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Bidirectional mechanisms exist that link diseases affecting the

heart and kidney. This link is complex and remains poorly

understood; therefore, charting the shared territory of

cardiovascular (CV) and renal medicine poses major problems.

Until now, no convincing rationale for delineating new

syndromes existed. The multiple connections of the arterial

system and the heart and kidney with other systems, from

energy and protein balance to the musculoskeletal, clearly

require special focus and rigorous framing. Nephrologists have

yet to fully understand why the application of dialysis has had

only limited success in halting the parallel burdens of CV and

non-CV death in patients with end-stage renal disease.

Cardiologists, intensivists, and nephrologists alike should

settle whether and when extracorporeal ultrafiltration benefits

patients with decompensated heart failure. These sparse

but interconnected themes spanning from the basic

science–clinical transition phase to clinical science,

epidemiology, and medical technology already form the basis

for the young discipline of ‘CV and renal medicine’.
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Chronic kidney disease (CKD) is now recognized as a public
health priority in economically developed and developing
countries alike.1,2 Concern about CKD goes far beyond mere
loss of renal function because the risk of fatal and non-fatal
atherosclerotic complications in these patients is much higher
than that of progressing to end-stage renal disease.3 From a
diachronic perspective, CKD is a fundamental element of
transitional epidemiology, an epochal change whereby chronic
diseases have replaced communicable diseases as leading causes
of death and disability.4 Because of the numerous functional
relationships of the kidney with blood pressure and fluid
volume control and with cardiovascular (CV) function in
general, loss of renal function is one of the strongest triggers of
high CV risk. Although the epidemiological burden of CKD at
the population level is now well framed,5 the mechanistic nature
of the relationship between CV and renal disease remains a
complex, hitherto largely unresolved, issue.

THE COMPLEXITY OF THE CV–RENAL LINK

Independently of age, sex, background CV damage, and
Framingham factors, the risk for CV death increases
gradually as renal function deteriorates to be 3.4 times
higher in patients with kidney failure than in individuals with
normal glomerular filtration rate (GFR; 460 ml/min per
1.73 m2) (Figure 1).6 This relationship is generally explained
by assuming a causality chain starting from the kidney. Yet,
the CV–renal link underlies complex reciprocal interorgan
influences, whereby kidney disease may adversely affect the
heart and the arterial system and vice versa.
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Severe CV disease can be triggered in experimental models
by renal mass ablation.7 This intervention triggers left
ventricular hypertrophy, fibrosis, and defective capillarization
in the rat, as well as severe arterial damage with extensive
inflammation, plaque formation, and a propensity to calcified
lesions8,9 in the APO E�/E� mouse. These models support the
hypothesis that left ventricular hypertrophy, defective myocar-
dial oxygen supply, and severe arterial lesions commonly
observed in CKD are the consequence of reduced renal mass.
On the other hand, the reverse possibility—that cardiac disease
may engender the other—is well documented. In uninephrec-
tomized rats, myocardial infarction triggers a marked rise in
albumin excretion rate and a parallel increase in focal
glomerulosclerosis, and both alterations are proportional to
the myocardial necrosis area.10 Myocardial infarction in patients
with coronary heart disease prompts a decline in the GFR of the
same order observed in patients with primary renal diseases.11

In the earlier stages (NYHA I–II) of heart failure, patients
exhibit an early, reversible, but ultimately permanent loss of the
renal vasodilatory response to nitric oxide (NO)-generating
agents.12 As heart failure intensifies in its severity into the
congestive phase (NYHA III–IV), GFR becomes cardiac
output13 and central venous pressure14 dependent such that a
moderate-to-severe reduction in GFR is typical in these patients.

Bidirectional mechanisms exist that link diseases affecting
the heart and the kidney. Activation of the sympathetic and
renin–angiotensin–aldosterone systems, alterations in nitric
oxide bioavailability, inflammation and overproduction of
reactive oxygen species are established common pathophy-
siological pathways mediating clinical outcomes in cardiac
and renal insufficiency. These pathways are causally im-
plicated in the high risk of these conditions because therapies
targeting the same pathways produce unquestionable bene-
ficial effects in patients with either renal or CV diseases.15,16

Parallel aging of the CV system and of the kidney and the
challenge of maintaining energy balance in the face of
anorexic stimuli, inflammation, and oxidative stress is the
obvious common soil of advanced cardiac and renal failure.

Beyond exemplary clinical phenotypes, identifying the
precise time sequence and the directionality of these links is
a very difficult undertaking that is bound to be complicated
by confounders of various kinds. Thus, in heuristic terms,
a systematic approach considering the continuum of the
CV–renal connections rather than a reductionist approach
seems to be a better grounded method for the study of the
risk associated with the CV–renal link in human diseases.

TAXONOMY, SYNDROMES, AND THE CV–RENAL LINK

The term ‘cardiorenal’ as applied to human diseases was
probably used for the first time in 1913 by Thomas Lewis.17

From that time on, this term has been increasingly used in
the medical literature to describe problems of various kinds
related to the heart and/or the arterial system and the kidney.
More recently, it was used to designate a new syndrome, the
cardio–renal syndrome (CRS).18 A description of this syndrome,
contemplating five subtypes, was proposed in 2008 (see ref. 19).
Charting the shared territory of CV and renal medicine at the
present stage of knowledge poses major problems. To illustrate
the current difficulties, we briefly discuss the CRS, which is an
apparently mature construct, specifically.

Establishing a new syndrome requires well-defined under-
pinning conceptual frameworks related to (1) the definition
of criteria for diagnosis and to stages for prognosis; (2) the
synergism of the syndrome components in determining clinical
outcomes; and (3) the uniqueness of treatment decisions.

Definition

The formidable problems related to the definition of the CRS
were well recognized by an expert panel of the AHA in 2004
(see ref. 20), and these difficulties have been recently reiterated in
a narrative review by Bock and Gottlieb.18 In essence, no
accepted definition has been established to date. The proposal of
distinguishing five separate subtypes of CRS19 is based on a
simplistic interpretation of the cardio-renal link in the clinical
setting. However, this praiseworthy attempt at better framing
the CRS fails to provide precise criteria for the general definition
of the syndrome or for the identification of the proposed
underlying subtypes. Furthermore, scarce knowledge on the
implication for survival of renal function decline during
treatment of decompensated heart failure until now has
precluded the development of well-established and convincing
treatment recommendations. Excessive hemoconcentration sec-
ondary to volume removal predicts renal function worsening in
heart failure but this effect is associated with reduced rather
than augmented mortality.21 Beyond CRS, the increasing use of
the term cardio–renal in much broader contexts encompas-
sing anemia22 and diseases with less severe degrees of cardiac and
renal involvement23 further compounds the definition issue.

Synergism of components

Renal dysfunction in decompensated heart failure unques-
tionably signals a high-risk condition.18 Yet, the notion that
CRS is a risk marker above and beyond the risk associated
with its individual components, a criterion that would
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Figure 1 | Relationship between glomerular filtration rate
(GFR) and the risk for cardiovascular events. Data are adjusted
for age, sex, and other Framingham risk factors. HR, hazard rate;
eGFR, estimated GFR.
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support the construct of this syndrome, remains largely
unsupported. Indeed, there is no proof that such a
coexistence has a synergistic effect on clinical outcomes, that
is, an effect greater than that expected from the mere
combination of the two risk factors. For example, proof that a
synergism exists between inflammation and wasting in end-
stage renal disease has been established recently,24 which
supports the construct of the Malnutrition–Inflammation
syndrome. Renal function does not add predictive value to
clinical scores aimed at assisting prognosis in patients with heart
failure25,26 and there is no evidence of biological and/or
statistical interaction between renal function and other compo-
nents of these scores. It is undisputable that a decline in renal
function renders fluid volume control in decompensated heart
failure problematic. However, antinatriuretic mechanisms are
already operative in early heart failure12 when the GFR is still
modestly or not affected, which points to a continuously opera-
ting interdependent process that allows for reciprocal fine-
tuning of cardiac and renal function in heart diseases rather
than to a later, threshold-exceeding event.

Treatment decisions

As to treatment decisions, in line with the general diktat that
clinical monitoring should be comprehensive in severe
systemic diseases, renal function measurement is recom-
mended by current guidelines of heart failure.27 However,
treatment of advanced heart failure remains guided by
cardiorespiratory symptom, exercise tolerance, and hemody-
namic considerations,27 rather than tailored on the basis of
associated clinical conditions and renal failure.

Overall, the lack of robust anchoring of this syndrome to a
precise clinical or pathophysiological rationale is reminiscent
of the problems that emerged after the general proposition of
the ‘metabolic syndrome’, an entity initially recognized and
variously classified by major guideline developers and by the
WHO.28 Indeed, a group of experts appointed by the same
organization recently concluded that ‘metabolic syndrome is a
concept y (that) may be considered useful as an educational
concept, but with limited practical utility as a diagnostic or
management tool’.29 New syndromic entities not supported
by sufficient conceptual grounds should not be considered as
neutral to the course of clinical research because these may
have unpredictable effects on research orientation. Again, the
metabolic syndrome can be taken as a case in point. Genetic
epidemiology of the metabolic syndrome has become a much
pursued research theme. Even though several meaningful
associations between the individual components of the
syndrome and various genes have been documented, as yet,
no genetic factors that encompass all traits of the syndrome
have been identified.30 This might not only simply reflect the
lack of power of analyses performed so far but may also imply
that this syndrome has no unifying basis.

Scoping questions

The ‘omics’ technology now provides unprecedented oppor-
tunities for a new system biology-based approach31 to the

study of the cardio–renal link and for describing the
dynamics of cardio–renal risk factors in the evolution of
human diseases in an integrated view that can match the
Guytonian paradigm. The dawn of new medicine is visible
but time is needed to build up new clinical science based on
system biology and for this science to reap dividends in terms
of health benefits. As to the specifics of the cardio–renal link,
the questions and the problems on the table are disparate and
scoping these questions is important to identify research
priorities. Although deciphering the interrelationship of
endothelial dysfunction, sympathetic overactivity, and the
renin–angiotensin system with CV and renal diseases, an issue
in part in the first phase of translational (T1) research,32 will
certainly take advantage of the application of new technol-
ogies, an understanding of the blood pressure–CV risk
relationship in these diseases and the application of this
knowledge into clinical practice are already on a track that
may rapidly mature to inform clinical practice (T2–T3
phases). The multiple connections of the arterial system
and the heart and the kidney with other systems, from energy
and protein balance to the musculoskeletal system, clearly
require special focus and proper framing. Lingering questions
also remain in relation to the application of extracorporeal
treatments in kidney and heart diseases. Nephrologists are yet
to fully understand why the application of dialysis has had
only limited success in halting the parallel burden of CV and
non-CV death in end-stage renal disease patients,33 an
observation pointing to an array of risk factors having broad
effects on major biological systems rather than to effects
restricted to the CV system. Finally, cardiologists, intensivists,
and nephrologists alike should settle whether and when
extracorporeal ultrafiltration benefits patients with decom-
pensated heart failure.34,35 These are sparse but intercon-
nected themes spanning from the basic science-clinical
transition (T1) phase to clinical science (T2–3), epidemiol-
ogy, and medical technology. We believe that it is important
that investigators in the CV and renal area join their efforts to
frame a common clinical research agenda. Herein, EUropean
Renal and CV medicine investigators pose a series of research
questions on key issues of the CV–renal link that appear
mature for entering the translational phase of research and/or
whose answers may yield useful information to improve
diagnosis, prognosis, and treatment of CV and renal diseases.
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