. More
studies were confirmed for cancer than for infectious diseases, but there were no studies
on the differentially expressed MDTEs in the actual cancer patient data obtained from
TCGA, except for hsa-miR-582. Taken together, further study is needed for the ncRNAs
overlapping with TEs whose functions remain unknown, and which might provide a
deeper understanding of the pathogenesis of diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23168950/s1.
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