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Abstract: As non-invasive continuous blood pressure monitoring (NCBPM) has gained wide attraction
in the recent decades, many pulse arrival time (PAT) or pulse transit time (PTT) based blood pressure
(BP) estimation studies have been conducted. However, most of the studies have used small
homogeneous subject pools to generate models of BP based on particular interventions for induced
hemodynamic change. In this study, a large open biosignal database from a diverse group of 2309
surgical patients was analyzed to assess the efficacy of PAT, PTT, and confounding factors on the
estimation of BP. After pre-processing the dataset, a total of 6,777,308 data pairs of BP and temporal
features between electrocardiogram (ECG) and photoplethysmogram (PPG) were extracted and
analyzed. Correlation analysis revealed that PAT or PTT extracted from the intersecting-tangent
(IT) point of PPG showed the highest mean correlation to BP. The mean correlation between PAT
and systolic blood pressure (SBP) was −0.37 and the mean correlation between PAT and diastolic
blood pressure (DBP) was −0.30, outperforming the correlation between BP and PTT at −0.12 for SBP
and −0.11 for DBP. A linear model of BP with a simple calibration method using PAT as a predictor
was developed which satisfied international standards for automatic oscillometric BP monitors in
the case of DBP, however, SBP could not be predicted to a satisfactory level due to higher errors.
Furthermore, multivariate regression analyses showed that many confounding factors considered in
previous studies had inconsistent effects on the degree of correlation between PAT and BP.

Keywords: blood pressure monitoring; pulse arrival time; pulse transit time; pulse wave velocity;
biosignal database; ubiquitous healthcare; hypertension; cardiovascular monitoring

1. Introduction

According to the World Health Organization (WHO) cardiovascular diseases (CVD) are the
leading causes of mortality around the globe, representing a heavy socioeconomic burden for the
affected individuals [1]. Hypertension, or abnormally high blood pressure (BP), is the most important
risk factor for CVD and is often a therapeutic target for CVD patients [2–7]. Although hypertension
can be prevented through careful management of BP [8], there has been a lack of adequate devices for
the early diagnosis and prevention of hypertension.
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Recent studies have shown that a single discrete BP measurement at the clinic can be
misleading [8–10], and that methods which can observe changing patterns of BP, such as ambulatory
BP monitoring (ABPM), are required for the accurate diagnosis of hypertension [10–12]. However, the
periodic oscillometric operation of ABPM devices leads to a lowered quality of life for the users [13,14],
and due to this inconvenience, it is not optimal for non-invasive continuous BP monitoring (NCBPM).

In light of this need, multiple indirect approaches to BP estimation have been developed
throughout the last few decades, and pulse wave velocity (PWV) based methods have gained the
most interest [15–24]. Starting with Geddes et al. in 1981 [17], a wide range of studies using PWV and
related parameters have been published. PWV is defined as the velocity at which an arterial pulse
travels in an artery from a proximal point to a distal point and is often approximated using its surrogate
pulse transit time (PTT), which is the time delay for the pulse to travel between two different arterial
sites. Through the well-known arterial compliance modelling of BP [25,26], PTT is inversely related to
BP with a negative correlation to BP. The most commonly used method of BP estimation using this
concept involves the extraction of pulse arrival time (PAT) defined as the time delay from the R-peak of
the electrocardiogram (ECG) to a peak of the finger photoplethysmogram (PPG) [27]. However, many
alternative modalities of PAT or PTT measurement have been proposed, and the results vary as widely.

Though some studies promise PAT and/or PTT as the base for the future of BP
measurement [16,18,24,28–30], other studies show questionable results [31,32]. Furthermore, results
from long-term studies show decreasing accuracy [33], and the small sample size of the studies render
the results inconclusive. While a few studies have used diverse groups of subjects [34], most of
these studies only provide results based on small homogeneous subject pools with varying biosignal
measurement modalities, and these issues may account for the discrepancies between the study results.
Additionally, in order to obtain a wider range of BP, these studies often use certain types of interventions
to induce hemodynamic changes, but these interventions are not representative of the full range of
physiological causes that can result in a change in BP. Although it is difficult to argue against using
non-invasive interventions to obtain demonstrable results at an experiment level, this also raises
questions regarding the real world applicability of methods developed from such experiments.

Due to these limitations, researchers have turned to large biosignal databases for the development
and analysis of BP estimation models [35–39], with the most focus on the Physionet Medical Information
Mart for Intensive Care (MIMIC) database due to its large size and accessibility [40,41]. However,
these databases are often collected from multiple sources, which restricts analyzing the dataset as a
whole, since the variability in biosignal measurement modalities may cause time-domain inconsistencies
in parameter extraction. In a recent study, Liang et al. demonstrated that inter-waveform analyses using
MIMIC led to erroneous conclusions [42]. Therefore, to this day, it is unclear whether BP estimation
methods based on PAT or PTT can be applied to large subject pool with varying subject characteristics.

In this paper, a large open biosignal database of surgery patients is analyzed to address the
fundamental question regarding the applicability of PAT or PTT to BP estimation. The data used in
this study was not collected for any specific purpose, such as PAT based BP modelling, and is therefore
representative of real world situations in which PAT and PTT respond dynamically to BP depending on
the underlying hemodynamic mechanism. First, the database and the signal measurement modalities
are introduced and the method of biosignal feature extraction is described. Then, the analysis method
is presented in detail. Lastly, the results of the analysis are presented and discussed.

2. Methods

2.1. VitalDB Database

The data used in this study is a part of the VitalDB data bank, which is an open access public
dataset of intraoperative vital signs and biosignals collected by the Seoul National University Hospital
Department of Anesthesia using the Vital Recorder program [43]. The Vital Recorder program is a
free research tool for recording of time-synchronized physiological data from multiple intraoperative
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devices and patient monitors. The experimental setup for collecting waveform data of VitalDB is
shown in Figure 1. The collected VitalDB data includes raw waveforms of ABP, ECG, and PPG obtained
from a commercial patient monitor device (SOLAR 8000M, GE, Milwaukee, WI, USA) down-sampled
to 100Hz. The ECG waveform is measured using a standard lead II setup, ABP waveform is measured
from the radial artery, and PPG waveform is measured from the finger. All recordings are associated
with a subject ID, and each ID is matched with demographic data (e.g., age, gender, BMI, etc.), surgery
and anesthesia data (e.g., surgery type, operation, type of anesthetic used, etc.), and preoperative data
(e.g., the presence of hypertension, blood test hemoglobin measurement, etc.).
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Figure 1. Experimental setup of VitalDB data collection protocol. ECG, electrocardiogram; PPG,
photoplethysmogram; ABP, arterial blood pressure.

2.2. Data Selection

The VitalDB data bank contains biosignal recordings from a total of 6388 patients undergoing
various types of surgeries at the Seoul National University Hospital. Data loading, data selection, and
feature extraction were performed automatically using MATLAB (MATLAB 2018b; Mathworks, Natick,
MA, USA). The data used in this study were selected from the database following a certain set of
exclusion criteria shown in Figure 2. First, the recordings were checked for ECG, PPG, and ABP. Second,
recordings under 30 minutes were removed. Third, recordings were visually checked for saturation
and other distortions to remove corrupted portions of the recording or to remove the recording as a
whole. Fourth, recordings with an average heart rate below 40 BPM or above 200 BPM, as found using
the Pan-Tompkins algorithm [44], were removed. Lastly, recordings with a total number of analyzable
data under 100 cardiac cycles were removed following feature extraction. In total, 2309 recordings
were selected from a pool of 6388 recordings.



J. Clin. Med. 2019, 8, 1773 4 of 19

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 4 of 19 

 

 123 

Figure 2. Outline of the data exclusion process for the selection of usable data from the VitalDB data 124 
bank and data pre-processing. ECG, electrocardiogram; PPG, photoplethysmogram; ABP, arterial 125 
blood pressure; HR, heart rate; BPM, beats per minute; SBP, systolic blood pressure. 126 

2.3. Pre-Processing and Feature Extraction 127 
In order to verify that features such as PAT and PTT are valid markers of blood pressure, features 128 

and reference blood pressure values from ABP, ECG, and PPG waveforms were extracted for each 129 
recording. The detailed BP and feature extraction process is shown in Figure 3. First, the low 130 
frequency artefacts of ECG and PPG waveforms were removed using non-linear filtering [45]. Then, 131 
the Pan-Tompkins algorithm was used to detect ECG R-peaks, which were used to separate the 132 
waveform data into cardiac cycles for ensemble-averaging. In order to improve the signal-to-noise 133 
ratio (SNR) and to accentuate the waveform features, ABP and PPG waveforms between 10 134 
consecutive R-peaks were ensemble averaged to obtain the average waveforms of ABP and PPG. This 135 
process was repeated for the whole recording with a moving window width of one cardiac cycle. 136 

137 
Figure 3. Process of BP and feature extraction from ECG, PPG, and ABP waveforms. ECG, 138 
electrocardiogram; PPG, photoplethysmogram; ABP, arterial blood pressure. 139 

After ensemble averaging, the peaks and the valleys of the ABP were detected. For the PPG, the 140 
valleys, peaks, maximum derivatives (or the point of maximum slope), and intersecting-tangent (IT) 141 
points [46] (or the intersection between the tangent lines of the maximum derivative and the diastolic 142 
minimum) were detected (Figure 4). If the values for the all detected points in a given cardiac cycle 143 
were within pre-set time ranges (which were determined through analysis of the data set as a whole 144 

Figure 2. Outline of the data exclusion process for the selection of usable data from the VitalDB data
bank and data pre-processing. ECG, electrocardiogram; PPG, photoplethysmogram; ABP, arterial blood
pressure; HR, heart rate; BPM, beats per minute; SBP, systolic blood pressure.

2.3. Pre-Processing and Feature Extraction

In order to verify that features such as PAT and PTT are valid markers of blood pressure, features
and reference blood pressure values from ABP, ECG, and PPG waveforms were extracted for each
recording. The detailed BP and feature extraction process is shown in Figure 3. First, the low
frequency artefacts of ECG and PPG waveforms were removed using non-linear filtering [45]. Then,
the Pan-Tompkins algorithm was used to detect ECG R-peaks, which were used to separate the
waveform data into cardiac cycles for ensemble-averaging. In order to improve the signal-to-noise ratio
(SNR) and to accentuate the waveform features, ABP and PPG waveforms between 10 consecutive
R-peaks were ensemble averaged to obtain the average waveforms of ABP and PPG. This process was
repeated for the whole recording with a moving window width of one cardiac cycle.
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Figure 3. Process of BP and feature extraction from ECG, PPG, and ABP waveforms. ECG,
electrocardiogram; PPG, photoplethysmogram; ABP, arterial blood pressure.

After ensemble averaging, the peaks and the valleys of the ABP were detected. For the PPG,
the valleys, peaks, maximum derivatives (or the point of maximum slope), and intersecting-tangent
(IT) points [46] (or the intersection between the tangent lines of the maximum derivative and the
diastolic minimum) were detected (Figure 4). If the values for the all detected points in a given cardiac
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cycle were within pre-set time ranges (which were determined through analysis of the data set as a
whole and the physiological ranges for each point), features and reference BP values were reserved for
further analyses.
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Figure 4. BP and features labeled on ECG, PPG, and ABP waveforms. Among the four characteristic
points of PPG, only the IT point is labeled. SBP, systolic blood pressure; DBP, diastolic blood pressure;
ABP, arterial blood pressure; ECG, electrocardiogram; PPG, photoplethysmogram; PAT, pulse arrival
time; PTT, pulse transit time; IT, intersecting tangent; HR, heart rate; fs, sampling frequency; RR,
the interval between successive ECG R-peaks.

SBP and DBP were obtained as the values at the peak and the valley points of the ABP, mean
blood pressure (MBP) was calculated as the average value of one cardiac cycle of ABP waveform, and
pulse pressure (PP) was calculated as the difference between SBP and DBP. Time-based BP estimation
parameters were extracted from each cardiac cycle using the R-peak point of ECG, valley point of ABP,
and four feature points of PPG. PATABP was derived from the time difference between the ECG R-peak
and the valley point of ABP, PATPPG was derived from the time difference between the ECG R-peak
and one of the characteristic points of PPG, and PTT was derived from the time difference between the
valley point of ABP and one of the characteristic points of PPG. As four kinds of characteristic points
from the PPG waveform were used, four different PATPPG (PATPPG1, PATPPG2, PATPPG3, and PATPPG4)
and PTT (PTT1, PTT2, PTT3, and PTT4) values were extracted for each cardiac cycle (‘1’ corresponds to
the valley, ‘2’ corresponds to the peak, ‘3’ corresponds to the maximum derivative, and ‘4’ corresponds
to the IT points of PPG). The mean and the standard deviations of all PAT and PTT values are tabulated
in Supplementary Table S1.

Due to the saturations and noises present in the ABP and PPG waveforms, the features and the
reference BP values were tested against the following conditions:

• Is the extracted SBP greater than 50 mmHg and less than 250 mmHg?
• Is the extracted DBP greater than 30 mmHg and less than 160 mmHg?
• Is the extracted PP greater than 10 mmHg?
• Is the change in the extracted BP (SBP or DBP) during the previous 5 s interval less than 30 mmHg?
• Is the extracted PATABP greater than 70 ms and less than 250 ms?
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• Is the change in the extracted features (PAT or PTT) during the previous 5 s interval less than
300 ms?

If the above conditions were not met, the feature and BP values were excluded from further
analyses. The range of PATABP was determined by considering the normal range of the pre-ejection
period (PEP) and the normal range of PTT through the central arteries based on the results of previous
studies [27,47]. All features and BP values were then smoothed using a 20 s smoothing window. If the
number of remaining features and BP values for a given subject was less than 100, the recording was
excluded as shown in Figure 2. On average, 2935 cardiac cycles of data per subject were extracted.
The demographic and BP characteristics of the 2309 subjects are shown in Table 1.

Table 1. Demographic and BP characteristics of the data (N = 2309).

Characteristics Subjects (N = 2309)

Age (yrs) 58 ± 15 (range 5–92)
Gender (male) 1218 (53%)

Height (cm) 162 ± 9
Weight (kg) 61 ± 12
BMI (kg/m2) 23 ± 4

Hypertension 777 (34%)
Diabetes 262 (11%)

Arrhythmia 13 (1%)
# of features 2935 ± 2226

SBP
Mean value (mmHg) 116 ± 15
∆· value * (mmHg) 44 ± 23

DBP
Mean value (mmHg) 63 ± 10
∆· value * (mmHg) 26 ± 13

MBP
Mean value (mmHg) 82 ± 11
∆· value * (mmHg) 33 ± 17

PP
Mean value (mmHg) 54 ± 12
∆· value * (mmHg) 25 ± 14

BMI, body mass index; #, number; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood
pressure; PP, pulse pressure. * The difference between max and min values of each recordings.

2.4. Feature Analysis

In order to evaluate the capacity of the extracted time-based features to estimate BP, correlation
analysis was performed. The Pearson correlation coefficient was calculated between each feature and
BP as followed:

ρ(X, Y) =
E[(X − µX)(Y − µY)]

σXσY
(1)

where σX and σY are the standard deviations of X and Y, µX and µY are the means of X and Y, and E is
the expected value. The correlation coefficients between four reference BP values (i.e., SBP, DBP, MBP,
and PP) and nine time-domain features (i.e., PATABP, four PATPPGs, and four PTTs) for each subject
data were obtained. The mean and the standard deviation values for the correlation coefficients were
analyzed to determine the feature most associated with BP.

After correlation analysis, PATPPG4 was used as a prediction parameter for BP (DBP, SBP) linear
model using a total of 6,777,308 data pairs from 2309 subjects as followed:

BP = α1·PATPPG4 + α0 (2)
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In order to calibrate the equation to each subject, the mean value of BP was subtracted from the
BP values and the mean value of PAT was subtracted from the PAT values in a given recording prior to
linear modelling. Then, the mean BP was added back to the zero-mean BP estimate output for each
subject as α0 in the above equation.

To evaluate the performance of the BP linear model, the Pearson correlation coefficients between
reference BP and BP estimates from each recording were calculated. Furthermore, to evaluate the
models against the Association for the Advancement of Medical Instrumentation (AAMI) standards [48],
the difference between the reference BP value and the estimated BP value was used to calculate mean
error (ME) and standard deviation of the error (SDE) for each recording. To evaluate the efficacy of the
model against the British Hypertension Society (BHS) BP monitor standards [49], the cumulative error
percentages within 5, 10, and 15 mmHg were calculated. Lastly, the mean absolute difference (MAD)
between the estimated BP and the reference BP was calculated for all subjects to validate the method
against the IEEE Standard for Wearable Cuff-less BP Monitoring Devices (IEEE Standard 1708) [50].
The definitions of ME, SDE, and MAD are as followed:

ME =

∑n
i=1(pi − yi)

n
(3)

SDE =

√∑n
i=1[(pi − yi) −ME]2

n− 1
(4)

MAD =

∑n
i=1

∣∣∣pi − yi
∣∣∣

n
(5)

where pi is the estimated BP value, yi denotes the reference BP value, and n is the data size.

3. Results

The mean and standard deviation of the Pearson correlation coefficients between the four BP
values (i.e., SBP, DBP, MBP, and PP) and the nine time-based features (i.e., PATABP, four PATPPGs, and
four PTTs) are shown in Table 2. Among the features, PATABP showed the highest mean correlation to
BP with -0.46 for SBP, −0.35 for DBP, −0.42 for MBP, and −0.50 for PP. Among the four PATs derived
between ECG and PPG, PATPPG4 showed the highest mean correlation to BP with −0.37 for SBP, −0.30
for DBP, −0.34 for MBP, and −0.39 for PP. In the case of PTT, PTT4 showed the highest mean correlation
to BP, but showed very weak mean correlation with −0.12 for SBP, −0.11 for DBP, −0.12 for MBP, and
−0.11 for PP. The box plots of the correlation coefficients between four BP values and three features
(PATABP, PATPPG4, and PTT4) are shown in Figure 5.
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Table 2. Correlation analysis result of the data (N = 2309).

PATABP PATPPG1 PATPPG2 PATPPG3 PATPPG4 PTT1 PTT2 PTT3 PTT4

SBP −0.46 ± 0.35 −0.22 ± 0.40 −0.24 ± 0.43 −0.35 ± 0.36 −0.37 ± 0.37 −0.04 ± 0.39 −0.01 ± 0.41 −0.11 ± 0.36 −0.12±0.37
DBP −0.35 ± 0.38 −0.18 ± 0.40 −0.19 ± 0.42 −0.28 ± 0.37 −0.30 ± 0.38 −0.05 ± 0.38 −0.01 ± 0.40 −0.10 ± 0.36 −0.11±0.37
MBP −0.42 ± 0.36 −0.21 ± 0.40 −0.21 ± 0.43 −0.32 ± 0.37 −0.34 ± 0.38 −0.05 ± 0.39 −0.01 ± 0.40 −0.11 ± 0.36 −0.12±0.37
PP −0.50 ± 0.34 −0.23 ± 0.39 −0.25 ± 0.42 −0.36 ± 0.35 −0.39 ± 0.37 −0.04 ± 0.38 −0.01 ± 0.40 −0.11 ± 0.35 −0.11±0.36

PAT, pulse arrival time; PTT, pulse transit time; ABP, arterial blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; PP, pulse pressure.
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The distribution of the correlation coefficients between DBP, SBP, and PATPPG4 are shown in
Figure 6. For SBP, highest correlation values observed from the top 33% of the subjects are between −1
and −0.59, moderate correlation values observed from the middle 33% of subjects are between −0.59
and −0.27, and the lowest correlation values observed from the last 33% of subjects are between −0.27
and +1. Similar trends are seen with the correlation coefficient between DBP and PATPPG4, with the
33% percentile value at −0.19 and the 66% percentile value at −0.52. Here, high correlation values are
considered negative in reference to the theoretical inverse relationship between PAT and BP.
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The performance of the BP linear model is shown on Table 3 and Figure 7 (Bland Altman plots
are seen on Supplementary Figure S1). The average correlation value between the reference SBP and
the estimated SBP is 0.37, while it is 0.30 for DBP. The DBP estimation model satisfies the AAMI
standards and is rated grade A against the BHS and IEEE standards. However, the SBP estimation
model does not satisfy the AAMI standards and is rated grade C and grade D against the BHS and
IEEE standards, respectively.

Table 3. Performance of population BP linear model (N = 2309).

Performance Measure SBP DBP

Correlation to reference 0.37 ± 0.37 0.30 ± 0.38
ME (mmHg) <0.001 <0.001
SDE (mmHg) 11.04 6.25

Cumulative Error < 5 mmHg (%) 41.6 65.7
Cumulative Error < 10 mmHg (%) 69.7 89.8
Cumulative Error < 15 mmHg (%) 85.0 97.0

MAD (mmHg) 8.21 4.58

BP, blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; ME, mean error; SDE, standard
deviation of the error; MAD, mean absolute difference.
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4. Discussion

In general, previous studies of PAT or PTT based BP estimation have used small homogeneous
subject pools to generate models of BP based on particular interventions for induced hemodynamic
change. However, these BP estimation models are not extendable for general use due to the nature
of these experiments, and a comprehensive understanding of the general relationship between these
predictors and BP was unavailable. In this study, biosignal data from a diverse group of 2309 surgical
patients totaling over 6,500,000 cardiac cycles were analyzed. This is the first study to use such a large
heterogeneous dataset to validate the potential of PAT and PTT as predictors of BP. The results of the
analysis indicate that 1) in this experimental setup, the IT point of the PPG is the best to extract PAT or
PTT for BP estimation and 2) PATABP and PATPPG outperform PTT as an indicator for BP. Furthermore,
due to the moderate degree of association between PATPPG and BP, a linear model of PATPPG based
BP was able to output seemingly decent DBP estimate with a simple calibration method, but a more
advanced method is necessary to accurately estimate SBP.

4.1. Pulse Arrival Time Versus Pulse Transit Time: Implications for Practical NCBPM

Contrary to prior studies [51–53], PAT was found to be a superior predictor of BP as compared to
PTT. Many previous studies have shown that PTT, not PAT, is related to BP through arterial compliance,
and have presented experimental evidence that support this idea. For example, in 2006, Payne et al.
showed that due to the effect of PEP, changes in PAT may not be reflected with changes in BP, while
PTT-based BP prediction is unaffected [52]. However, with regards to the development of a practical
mobile NCBPM, PTT is often measured as the time difference between two PPG points (due to the small
size and the low cost of PPG sensors), and this results in PTT that is derived from pulse propagation
paths composed of both large arteries and peripheral arteries.

The smooth muscle interactions in peripheral arteries invalidate the assumptions of the arterial
compliance model of BP [27] and, in contrast, disregarding the effect of PEP, PAT derived between
ECG and ABP is derived from paths composing of large arteries that satisfy the above assumptions.
As seen in Figure 1, the pulse propagation path for the measured PTT is between the radial artery
and the peripheral arteries of the index finger, while the pulse propagation path for the measured
PATPPG includes the path from the heart to the radial artery as well. Overall, the relative distance
of the propagation path unaffected by smooth muscle interactions may be much greater for PATPPG

as compared to PTT, and this is reflected in the correlation results shown in Table 2. The correlation
values between BP and PATPPG are similar to the correlation values between BP and PATABP, while the
correlation values between BP and PTT are significantly lower. This discrepancy indicates that pulse
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propagation timing mainly through large elastic arteries (i.e., PATPPG or PATABP) can be used for BP
estimation, but increasing the ratio of peripheral arteries in the pulse propagation path (i.e., PPG based
PTT) leads to the breakdown of the arterial compliance BP model.

Although previous studies have theorized that smooth muscle interactions in peripheral arteries
would negatively affect PAT or PTT as predictors of BP, quantitative or qualitative analysis of this
concept in regard to NCBPM was unavailable. These results provide evidence for the negative effect
of smooth muscle interactions on the arterial compliance model-based estimation of BP, and provide
insight into the potential modalities capable of measuring parameters related to BP. The measurement
of PTT or PAT in large arteries using invasive means is in agreement with theory and may be ideal
for BP estimation (as seen in the difference between correlation coefficients between BP and PATABP

or PATPPG), but PTT derived from peripheral arteries using non-invasive means such as two PPGs
are not adequate surrogates for BP estimation. To avoid the aforementioned issue, if two peripheral
points of the body are to be used for PTT measurement for NCBPM, alternatives to PPG, such as
mechanical pulse detection, should be used. Additionally, since the correlation values for PATABP and
PATPPG are similar, PAT derived from ECG R-peak and PPG may still have value in BP estimation as
long as the distal point of pulse detection has a long enough pulse propagation path through large
arteries. With consideration of the potential effect of PEP as described in [52,53], the ideal solution
for NCBPM would involve a system which measures PTT from the aortic opening to a distal point
using non-photoplethysmographic means, such as a system composed of seismocardiogram (SCG)
and mechanical pulse detection at the wrist.

4.2. Variability of PAT-BP Relationship

In this dataset consisting of more than 2300 subjects, there is a moderate degree of correlation
between BP and temporal inter-waveform predictors, but the correlation values varied widely with
large standard deviation as shown on Table 2. Many previous studies have shown that age, gender,
BMI, hypertension, and diabetes are associated with changes in PWV [54–57], which also may have
contributed to the subject-specific variability of the relationship between BP and PAT. Since the data
used in this study has the advantage that each recording is associated with the subject’s demographic
data and preoperative data, it was possible to analyze the effect of various factors on the relationship
between BP and PAT.

From the available data, age, gender, body max index (BMI), hypertension, and diabetes were
analyzed as confounding factors on PAT-based BP estimation (effects on the slope and the correlation
between PAT and BP, not on PAT or BP directly). First, the potential effect of the confounders on the
slope between PAT and SBP were assessed by multivariate regression analysis. Age was the sole
factor that had a significant effect on the slope between PAT and SBP, but the effect is miniscule as
can be seen by the low β value. However, none of the risk factors had a significant effect on the
correlation coefficients between SBP and PATPPG4 as shown in Table 4. Similar results were found on
the same multivariate regression analyses with DBP and PATPPG4. Risk factors such as age, gender,
BMI, hypertension, and diabetes could not determine the correlation between BP and PAT with any
significant predictive power, and only age had a miniscule effect on the slope between PAT and BP.
Therefore, the integration of these factors into a BP estimation model may not be needed.
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Table 4. Multivariate regression analysis of risk factors (N = 2309).

Slope between PATPPG4 and SBP Correlation between PATPPG4 and SBP

β SE P-Value VIF β SE P-Value VIF

Age −0.004 0.001 0.000 * 1.145 −0.001 0.001 0.165 1.145
Gender −0.016 0.020 0.411 1.015 −0.014 0.016 0.370 1.015

BMI 0.001 0.003 0.812 1.032 0.001 0.002 0.722 1.032
Hypertension −0.017 0.022 0.442 1.157 −0.003 −0.004 0.860 1.157

Diabetes −0.034 0.031 0.281 1.041 −0.03 −0.025 0.233 1.041

* P < 0.05 for t-test of the regression coefficient. β, parameter estimate (β coefficient); SE, standard error; VIF,
variance influence factor; PAT, pulse arrival time; SBP, systolic blood pressure; BMI, body mass index.

Figure 8 shows a scatter plot of the correlation between BP and PAT on the vertical axis and the
range of change of BP (∆BP) on the horizontal axis for all subjects. In general, the correlation between
BP and PAT becomes more negative with increasing ∆BP, and the variance in the correlation values
becomes smaller. This indicates that PAT acts as a better predictor of BP when there are large BP
fluctuations, but may not be so ideal at lower BP fluctuations. With regards to NCBPM, the implications
of this result may not be significant, as the accurate detection of small changes in BP are not critical as
compared to the detection of larger changes in BP.
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Figure 8. Scatter plot of correlation coefficients between BP and PATPPG4 with respect to range of
change of BP. ‘*’ symbols indicate the mean correlation coefficient for subjects in 20mmHg bins of ∆SBP
or 10mmHg bins of ∆DBP, and vertical bars indicate the standard deviation of correlation coefficient
values. (A) Scatter plot for correlation coefficients between SBP and PATPPG4 with respect to ∆SBP;
(B) Scatter plot for correlation coefficients between DBP and PATPPG4 with respect to ∆DBP. SBP, systolic
blood pressure; DBP, diastolic blood pressure; PAT, pulse arrival time; PPG, photoplethysmogram.

In principle, the correlation between BP and PAT should stay the same no matter the degree of
hemodynamic change, but in practice this does not seem to hold true. There may be many reasons for
this observation, but under the assumption that the correlation should be negative in most cases, large
numbers of positive correlations at smaller ∆BP indicate that the changes in BP cannot be accounted
for by the changes in PAT alone. Other possible reasons for the larger variation at lower ∆BP or lower
∆PAT may be attributed to technical factors (e.g., limitations in analog-to-digital conversion, as smaller
changes in ∆PAT are harder to detect precisely at 100 Hz sampling rate), and other confounding factors
(e.g., changes in cardiac output, which may have relatively larger influence on SBP when ∆PAT is
small). However, considering that these factors were not measured in the current study, no definitive
conclusions can be made with the available information, and a further study is warranted.
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4.3. PAT as a Predictor of BP in Ubiquitous NCBPM

Although the DBP model developed here satisfies AAMI, BHS, and IEEE standards, upon close
inspection, the model output does not follow the reference values in many cases. This can be seen
in the correlation histograms (Figure 7), where the correlations between the estimated value and the
reference value for some subjects are low or are negative. This indicates that although the model as a
whole follows trends in BP change well enough and can satisfy the error criteria, its clinical use is not
ideal, as the estimates for some subjects may provide misleading information endangering a patient in
critical cases. Circadian fluctuations of BP leads to standard deviation between 12–25 mmHg for SBP
and between 8–14 mmHg for DBP [12,58–60], which indicates that PATPPG4 may not be an accurate
predictor of BP for ubiquitous NCBPM purposes, as the range of change of BP is too small to guarantee
that PAT has a high enough correlation to BP. Hence, a method beyond linear regression models is
required, and a further study with more complex methods is warranted to develop a generalizable
model of BP based on PAT.

4.4. Shortcomings of Current BP Monitor Standards with Regards to Beat-by-Beat NCBPM

For the data with large BP variations, high correlation between PAT and BP results in accurate BP
estimates, but for the data with small BP variations, the range of BP are small enough such that even
non-optimal predictors can produce satisfactory results with regards to the error in current BP monitor
standards. This trend is seen in the error rates for DBP and SBP estimations where, although PAT has a
more favorable correlation to SBP, the lower absolute magnitude of DBP led to smaller errors. This
result brings into question the reliability of these BP device standards in relation to beat-by-beat blood
pressure estimation. First, the error-based validation criteria do not reflect the individual cases where a
given subject’s BP estimates are erroneous as long as the overall estimation performance in the sample
population is acceptable. Second, these standards use a few points per subject and thus do not include
a criterion for measuring similarity in trends between the reference and the estimate. For scenarios
with the same absolute error and with opposite correlation values to the reference, these standards
cannot distinguish the better case. For the subject with a negative correlation value but with acceptable
limits of error, the results may be tolerable in the testing BP range, but if the same trend extrapolates to
a larger BP range, the consequences could be dire. With these issues in mind, current standards should
be updated to better determine the performance of the beat-by-beat NCBPM devices being developed.
Without such updates, seemingly adequate devices which are unacceptable for clinical use may obtain
the authentication marks bearing these standards.

4.5. Large Datasets for BP Estimation Model Development

NCBPM has gained wide attraction over the last decade and a growing number of methods are
being developed for non-invasive BP estimation, but a probe into the published research reveals a
key issue that researchers face in this area. As reported by Mukkamala et al. in a well-recognized
review [27], most researchers tend to recruit a small number (n < 100) of homogeneous subjects (usually
young healthy males) for the development of BP estimation algorithm based on features extracted from
non-invasive biosignals. Furthermore, these studies also tend to induce BP change through a certain
type of hemodynamic intervention and use oscillometry or the volume clamp method for reference
BP measurement. These limitations extend to recent articles [61–66] beyond the ones covered in the
review, and the validity of the methods developed with such limitations must be carefully assessed.

In the BHS, AAMI, and IEEE standards for BP monitors, performance in terms of errors are not
the only set of criteria for validating BP monitors, and there are strict guidelines on subject selection as
well as on the reference BP measurement. For example, validation study subjects must include both
normotensive and hypertensive subjects with varying ranges of baseline BP, and the reference BP must
be measured using intra-catheter BP or using auscultation with two separate observers who agree on
the measured value. With reference to ubiquitous BP monitoring, it might be misguided to implement
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a BP estimation model developed using induced hemodynamic change, as BP change could arise from
a wide range of causes. For example, a DBP estimation model developed from a normal healthy subject
with induced BP variability from isotonic exercise will not be able to predict DBP changes of the same
subject during isometric exercise due to the difference in the underlying physiological mechanisms
that cause DBP change in isotonic and isometric exercises [67,68].

These limitations become even more restrictive if they must be considered collectively, and therefore
it is unlikely that a practical NCBPM solution could be developed from such small-scale experiments.
In light of this issue, there have been recent attempts to use large biosignal datasets to make BP
models. Kachuee et al. used approximately 1000 unique subjects from the MIMIC dataset and achieved
acceptable results for DBP [37], Wang et al. achieved more impressive results from the same database,
but only used 72 subjects in total [39], and Ruiz-Rodriguez et al. developed their own PPG database of
572 subjects to estimate BP using deep neural networks, but the results were not clinically adequate [36].
In order to overcome the limitations mentioned above, the database used for BP estimation must
be accessible and consistently reliable in terms of inter-waveform alignment, but both databases
mentioned are lacking in these characteristics.

The database used in this study, the VitalDB, is the first openly available database that could be
used to properly develop and validate BP estimation models using ECG and PPG. The VitalDB has
biosignal data from patients undergoing various types of surgeries, and the data from these subjects
can be used for training and validating BP estimation models. Due to its compliance to all the criteria
mentioned above (i.e., a large heterogeneous subject pool with widely varying BP, reliable reference,
and consistent biosignal measurement), it will be challenging to develop a generalizable BP model that
satisfy the three BP monitor standards for both SBP and DBP using this dataset. Although a satisfactory
DBP linear model was generated in this study, it is the authors’ hopes that the introduction of this
dataset will lead to future studies with more complex approach to BP estimation, perhaps using deep
neural networks, resulting in impressive DBP and SBP models that satisfy the standards and even
overcome the limitations of these standards mentioned above.

4.6. Limitations

There are a few limitations to mention. First, there is a consistent delay between the signals due to
the experimental setup. The exact data collection logic is not known, but the average PATPPG4 was
around 650 ms, which is extremely large compared to previous reports of PAT from ECG to finger PPG.
Although PATPPG varies largely based on the point on PPG at which PAT is extracted, this seems to be
quite large compared to PATABP which averages around 150 ms. Comparing these values to previous
studies with similar setups, it is likely that there exists a delay between ECG, ABP, and PPG. However,
this delay was consistent in the entire dataset with intrasubject PATPPG4 mean ranging between 600 ms
to 670 ms, and intersubject mean at 645 ms and standard deviation at 26 ms, which shows a general
shift of the PAT value from the expected range around 300 ms. Due to the presence of this offset,
the authors have verified with the creators of the database the consistency of this delay throughout
all subject recordings. Hence, due to the uniform protocol in the measurement of the signals in this
dataset, this delay is consistent and does not affect the analyses we have performed in this study.

The second limitation of this study was the variation in the surgery types used in this study.
Although the wide range of surgeries may represent wide sources of hemodynamic change, it also
represents a source of inconsistency in analyses. Different types of surgeries with different anesthesia
call for an in-depth analysis based on anesthesia use and subsequent BP change, but this could
not be done as the timing for the dosing was not exact according to the authors of the database.
Furthermore, certain recordings may include hemorrhage and subsequent blood transfusion events
which would distort pulse wave transmission, making the data unacceptable for some of the analyses
above. However, by pre-processing the dataset with visual inspection, we believe we have eliminated
many of the recordings or parts of recordings with low SNR, and we have performed the analyses
above without taking the type of surgery into consideration as any dataset with such a large subject
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pool would have sources of variations that cannot be accounted for. Additionally, with regards to
the surgical setup of each subject recording, varying the arm positions could have an important
confounding effect on the measurement of PAT or PTT and hence the analyses in the present study.
However, the information on the arm positions were not recorded, and this confounder could not be
taken into account during the analyses.

Lastly, the number of data per subject averaged around 3000 points, but the actual number of data
per subject was different, ranging from 101 points to 22,876 points. However, the same analyses with
100 points per subject yielded similar results with a non-significant difference in the results. In future
studies which use this dataset to develop BP estimation models, the number of data points per subject
should be matched for proper validation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/11/1773/s1,
Figure S1: Bland-Altman plots of the errors between the estimated and reference BP of 2309 subjects, Table S1:
Parameter characteristics of the data (N = 2309).

Author Contributions: Conceptualization, J.L. and S.Y.; methodology, J.L. and S.Y.; software, J.L. and S.Y.;
writing—original draft preparation, J.L. and S.Y.; writing—review and editing, H.C.K. and S.L.; visualization, J.L.
and S.Y.; supervision, H.C.K. and S.L.

Funding: This research was supported by the Bio and Medical Technology Development Program of the National
Research Foundation (NRF) funded by the Korean Government (MSIT) under Grant 2016M3A9F1939646.

Acknowledgments: The authors would like to acknowledge Hyung-Chul Lee, and Chul-Woo Jung, without
whom this work and many studies based on the VitalDB would not be possible, for generously opening their
hard-earned high-quality data to the public for the advancement of medical science.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization (WHO). Cardiovascular Diseases; WHO: Geneva, Switzerland, 2015.
2. Flebach, N.H.; Hebert, P.R.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C.; Rosner, B.; Spelzer, F.E.;

Hennekens, C.H. A prospective study of high blood pressure and cardiovascular disease in women.
Am. J. Epidemiol. 1989, 130, 646–654. [CrossRef] [PubMed]

3. Mac Mahon, S.; Peto, R.; Collins, R.; Godwin, J.; MacMahon, S.; Cutler, J.; Sorlie, P.; Abbott, R.; Collins, R.;
Neaton, J.; et al. Blood pressure, stroke, and coronary heart disease: Part 1, prolonged differences in blood
pressure: Prospective observational studies corrected for the regression dilution bias. Lancet 1990, 335,
765–774. [CrossRef]

4. World Health Organization (WHO). A Global Brief on Hypertension: Silent Killer, Global Public Health Crisis:
World Health Day 2013; WHO: Geneva, Switzerland, 2013.

5. Stamler, J.; Stamler, R.; Neaton, J.D. Blood pressure, systolic and diastolic, and cardiovascular risks: Us
population data. Arch. Inter. Med. 1993, 153, 598–615. [CrossRef]

6. Whelton, P.K. Epidemiology of hypertension. Lancet 1994, 344, 101–106. [CrossRef]
7. Whelton, P.K.; Perneger, T.V.; Brancati, F.L.; Klag, M.J. Epidemiology and prevention of blood pressure-related

renal disease. J. Hypertens. 1992, 10, S85. [CrossRef]
8. Burt, V.L.; Whelton, P.; Roccella, E.J.; Brown, C.; Cutler, J.A.; Higgins, M.; Horan, M.J.; Labarthe, D. Prevalence

of hypertension in the US adult population. Results from the third national health and nutrition examination
survey, 1988-1991. Hypertension 1995, 25, 305–313. [CrossRef]

9. Armitage, P.; Rose, G.A. The variability of measurements of casual blood pressure. I. A laboratory study.
Clin. Sci. 1966, 30, 325–335.

10. Pickering, T.G.; Harshfield, G.A.; Devereux, R.B.; Laragh, J.H. What is the role of ambulatory Blood Press.
Monitor. in the management of hypertensive patients? Hypertension 1985, 7, 171–177. [CrossRef]

11. Frattola, A.; Parati, G.; Cuspidi, C.; Albini, F.; Mancia, G. Prognostic value of 24-hour blood pressure
variability. J. Hypertens. 1993, 11, 1133–1137. [CrossRef]

12. Verdecchia, P.; Porcellati, C.; Schillaci, G.; Borgioni, C.; Ciucci, A.; Battistelli, M.; Guerrieri, M.; Gatteschi, C.;
Zampi, I.; Santucci, A. Ambulatory blood pressure. An independent predictor of prognosis in essential
hypertension. Hypertension 1994, 24, 793–801. [CrossRef]

http://www.mdpi.com/2077-0383/8/11/1773/s1
http://dx.doi.org/10.1093/oxfordjournals.aje.a115386
http://www.ncbi.nlm.nih.gov/pubmed/2773913
http://dx.doi.org/10.1016/0140-6736(90)90878-9
http://dx.doi.org/10.1001/archinte.1993.00410050036006
http://dx.doi.org/10.1016/S0140-6736(94)91285-8
http://dx.doi.org/10.1097/00004872-199212007-00009
http://dx.doi.org/10.1161/01.HYP.25.3.305
http://dx.doi.org/10.1161/01.HYP.7.2.171
http://dx.doi.org/10.1097/00004872-199310000-00019
http://dx.doi.org/10.1161/01.HYP.24.6.793


J. Clin. Med. 2019, 8, 1773 17 of 19

13. Shinagawa, M.; Otsuka, K.; Murakami, S.; Kubo, Y.; Cornelissen, G.; Matsubayashi, K.; Yano, S.; Mitsutake, G.;
Yasaka, K.-I.; Halberg, F. Seven-day (24-h) ambulatory Blood Press. Monitor., self-reported depression and
quality of life scores. Blood Press. Monitor. 2002, 7, 69–76. [CrossRef]

14. Walker, S.P.; Permezel, M.J.; Brennecke, S.P.; Tuttle, L.K.; Higgins, J.R. Patient satisfaction with the SpaceLabs
90207 ambulatory blood pressure monitor in pregnancy. Hypertens. Pregnancy 2004, 23, 295–301. [CrossRef]
[PubMed]

15. Chandrasekaran, V.; Dantu, R.; Jonnada, S.; Thiyagaraja, S.; Subbu, K.P. cuffless differential blood pressure
estimation using smart phones. IEEE Trans. Biomed. Eng. 2013, 60, 1080–1089. [CrossRef] [PubMed]

16. Chen, W.; Kobayashi, T.; Ichikawa, S.; Takeuchi, Y.; Togawa, T. Continuous estimation of systolic blood
pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput. 2000, 38, 569–574.
[CrossRef]

17. Geddes, L.A.; Voelz, M.H.; Babbs, C.F.; Bourland, J.D.; Tacker, W.A. Pulse transit time as an indicator of
arterial blood pressure. Psychophysiology 1981, 18, 71–74. [CrossRef]

18. Gesche, H.; Grosskurth, D.; Küchler, G.; Patzak, A. Continuous blood pressure measurement by using the
pulse transit time: Comparison to a cuff-based method. Eur. J. Appl. Physiol. 2012, 112, 309–315. [CrossRef]

19. Jae Hyuk, S.; Kang Moo, L.; Kwang Suk, P. Non-constrained monitoring of systolic blood pressure on a
weighing scale. Physiol. Meas. 2009, 30, 679.

20. Parry, F.; Dumont, G.; Ries, C.; Mott, C.; Ansermino, M. Continuous Noninvasive Blood Pressure Measurement
by Pulse Transit Time. In Proceedings of the 26th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 738–741.

21. Poon, C.C.Y.; Zhang, Y.T. Cuff-less and Noninvasive Measurements of Arterial Blood Pressure by Pulse
Transit Time. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference,
Shangai, China, 17–18 January 2006; pp. 5877–5880.

22. Solà, J.; Proença, M.; Ferrario, D.; Porchet, J.A.; Falhi, A.; Grossenbacher, O.; Allemann, Y.; Rimoldi, S.F.;
Sartori, C. Noninvasive and nonocclusive blood pressure estimation via a chest sensor. IEEE Trans. Biomed.
Eng. 2013, 60, 3505–3513. [CrossRef]

23. Winokur, E.S.; He, D.D.; Sodini, C.G. A Wearable Vital Signs Monitor at the Ear for Continuous Heart Rate
and Pulse Transit Time Measurements. In Proceedings of the 2012 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012;
pp. 2724–2727.

24. Wong, M.Y.-M.; Poon, C.C.-Y.; Zhang, Y.-T. An evaluation of the cuffless blood pressure estimation based on
pulse transit time technique: A half year study on normotensive subjects. Cardiovasc. Eng. 2009, 9, 32–38.
[CrossRef]

25. Bramwell, J.C. The velocity of pulse wave in man. Proc. R Soc. Lond. B 1922, 93, 298–306. [CrossRef]
26. Nichols, W.E.A. McDonald’s Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles, 6th ed.;

Taylor & Francis: London, UK, 2011.
27. Mukkamala, R.; Hahn, J.O.; Inan, O.T.; Mestha, L.K.; Kim, C.S.; Töreyin, H.; Kyal, S. Toward ubiquitous

blood pressure monitoring via pulse transit time: Theory and practice. IEEE Trans. Biomed. Eng. 2015, 62,
1879–1901. [CrossRef] [PubMed]

28. Puke, S.; Suzuki, T.; Nakayama, K.; Tanaka, H.; Minami, S. Blood pressure estimation from pulse wave
velocity measured on the chest. In Proceedings of the 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6107–6110.

29. Kim, C.-S.; Ober, S.L.; McMurtry, M.S.; Finegan, B.A.; Inan, O.T.; Mukkamala, R.; Hahn, J.-O.
Ballistocardiogram: Mechanism and potential for unobtrusive cardiovascular health monitoring. Sci.
Rep. 2016, 6, 31297. [CrossRef] [PubMed]

30. Kim, C.; Carek, A.M.; Inan, O.T.; Mukkamala, R.; Hahn, J. Ballistocardiogram-Based approach to cuffless
blood pressure monitoring: Proof of concept and potential challenges. IEEE Trans. Biomed. Eng. 2018, 65,
2384–2391. [CrossRef]

31. Proença, J.; Muehlsteff, J.; Aubert, X.; Carvalho, P. Is Pulse Transit Time a Good Indicator of Blood Pressure
Changes during Short Physical Exercise in a Young Population? In Proceedings of the 2010 Annual
International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 21
August–4 September 2010; pp. 598–601.

http://dx.doi.org/10.1097/00126097-200202000-00015
http://dx.doi.org/10.1081/PRG-200030306
http://www.ncbi.nlm.nih.gov/pubmed/15617629
http://dx.doi.org/10.1109/TBME.2012.2211078
http://www.ncbi.nlm.nih.gov/pubmed/22868529
http://dx.doi.org/10.1007/BF02345755
http://dx.doi.org/10.1111/j.1469-8986.1981.tb01545.x
http://dx.doi.org/10.1007/s00421-011-1983-3
http://dx.doi.org/10.1109/TBME.2013.2272699
http://dx.doi.org/10.1007/s10558-009-9070-7
http://dx.doi.org/10.1098/rspb.1922.0022
http://dx.doi.org/10.1109/TBME.2015.2441951
http://www.ncbi.nlm.nih.gov/pubmed/26057530
http://dx.doi.org/10.1038/srep31297
http://www.ncbi.nlm.nih.gov/pubmed/27503664
http://dx.doi.org/10.1109/TBME.2018.2797239


J. Clin. Med. 2019, 8, 1773 18 of 19

32. Peter, L.; Noury, N.; Cerny, M. A review of methods for non-invasive and continuous blood pressure
monitoring: Pulse transit time method is promising? IRBM 2014, 35, 271–282. [CrossRef]

33. Tang, Z.; Tamura, T.; Sekine, M.; Huang, M.; Chen, W.; Yoshida, M.; Sakatani, K.; Kobayashi, H.; Kanaya, S.
A chair-based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time. IEEE J.
Biomed. Health Inf. 2017, 21, 1194–1205. [CrossRef] [PubMed]

34. Becker, S.; Spiesshoefer, J.; Brix, T.; Tuleta, I.; Mohr, M.; Emdin, M.; Boentert, M.; Giannoni, A. Validity of
transit time–based blood pressure measurements in patients with and without heart failure or pulmonary
arterial hypertension across different breathing maneuvers. Sleep Breath. 2019. [CrossRef]

35. Choi, Y.; Zhang, Q.; Ko, S. Noninvasive cuffless blood pressure estimation using pulse transit time and
Hilbert–Huang transform. Comput. Electr. Eng. 2013, 39, 103–111. [CrossRef]

36. Ruiz-Rodríguez, J.C.; Ruiz-Sanmartín, A.; Ribas, V.; Caballero, J.; García-Roche, A.; Riera, J.; Nuvials, X.; de
Nadal, M.; de Sola-Morales, O.; Serra, J.; et al. Innovative continuous non-invasive cuffless blood pressure
monitoring based on photoplethysmography technology. Intensive Care Med. 2013, 39, 1618–1625. [CrossRef]

37. Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuffless blood pressure estimation algorithms
for continuous health-care monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 859–869. [CrossRef]

38. Lo, F.P.-W.; Li, C.X.-T.; Wang, J.; Cheng, J.; Meng, M.Q.-H. Continuous systolic and diastolic blood pressure
estimation utilizing long short-term memory network. In Proceedings of the 2017 39th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July
2017; pp. 1853–1856.

39. Wang, L.; Zhou, W.; Xing, Y.; Zhou, X. A novel neural network model for blood pressure estimation using
photoplethesmography without electrocardiogram. J. Healthcare Eng. 2018. [CrossRef]

40. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.;
Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Compon. N. Res. Resour. Complex
Physiol. Signals 2000, 101, e215–e220. [CrossRef]

41. Johnson, A.E.; Pollard, T.J.; Shen, L.; Li-Wei, H.L.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.;
Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [CrossRef]
[PubMed]

42. Liang, Y.; Abbott, D.; Howard, N.; Lim, K.; Ward, R.; Elgendi, M. How effective is pulse arrival time for
evaluating blood pressure? Challenges and recommendations from a study using the MIMIC database. J.
Clin. Med. 2019, 8, 337. [CrossRef] [PubMed]

43. Lee, H.-C.; Jung, C.-W. Vital Recorder-a free research tool for automatic recording of high-resolution
time-synchronised physiological data from multiple anaesthesia devices. Sci. Rep. 2018, 8, 1527. [CrossRef]
[PubMed]

44. Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 230–236.
[CrossRef] [PubMed]
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