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Abstract

In the last 20 years yellow fever (YF) has seen dramatic changes to its incidence and geo-

graphic extent, with the largest outbreaks in South America since 1940 occurring in the pre-

viously unaffected South-East Atlantic coast of Brazil in 2016–2019. While habitat

fragmentation and land-cover have previously been implicated in zoonotic disease, their

role in YF has not yet been examined. We examined the extent to which vegetation, land-

cover, climate and host population predicted the numbers of months a location reported YF

per year and by each month over the time-period. Two sets of models were assessed, one

looking at interannual differences over the study period (2003–2016), and a seasonal model

looking at intra-annual differences by month, averaging over the years of the study period.

Each was fit using hierarchical negative-binomial regression in an exhaustive model fitting

process. Within each set, the best performing models, as measured by the Akaike Informa-

tion Criterion (AIC), were combined to create ensemble models to describe interannual and

seasonal variation in YF. The models reproduced the spatiotemporal heterogeneities in YF

transmission with coefficient of determination (R2) values of 0.43 (95% CI 0.41–0.45) for the

interannual model and 0.66 (95% CI 0.64–0.67) for the seasonal model. For the interannual

model, EVI, land-cover and vegetation heterogeneity were the primary contributors to the

variance explained by the model, and for the seasonal model, EVI, day temperature and

rainfall amplitude. Our models explain much of the spatiotemporal variation in YF in South

America, both seasonally and across the period 2003–2016. Vegetation type (EVI), hetero-

geneity in vegetation (perhaps a proxy for habitat fragmentation) and land cover explain

much of the trends in YF transmission seen. These findings may help understand the recent

expansions of the YF endemic zone, as well as to the highly seasonal nature of YF.

Author summary

Yellow fever (YF) is a viral haemorrhagic fever found in tropical South America and

Africa that affects both humans and non-human primates (NHPs). Despite a long-stand-

ing recognition of YF as a pathogen of significant public health concern, not much is

known about why cases are reported in some years and not others, or what drives the

strong seasonal trends that are observed in South America.
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Using a combination of statistical techniques, the authors have looked at the relation-

ship between different types of land-use, vegetation, climate, human and NHP and the

reporting of YF across all of South America and both inter-annual and seasonally over the

period 2003–2016. The authors have found that both are highly influenced by changes in

vegetation, however the inter-annual is additional influenced by land-cover and the sea-

sonal climatic factors.

The authors have found that the differing drivers of seasonal and inter-annual trans-

mission, though both are predominantly shaped by changes in vegetation, highlighting

the role of land-cover in influencing the inter-annual and climate the seasonal.

This research enhances our understanding of YF transmission in South America,

describing the geographic and temporal distribution of cases in relation to vegetation,

land-cover and climate. This research is of particular importance, given the recent large-

scale outbreaks of YF across the continent, global YF vaccination shortages and the expor-

tation of cases globally.

Introduction

Disease transmission is influenced by both intra- and interannual variations in weather and

the environment, particularly for vector-borne pathogens [1–3]. These deviations may be rela-

tively short in duration, due to seasonal changes in weather [2] or phenomena such as El Niño

[4], or they may represent a more persistent change, due to climate change [5] or alterations to

land-cover [6]. While climate change is likely to alter both the distribution and intensity of a

number of diseases [7–9], this process takes place over a substantially longer period of time

than anthropogenic land conversion which can completely change large swathes of natural

habitat in a few years [10,11]. Rapid habitat change is often associated with disease occurrence

[12], especially of zoonotic infections [13], potentially due to an increased interaction between

sylvatic reservoirs and humans, expressly at intermediate levels of transformation [14].

Yellow fever (YF) is a zoonotic disease caused by the yellow fever virus (YFV), a flaviviridae

arbovirus infecting both humans and non-human primates (NHPs) [15]. Originating in

Africa, YF spread to South America with the slave trade [16] and is currently endemic in 34

countries in Africa and 13 in South America [17]. In South America, YFV transmission occurs

in two cycles, the sylvatic and urban. In the former, transmission is maintained by sylvatic

mosquito species of the Haemogogus and Sabethes genera between NHPs, with humans con-

sidered incidental hosts. If the virus establishes itself in the domestic Aedes aegypti, also a vec-

tor of both dengue and Zika viruses, transmission can be sustained in the absence of a NHP

reservoir. This can cause large and explosive outbreaks, the latest being the 2015–2016 out-

break in Angola and the Democratic Republic of the Congo, the largest in the past 30 years

[18].

In South America the sylvatic cycle has accounted for almost all cases since 1942 [19], and

has historically been confined to Amazonian regions. However, over the past 20 years the area

where YF is endemic in NHPs has seen rapid geographic expansion. In Brazil this has resulted

in 5 reassessments of the zone of YF endemicity since 2000, with the latest update in 2018

including the entire country [20,21]. The reasons for this expansion are unknown. Further-

more, outbreaks in Brazil’s South-East Atlantic forest in 2016–2017 and 2017–2018 have been

the largest ever recorded in the country, in humans and NHPs, with cases reported in states

that have never previously recorded YF [22]. While there is no evidence of urban transmission

in these outbreaks, confirmed human and NHP cases in the vicinity of Brazil’s largest cities–

areas with high Aedes aegypti density–is a cause for concern [23,24]. In addition to a lack of
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understanding of these interannual drivers of transmission, there is a general dearth of under-

standing of the seasonality of YF. Despite the seasonality of YF having long been well estab-

lished [25,26], there has been little research on quantifying the associated environmental and

climatic drivers of seasonality in South America

We investigated the drivers of YF transmission both intra and interannually, using tempo-

rally varying covariates related to climate, land-cover, vegetation and human and NHP demo-

graphics. Covariates related to these were selected based on their previously demonstrated

roles in vector-biology, increased suitability for disease transmission or relationships with YF

[27–30]. In particular, we examined the role of vegetation cover and its heterogeneity/frag-

mentation. While the influence of habitat fragmentation in YFV transmission has previously

been postulated [14,31,32], detailed research into the role habitat fragmentation and land-

cover play in YFV sylvatic spillover is absent.

By utilising two model structures, we investigated the differential drivers of seasonal, and

interannual variation in YF incidence. These models were fit to the number of months report-

ing YF at each administrative level 1 geographic unit (for example, the province or state),

using exhaustive model fitting in hierarchical negative-binomial regressions. The best per-

forming models, as defined by the Akaike Information Criterion (AIC) were weighted and

combined using Akaike weights to produce an ensemble model [33]. Model robustness was

confirmed using spatial block bootstrapping.

Materials and methods

YF data

Reports of YF cases in humans were assembled from various sources, including the Weekly

Epidemiological Record [34], Disease Outbreak News [35], and the Pan American Health

Organization [36] for the period 2003–2016. Only reports where the month of symptom onset

was recorded were included (823 of the original 1073 reports), and these were geo-located to

the first sub-national administrative level, here termed province.

Two datasets were derived from our report database. For each, we classified each month

(over the 14 years of the data) for each province as a report month if one or more YF cases had

onset dates in that month. This resulted in 397 report months over 165 unique provinces. For

the interannual analysis, numbers of report months were summed within each year for each

province–giving a dataset of the number of report months for each province for each of the 14

years considered. For the seasonal dataset, numbers of report months were summed over years

for each province and each of the 12 months of the calendar year.

The inter-annual dataset, which uses the calendar year is a simplification of long term

(multi-year) transmission patterns. Disease transmission likely does not confirm fully to these

demarcations of years, and so may not be fully captured by our usage of the calendar year for

inter-annual transmission. However, in the absence of previously defined seasonal patterns for

each administrative location (which will likely change across the region of study) we have

defaulted to the current World Health Organization/Pan American Health Organization for-

mat which uses the simple calendar year [36].

Covariates

In total, 19 covariates were considered (Table 1). These were selected based on knowledge of

the biology and distributions of vector species, host dynamics, inferences from the role of

land-cover change and vegetation heterogeneity and the epidemiology of yellow fever in South

America [2,30,37,38]. For the temporally changing covariates in the seasonal model, the values

of the first year were subtracted from the final year of study (2003 and 2016 respectively), for
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Table 1. Table of classification types and the covariates included.

Covariate Classification Temporal

resolution

Contributing

covariate types

Description Reference

Monkey species (count) Host population Static The number of monkey species (41)

Logarithm of human population Host population Static The logarithm of human population (39)

Change in logarithm of human

population

Static The change in the logarithm of human

population from 2003 to 2016

Enhanced Vegetation Index

(EVI) (0–1)

Vegetation Annual/

monthly

A vegetation index designed to improve

sensitivity in high biomass regions

(43)

EVI amplitude Vegetation Annual/

monthly

The amplitude of the EVI

Day temperature (˚C) Climate Annual/

monthly

The day temperature (42)

Day temperature amplitude (˚C) Climate Annual/

monthly

The amplitude of the day temperature

Rainfall Climate Annual/

monthly

The rainfall (44)

Rainfall amplitude Climate Annual/

monthly

The amplitude of the rainfall

Forest cover Land-cover Annual MCD12Q1 –Value 1 The proportion of the administrative unit

covered by Evergreen Needleleaf forest

(43)

Annual MCD12Q1 –Value 2 The proportion of the administrative unit

covered by Evergreen Broadleaf forest

Annual MCD12Q1 –Value 3 The proportion of the administrative unit

covered by Deciduous Needleleaf forest

Annual MCD12Q1 –Value 4 The proportion of the administrative unit

covered by Deciduous Broadleaf forest

Annual MCD12Q1 –Value 5 The proportion of the administrative unit

covered by Mixed forest

Savanna cover Land-cover Annual MCD12Q1 –Value 8 The proportion of the administrative unit

covered by Woody savanna

Annual MCD12Q1 –Value 9 The proportion of the administrative unit

covered by Savanna

Cropland/natural vegetation

mosaic cover

Land-cover Annual MCD12Q1 –Value

14

The proportion of the administrative unit

covered by cropland/natural vegetation mosaic

Urban cover Land-cover Annual MCD12Q1 –Value

13

The proportion of the administrative unit

covered by urban areas

Cropland cover Land-cover Annual MCD12Q1 –Value

12

The proportion of the administrative unit

covered by cropland

Forest cover temporal change Land-cover change Annual Interannual model: The current year landcover–

previous year landcover value

Seasonal model: The final year (2016)–the first

year (2003) landcover value

Savanna cover temporal change Land-cover temporal

change

Annual

Natural vegetation/cropland

mosaic cover temporal change

Land-cover temporal

change

Annual

Urban cover temporal change Land-cover temporal

change

Annual

Cropland cover temporal change Land-cover temporal

change

Annual

Vegetation heterogeneity Vegetation heterogeneity Annual/

monthly

This is the standard deviation of the EVI at a

1x1km resolution within the administrative unit

Vegetation heterogeneity

temporal change

Vegetation heterogeneity

temporal change

Annual/

monthly

Interannual model: The current year landcover–

previous year vegetation heterogeneity value

Seasonal model: The final year (2016)–the first

year (2003) vegetation heterogeneity

https://doi.org/10.1371/journal.pntd.0008974.t001
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the interannual covariates, we subtracted the value of the one year from the next year (i.e. 2003

land cover– 2002 land cover produced the 2003 land cover temporal change).

Covariates were standardised to facilitate comparison through the following formula,

z ¼
x � m
s

;

where z, is the standardised value, x, the pre-standardised value, μ, the mean of the pre-stan-

dardised values and σ, the standard deviation of the values. Standardised coefficient values for

the ensemble models of the interannual and seasonal models are found in Table 1.

The variable importance refers to how a measurement score decreases when a feature is not

available. Initially the full model with the initial dataset is fit, and the R2 value calculated. Then

the model is refit to a modified initial dataset, where the variable of interest within the dataset

been assigned the mean value of that covariate. This is done to produce “dummy data” which

creates a covariate that does not provide any useful information. The R2 is then calculated

from this refit, and the variable importance for variable, i, calculated through,

variable importancei ¼ 1 �
refit R2i

original R2i
:

This provides a measure of the feature importance with respect to the original R2.

Host population data

Country and year specific human population sizes were obtained from the UN World Popula-

tion Prospects [39] and averaged over the study period to obtain average population sizes.

Province level estimates of population were obtained by disaggregating this data by using

LandScan 2015 [40] population estimates with a 1/120 degree resolution to calculate the pro-

portion of the national population within each province. The mean logarithm of human popu-

lation over the time-period was used in all seasonal and interannual models. In addition, the

relative change in the human population over the 14-year time period was also tested as a

covariate (defined as logarithm(population in 2016/population in 2003).

Information on NHP species distribution was obtained through distribution maps of mam-

mals in the western hemisphere [41]. These data were available as demarcations of distribu-

tion, which was geo-located to the province level. This was used to calculate the number of

NHP species present in each province.

Climate, vegetation and vegetation heterogeneity data

Datasets, 2003–2016, for temperature [42], enhanced vegetation index (EVI) [43] and rainfall

[44] were aggregated to the administrative unit 1 level from their original resolutions (of

between 1/120 and 1/12 degree) by calculating population-weighted means, based on the pop-

ulation distribution provided by LandScan 2015 [40]. Here the climate and vegetation data is

weighted by the population present, provided by LandScan 2015, and aggregated up to the

administrative unit level, this weighting is used to provide climate/vegetation data that is rep-

resentative of human interaction. The amplitude of the annual cycle Fourier component of

these variables was also calculated, to account for the impact of seasonal variation on reports.

Spatial heterogeneity in vegetation was assessed by evaluating the standard deviation of the

enhanced vegetation index (EVI) at its original 1/120 degree resolution within an administra-

tive unit.

These covariates were averaged over time using different methods for the interannual and

seasonal model datasets. For the seasonal dataset, monthly covariates were provided by taking
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the mean covariate value in a month across all years 2003–2016 to provide the monthly average

over this time-period. For the inter-annual dataset, the mean value of the covariate in a year

was used.

Land-cover data

Land-cover was provided by the MODIS dataset [45], which characterises the dominant land-

cover type, 1 of 17, at a grid resolution of 0.8333˚ globally. This information was aggregated to

the province level and the proportion of the province area occupied by each land-cover type

calculated. Forest, savanna and shrub land types were summed to provide overall forest and

savanna cover. For the seasonal model, the mean land-cover proportions for an administrative

unit across the study period (2003–2016) were used. For the inter-annual dataset, land-cover

was provided for each year. The inter-annual dataset is included with this submission as S1

Data and the seasonal dataset as S2 Data.

Regression models

Following initial covariate exploration, a list of covariates identified as relevant to YFV trans-

mission were considered, with log of human population and the fractional change in logarithm

human populations included in every model. By considering an exhaustive combination of all

19 covariates, we had 524,288 model structures for the interannual and seasonal frameworks,

for a total of 1,048,576 models.

These were fit to either the number of months reporting yellow fever each year (interannual

model) or the sum across years of the number of yellow fever reports in each calendar month

(seasonal model) using hierarchical negative binomial regression models [46]. A negative

binomial model was used due to its appropriateness for measuring count data, and it’s suitabil-

ity for considering the overdispersion of the data.

Conceptually, hierarchical models are similar to running a standard regression where each

row in the dataset refers to an administrative location and a time point (month or year

depending on the model structure). By utilising a hierarchical structure however, we can allow

parameters to vary between administrative location to avoid introducing biases that arise from

treating temporally varying covariates within a location as independent [47]. Here we allow

the intercept to vary by administrative location to account for this. These models are shown

through the following equations [48,49],

YijEi � PoissonðEiÞ

Ei ¼ mi

lnðmiÞ ¼ b0 þ b1Xi þ b1Xi þ � � � bmXmi þ εi

Ei � Gammaðli;KiÞ

Where Yi is the report months of YF in a province, and Xi the explanatory covariates and ei,
represents the random intercept as defined by the province. Ei, λi and Ki are the distribution

parameters where Ei has a Gamma distribution with parameter λi and Ki with the negative

binomial distribution, the mean and variance are

EðYiÞ ¼ mi
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Var Yið Þ ¼ mi þ
m2
i

Ki
:

Models were then ranked base on their Akaike Information Criterion (AIC) and those with

an AIC within 3 of the best performing model, as defined as the model with the lowest AIC

value, were combined using Akaike weights [33]. To do so, the relative differences in AIC are

calculated by,

Δi = AICi−min(AIC) and this is used to obtain an estimated relative likelihood of model, i,
in proportion to the other models, k = 1 . . .K, included through,

wi ¼
exp � 1

2
Di

� �

PK
k¼1
exp � 1

2
Dk

� � :

The product of each of these model specific weights, wi, and their corresponding model spe-

cific predicted values, pi, are summed to generate a single set of weighted predictions, pA,

pA ¼
XK

k¼1

wkpk:

Out-of-sample performance was ascertained using a stringent method of cross-validation

called spatial block bootstrapping (See S1 Text and S3 Fig).

Results

Geographical, seasonal and interannual heterogeneities in YF reports

We identified 397 unique months with a report of YF, hereby termed report months

(defined spatiotemporally by the administrative unit and month), for the period 2003–2016,

in 432 level 1 administrative units across 8 countries (Fig 1). Peru, Colombia and Brazil

accounted for 79% of all report months, with Peru alone accounting for 39% (Figs 1A and

2). Within countries, report months show substantial spatial heterogeneity, with a notable

clustering in Amazonian regions of Brazil, eastern Peru and Northern Bolivia. States in the

South-East Atlantic coast of Brazil have also recorded large numbers of report months

(Fig 1B) (21).

The frequency of report months was relatively stable and high during 2003–2008, after

which numbers fell, then plateaued until 2015, when they dipped to the lowest level seen with

only 1 reported event (Fig 1A). It should be emphasised that report months are a presence/

absence indicator and not a proxy for infection incidence. Throughout the endemic zone, YF

follows highly seasonal patterns. At the continent scale, transmission is highest from Decem-

ber to February, before dropping to a relatively low level over June to September, and a period

of minimal occurrence in October and November (Fig 2). However, this pattern varies slightly

by country and latitude (see S2 Text).

Geographic distributions of model predictions

In total 46 inter-annual and 246 seasonal models had AIC values within 3 of the best (lowest

AIC) performing model and so were included in ensemble models.

The ensemble interannual and seasonal models accurately approximate spatiotemporal het-

erogeneities in YF reports, with coefficient of determination (R2) values of 0.43 (95% CI 0.41–

0.45) for the interannual and 0.66 (95% CI 0.64–0.67) for the seasonal ensemble predictions.
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Due to the additional rigour of using spatial block bootstrapping compared with using an

entirely random validation set (See SI), out-of-sample prediction R2 values were lower at 0.31

(95% CI 0.28–0.34) for the interannual model and 0.45 (95% CI 0.44–0.48) for the seasonal

model.

Model predictions were summed over time for each model to facilitate visual comparison

with the data (Fig 3A and 3B vs Fig 1B). Both models reproduce the observed geographic dis-

tributions of reports well, though the aggregate ensemble seasonal model predictions give a

better fit to the data (Fig 3). Differences between the ensemble interannual model predictions

and the data range from -4.35 to +3.08. The model over-predicts reports for much of Eastern

Peru and the North-West of Brazil, and predicts fewer reports than observed for Rio Grande

do Sul in Brazil, and Misiones province in Argentina. There is additionally a cluster of lower

than observed predictions on the Colombian/Venezuelan border. Ensemble seasonal model

predictions showed deviations from the data an order of magnitude smaller than seen for the

interannual model. The seasonal model slightly underpredicts YF reports, with only Brazilian

states in the Amazon, Rio de Janeiro, and the East/North-East of the country predicted as hav-

ing more reports than observed.

Fig 1. (A) Number of yellow fever report months over time (2003–2016) by country. (B) Total number of yellow fever reports by province (2003–2016) across South

America. Figs were produced using the programming language R version 3.5.1 and used publicly available data gathered from the Weekly Epidemiological Record

published by the WHO [34].

https://doi.org/10.1371/journal.pntd.0008974.g001
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Temporal distributions of model predictions

In addition to representing geographic variation, the models also consider temporal heterogeneity

in YF incidence (Fig 4). The interannual model and the seasonal model fit temporal trends with

the in-sample R2 values of 0.43 (95% CI 0.41–0.45) and 0.66 (95% CI 0.64–0.67) respectively.

At the continent level, the inter-annual and seasonal model replicate the trends, but not the

overall magnitude of temporal variation in report months. In the Inter-annual model, report

months are underpredicted until 2009, after which they are slightly over-predicted. In the sea-

sonal model, the model underestimates the data until the 5th month, then over-predicts later

months (Fig 4A and 4B). The accuracy of the models at the country level varies (see SI). When

years and months are ranked by the number of report months, there is a high degree of con-

cordance between predictions and the data. This is shown in the high Pearson correlation coef-

ficient values between the predicted and actual rank of years and months, at 0.926 for the

interannual model, and 0.873 for the seasonal model (Fig 4C and 4D).

Drivers of seasonal, annual and long-term yellow fever transmission

The interannual and seasonal ensemble models showed both similarities and differences in the

predictors found to be most significant (Table 2). For both, the covariate grouping relating to

host demographics were the most important, with log of human population explaining the

most variance in both model sets. The number of NHP species present also had a smaller but

significant contribution for each. Both demographic predictors were positively associated with

Fig 2. Yellow fever reports by country and month. The heatmap shows the proportion of reports in a country by calendar month, the bar chart on the left-hand side

shows the total number of reports by country and the bar chart above shows the total number of months reporting cases by month. Countries are ordered by latitude.

https://doi.org/10.1371/journal.pntd.0008974.g002
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YF reports. The Enhanced Vegetation Index (EVI) was the second most important predictor

for both models, again positively associated with YF reports. Other predictors differed between

models, likely reflecting that the interannual model selected predictors best able to reflect

long-term trends in YF reports, while the seasonal model selected those able to reproduce

intra-annual seasonal patterns.

For the interannual model, landcover (cropland and savannah being negatively associated

with YF) and vegetation heterogeneity (the standard deviation of EVI) were the next most

Fig 3. Ensemble model predictions of the number of YF report months for the (A) interannual model and the (B) seasonal model. (C) and (D) show the differences

between these predictions and the data for the interannual model and the seasonal model, respectively. Figs were produced using the programming language R

version 3.5.1 and the data was generated by the authors.

https://doi.org/10.1371/journal.pntd.0008974.g003
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important predictor groupings. Temporal changes between the current and previous year in

vegetation and land-cover were significant predictors but made relatively small contributions

to model fit. No climate coefficients were significant in the interannual model.

For the seasonal model, mean monthly day temperature and mean monthly rainfall ampli-

tude (see Materials and Methods for definitions) were the other significant predictors, both

negatively associated with YF reports.

Significant covariates were found in all (or almost) of the best performing models, with all

covariate groupings found in interannual models except climate, and in the seasonal models

only climate, vegetation and host demographics were found in the best performing models.

Variable importance was highest in the EVI for both inter-annual and seasonal models, with

the vegetation heterogeneity of a similar level of importance in the inter-annual model, and

the number of NHP species and logarithm of human population slightly, but still important in

the seasonal model. Despite the significance of the mean day temperature in the seasonal

model, it was found to have an almost negligible variable importance–indicating it did not par-

ticularly contribute to predictive accuracy.

Fig 4. Summed ensemble model predictions (points) for (A) each year for the interannual model (A), and for each month for the seasonal model (B),

contrast against the actual summed report months (lines) for each year or month. Yearly (C) and monthly (D) predictions ranked against the actual

report months for the interannual and seasonal models, respectively (lines show predicted = actual).

https://doi.org/10.1371/journal.pntd.0008974.g004
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Discussion

In this study we have described the geographic, seasonal and interannual trends in YF reports

in Latin America from 2003–2016, using publicly available data. We used hierarchical negative

binomial regression models to create ensemble models predicting interannual and seasonal

variation in YF transmission with a series of climatic, land-cover, vegetation and host demo-

graphic covariates. Our models explained a substantial amount of the observed variation, with

R2 values of 0.43 (95% CI 0.41–0.45) for the interannual and 0.66 (95% CI 0.64–0.67) for the

seasonal model.

The geographic distribution of reports highlights “hotspots” for YF transmission, in Eastern

Peru, North Western Peru and South Eastern Brazil (Fig 1B). The seasonal model reproduced

these geographic trends more accurately than the interannual model. Continental-level inter-

annual and seasonal trends in the data were also well-reproduced by the respective models,

though both models captured geographic variation (e.g. at the country level) in these temporal

trends less well (Figs 4 and S1 and S2)–albeit numbers of report months were often low when

stratified by country. While at this level, the magnitude of temporal trends in report months

are not fully captured, the relative ranking of years is and therefore model results can shed

some light on what is associated with increased, or decreased, YF reporting in particular years

and months.

While differing covariates are important for driving interannual and seasonal changes in

YF transmission, vegetation (EVI) is highly influential for both models. This has been previ-

ously highlighted as a predictor of seasonal YF transmission [2], and potentially acts as a proxy

for the interaction of rainfall and temperature, both important for arboviral transmission,

while also taking into account a more complex interaction than is captured by either covariate

alone. The potential additional complexity is highlighted through the absence of substantial

correlations between either covariate and EVI. In both the interannual and the seasonal mod-

els, the log of human population was the most important predictor. This is not unexpected–

larger populations give more opportunity for spillover, and since a report month is a month

where one or more human YF cases are reported, larger populations are more likely to accu-

mulate 1 or more cases in any one month even with a spatially invariant per-capita risk of YF.

Table 2. Table of the permutation importance of different covariate groups, and individual covariates as well as standardised coefficient values. Only covariates

that were significant in at least one of the model sets are shown. (A) Refers to the inter-annual model, and (B) the seasonal model.

Covariate groupings % of

models

covariate

group

found in

Covariate % of

models

covariate

found in

Variable

importance

Coefficient values

A B A B A B A B

Climate 0 100 Mean day temperature 0 99.5 0 0.01 -2.71 (95% CI: -5.1 - -0.33)

Mean rainfall amplitude 0 100 0 0.25 -0.35 (95% CI: -0.64 - -0.06)

Vegetation 100 100 EVI 100 100 0.82 0.84 6.42 (95% CI: 3.09–9.76) 6.21 (95% CI: 3.89–8.53)

EVI amplitude 100 0 0.19 0 1.17 (95% CI: 0.33–2.01)

Vegetation heterogeneity 100 0 Vegetation heterogeneity 100 0 0.79 0 3.34 (95% CI: 1.77–4.92)

Vegetation heterogeneity

temporal change

100 0 Vegetation heterogeneity

temporal change

100 0 0.14 0 -0.39 (95% CI: -0.6 - -0.17)

Land-cover 100 0 Cropland cover 100 0 0.21 0 -2.47 (95% CI: -4.27 - -0.66)

Savanna cover 100 0 0.5 0 -2.27 (95% CI: -3.73 - -0.8)

Land-cover temporal change 100 0 Savanna cover temporal change 100 0 0 0 0.32 (95% CI: 0.1–0.54)

Host demographics 100 100 Number of NHP species 100 100 0.48 0.74 1.34 (95% CI: 0.75–1.92) 1.68 (95% CI: 0.9–2.47)

Log of human population 100 100 0.24 0.66 6.89 (95% CI: 0.62–13.16) 13.65 (95% CI: 5.19–22.11)

https://doi.org/10.1371/journal.pntd.0008974.t002
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While there is no detected relationship between EVI and population at this spatial and tempo-

ral timescale, there is potentially an interaction of population and EVI, with anthropogenic

pressures having long-term consequences for the EVI. However, at this spatial and temporal

scale these changes in relation to YFV transmission are hard to disentangle.

For the interannual model, landcover and heterogeneity in vegetation were also influential

covariates in explaining interannual variation in YF reports. While cropland and savanna

cover are negatively associated with YF reports, vegetation heterogeneity is positively associ-

ated. The heterogeneity covariate we adopted maybe acting as a proxy for habitat fragmenta-

tion. Fragmentation may affect sylvatic hosts in a number of ways, such as increasing their

exposure to human contacts via modified behaviours [50,51] or increased susceptibility to

infection due to a stress-weakened immune system [52]. Furthermore, vegetation heterogene-

ity may alter vector dynamics and predispose greater rates of spillover either through increased

human-sylvatic cycle contact or favouring of more anthropophilic vector species in frag-

mented habitats [53]. These effects have previously been suggested to affect zoonotic disease

transmission, but until now had not been statistically implicated in YF emergence [14,31].

While we have explained a substantial proportion of the seasonal and inter-annual variation

in YF reporting across South America (2003–2016) (Interannual model: 0.43 (95% CI 0.41–

0.45), seasonal model: 0.66 (95% CI 0.64–0.67)), this still means that, respectively, 67% and

34% of this variation is unexplained. This, in part, may be due to the spatial resolution at

which the study was carried out. Due to data limitations in the reporting of YF cases, we may

not have fully captured the relationship between climate and environment with YF spill over at

the local or individual level. This may explain why some covariates that may be expected to be

associated with increased spillover, such as forest cover and change in forest cover, have not

been found to be significant. Furthermore, these covariate changes may actually occur, and

remain, over several years. By solely investigating year to year variation in the inter-annual

model, we may not be accurately capturing the importance of these covariates by failing to

find significant effects to what may be a significant relationship. Additionally, the usage of the

calendar year, rather than a disease specific “transmission” based description of the year may

lead to us to unable to find these associations of covariates with transmission. To account for

this, future modelling work should take place at a higher spatial resolution and considering the

role of multi-year variation in covariates, though the trade-off between the availability and

quality of data with a potentially furthered understanding should be thoroughly explored.

While climatic and landcover fluctuations both inter- and intra-annually lead to changes

that can lead to increased disease transmission, they do not represent the whole picture of spill-

over. In order for YF to enter human populations it has to be both circulating within the NHP

reservoir, and there has to be human exposure to the sylvatic cycle. Across South America

(2000–2014), 60% of human cases of YF were in people employed in farming, hunting or fish-

ing–highly seasonal activities [36]. This changing risk of exposure is likely to account for a pro-

portion of the temporal and spatial reporting of YF. In order to better capture these

relationships with YF spillover into human populations across South America, future model-

ling exercises should endeavour to capture both the underlying suitability to disease transmis-

sion, and these correlates and determinants of exposure.

This analysis uses 397 months of YF report months, where we only included publicly avail-

able case reports [34,36] which had a confirmed onset date and which could be geolocated to

at least the province level. Due to missing data, 23% of case reports were excluded from our

analysis. In addition, due to the remote locations that sylvatic YF is often found in and the

non-specific symptoms many cases show, it is likely that substantial numbers of YF cases are

never recorded [15,54]. Underreporting in rural areas may lead us to underestimate YF risk in

those locations. However, surveillance and data quality issues affect estimation of absolute case
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incidence, report months (presence/absence of cases in a specific administrative unit in a par-

ticular month) is likely to be more robust to under-ascertainment, as it only takes one reported

case to be classified as YF positive. We are unable to identify whether the predictors of YF

transmission we have identified affect sylvatic transmission or human exposure, given we have

only analysed reports of human cases here. Data on NHP cases of YF across the continent are

limited however, and their omission is a permissible oversight given this.

While expansion of the endemic zone is occurring, increases in population-level vaccina-

tion coverage in the endemic zones, where the majority of transmission is predicted, has pre-

cluded much of the human population from infection. This is in contrast with areas outside of

this zone–where YF vaccination is either not usually necessary or not prioritised, and where

spillover is more likely given the available of susceptible humans. This may go some way to

explaining the decrease in report months over the time period (Fig 1).

In conclusion this body of work represents an important quantification of both the season-

ality and interannual transmission of YF across South America (2003–2016). By identifying

covariates, and their statistical relationship, with report months of YF, the work presented

here may be used to highlight areas that have an increased probability for transmission. This

may then allow for the targeting of surveillance in areas that have a higher risk of YF reporting,

based on their climate and environment, without currently reported cases. This application

could have substantial public health value, in a context where the geographic range of YF is

changing and vaccine stocks are still limited.
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S2 Fig. Seasonal model predictions for the 8 countries reporting YF over the study period
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