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Pharmacokinetic/pharmacodynamic (PK/PD) modeling is the 
dominant approach for dose and dosing regimen selection 
in drug discovery and development. It has the unique capa-
bility of incorporating constraints imposed by the underlying 
pharmacology/pathophysiology and offers a rich body of 
behaviors for modeling the relationship between drug dose 
and the time course of drug disposition and effect. The Food 
and Drug Administration requires submission of PK/PD data 
that frequently includes population PK/PD analyses during 
the approval process for new drugs.

The role of genetic and environmental factors for individual-
izing dosing is well established for some drugs. The Food and 
Drug Administration has approved diagnostic tests and labeling 
changes when evidentiary support for genetic testing has been 
defined in clinical trials, e.g., CYP2C9 and VKORC1 diagnostic 
tests for warfarin and HLA-B*5701 testing for abacavir.1–3 When 
the roles of specific candidate genetic variations in drug dispo-
sition and response are known, randomized clinical trials to test 
for pharmacogenetic effects can be easily designed.

However, for many drugs, the genetic factors may be com-
plex and not characterized in advance. Pharmacogenetic 
and pharmacogenomic data obtained via high-throughput 
microarray and sequencing platforms could potentially pro-
vide critical insights into drug action and response variability 
in these situations. Nowadays, DNA is commonly collected 
from subjects enrolled in clinical trials for use in these analy-
ses, and the Food and Drug Administration has issued widely 
disseminated white papers to encourage better utilization of 
both model-based approaches and pharmacogenomic data 
during drug development.

The clinical pharmacology and PK/PD research com-
munities are still struggling to handle genome-wide genetic 
variation data effectively as there is a dearth of system-
atic methods for vertically integrating and leveraging such 
data into PK/PD modeling. The reasons are manifold and 
include interrelated contributions from the size and dimen-
sionality of the data; lack of effective modeling strategies; 
and the high level of user intervention required by the exist-
ing tools.

In previous reports from our group, we have demonstrated 
the usefulness of the K-way interaction information (KWII) 
and phenotype-associated information for gene–environ-
ment interaction (GEI) analysis of discrete phenotypes and 
quantitative traits.4–6 We developed efficient algorithms that 
leverage the computational properties of the phenotype-
associated information metric to search and identify variable 
combinations involved in the strongest interactions.4,5 The GEI 
identified using these methods can be leveraged in modeling 
efforts to identify the mechanisms underlying experimental 
and clinical outcomes; however, the use of these information-
theoretic methods for GEI analysis of PK/PD and clinical out-
comes has not been investigated.

The purpose of this paper was to critically evaluate our 
information-theoretic framework for identifying the key genetic 
variations, gene–gene interactions, and GEI contributing to 
PK/PD, and clinical outcomes of drugs. We demonstrate that 
these methods possess key capabilities for identifying covari-
ates and risk factors from genome-wide pharmacogenomic 
data, which can be used to drive mechanistic modeling in 
clinical systems and population PK/PD.
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REsuLTs
Warfarin PKs
Figure 1 shows the single-nucleotide polymorphism (SNP) 
interactions associated with warfarin area under the concen-
tration–time curve (AUC) for the simulated warfarin PK data 
set. The largest two KWII peaks in Figure 1d (CYP2C9_S1 
and CYP2C9_S2, P < 0.001 for both) are the two SNPs 
known to correspond with reduced CYP2C9 activities. The 
high KWII values represent the associations between these 
two SNPs and warfarin AUC. The Age variable had the third-
highest KWII value (P < 0.0001).

The high KWI value for the second-order combination 
{CYP2C9_S1, CYP2C9_S2, AUC} indicates synergistic inter-
actions between the SNPs. This is in line with our simulation 

as these two SNPs fully define the CYP2C9 effect. This 
example demonstrates that our KWII analysis successfully 
identified all the informative factors included in the simulation 
for warfarin systemic exposure from among 1,004 potential 
predictors, including the second-order interaction between 
both CYP2C9 SNPs.

We also analyzed individual clearance estimates from non-
linear mixed effect model program (NONMEM) using CHO-
RUS. The results were concordant with the analysis of AUC. 
CHORUS successfully identified both CYP2C9 SNPs and 
age as informative covariates of CL (data not shown), indicat-
ing that covariates for model parameters can also be detected 
using the approaches proposed. In addition, the signal-to-
noise ratio for the CL analysis was qualitatively superior to the 

Oral dose

Absorption V1

QKa

CL

V2

400
4

3

2

N
at

ur
al

 lo
g 

of
 A

U
C

1

0

(Age,rs1936875,AUC) 0.025

0.007

0.009

0.005

0.004

0.003

0.004

<0.001

<0.001

<0.001

(Age,rs1031825,AUC)

(Age,rs875864,AUC)

(Age,rs2064595,AUC)

(rs276990,AUC)

C
om

bi
na

tio
n

(rs1441428,AUC)

(Age,AUC)

(CYP2C9_S1,
CYP2C9_S2,AUC)

(CYP2C9_S2,AUC)

(CYP2C9_S1,AUC)

0 0.05 0.1

KWII

0.15 0.2

Age (years)

<30 >80
30–39

40–49
50–59

60–69
70–79

200

0
400

200

0
400

200

0

0

10

20

30

Fr
eq

ue
nc

y

0

10

20

30

0
2 3 4 5

*1/*3 Genotype

*1/*2 Genotype

*1/*1 Genotype

*2/*2 Genotype

*2/*3 Genotype

*3/*3 Genotype

Natural log of area under the curve

6 7

10

20

30

a

b c

d

Figure 1 Simulation data. (a) The model that was used for simulations. The panels in (b) show the histograms for the natural logarithm of the 
area under the curve for the different CYP2C9 genotypes. The simulations used a sample size of 500. However, the bottom three histograms 
in (b) were generated using a sample size of 5,000 for to enhance visual clarity of the lower frequency genotypes. Note that the scales for 
the less frequent *2/*2, *2/*3, and *3/*3 genotypes are different from those for the other genotypes. (c) The dependence of clearance on age 
in the simulations. (d) The top five first- and second-order combinations with the highest KWII values. The permutation-based P values are 
shown against each bar: “rs” labeled combinations represent the noisy SNPs added for complexity. AUC, area under the concentration–time 
curve; CL, clearance; Ka, first-order elimination rate constant; KWII, K-way interaction information; Q, first-order intercompartmental transfer 
rate constant; SNP, single-nucleotide polymorphism ; V1, volume of distribution of the central compartment; V2, volume of distribution of the 
peripheral compartment.
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AUC analysis. For example, the KWII for the first-order combi-
nation {Age, CL} was roughly fourfold higher than the highest 
noisy SNP, whereas the KWII for the {Age, AUC} combination 
was ~18% higher than the highest noisy SNP.

Warfarin PDs
Warfarin response was assessed using international normal-
ized ratio (INR) values from the International Warfarin Phar-
macogenetics Consortium (IWPC) data set as the phenotype. 
Inspection of the data indicated that the normal distribution 
was a reasonable approximation for the distribution of INR in 
the IWPC data set (data not shown).

Figure 2a summarizes the top 10 first- and second-order 
combinations with the highest KWII values and their permuta-
tion-based P values. The KWII analysis indicates strong first-
order associations with Race, VKORC1 genotype, CYP2C9 
genotype, and use of Herbals. Strong second-order associa-
tions were found for Gender, Height, and INR and for Herb-
als, VKORC1, and INR.

We critically assessed the interactions identified by the KWII 
through direct examination of the data. Figure 2b highlights 
the shifting median INR values across the Race variable. The 
leftward shift in the bottom panel of Figure 2b shows that the 
Asian racial group (n = 1,505) has lower mean INR values than 
the Caucasian (n = 2,366) and Black (n = 497) racial groups. 
The histograms in Figure 2c demonstrate lower mean INR val-
ues in the group with VKORC1 GG genotype. A representative 
second-order interaction, {Herbals, VKORC1, INR}, is high-
lighted in Figure 2d. The mean INR in the VKORC1 GG group 
was modestly lower in the group that did not use herbals.

Comparisons to regression results. To further assess the 
results from the KWII analysis, we compared our findings to 
those from multiple linear regression. The regression model 
included the top nine first- and second-order combinations as 
shown in Figure 2b. In the regression analysis, the first-order 
interactions corresponding to Race (partial correlation coef-
ficient r

p = −0.27, P < 0.001), Height (rp = 0.05, P = 0.001), 
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Figure 2 IWPC INR data. (a) Summarizes the top 10 combinations with the highest KWII values with the permutation-based P values 
against each bar. The histograms in (b,c) summarize the dependence of the INR distribution on the Race variable and the VKORC1 (rs7294) 
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Herbals (rp = 0.03, P = 0.033), and CYP2C9 genotype (rp = 
0.029, P = 0.042) were significant. The second-order interac-
tions between Gender and Height (rp = −0.046, P = 0.001) 
and between Weight and Age (rp = −0.032, P = 0.026) were 
also significant. We did not find evidence for associations 
with Weight (P = 0.084), VKORC1 genotype (P = 0.44), or 
the interaction between Herbals and VKORC1 genotype (P 
= 0.65). This comparison demonstrates that the KWII method 
is broadly concordant with multiple linear regression. The dis-
crepancies indicate that the information-theoretic framework 

identifies novel candidate interactions that are not detected by 
regression.

Gemcitabine PKs
Figure 3a is a schematic of the metabolism and transport 
pathways and the mechanism of action for gemcitabine (dFdC) 
and its metabolite (dFdU). Figure 3b,d show the KWII spec-
tra for the top first-order interactions associated with the max-
imum observed concentration of gemcitabine (Cmax mg/l), and 
with gemcitabine clearance (CLgem l/h/m2). The corresponding 
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Figure 3 Gemcitabine PK. (a) The metabolic pathway and direct mechanism of DNA synthesis inhibition for gemcitabine (dFdC) and the 
primary metabolite studied (dFdU). (b) The KWII values for the top six predictors using maximum observed gemcitabine concentration 
(mg/l). The histograms in (c) display the observed distribution of concentrations across quartiles of observed age (left) and genotypes of the 
CDA 208G→A (CDA011) SNP (right). (d) The KWII values for the top six predictors using the natural logarithm of the individual gemcitabine 
clearance values normalized to body surface area. The box-plots in (e) summarize the natural-log transformed values of clearance for the 
individual genotypes of the CDA011 (left) and CDA-116G→A (CDA004, right) SNPs. The reference lines represent the observed population 
mean for the individual predictors. 5′ NT, 5′ nucleotidase; CDA, cytidine deaminase; CL, clearance; CLgem, gemcitabine clearance; Cmax, peak 
plasma concentration; DCK, deoxycytidine kinase; DCTD, deoxycytidylate deaminase; dFdCTP, 2’,2’-difluorodeoxycytidine triphosphate;  ENT, 
equilibrative nucleoside transporter; KWII, k-way interaction information; PK, pharmacokinetic; SNP, single-nucleotide polymorphism.
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plots for clearance of the gemcitabine metabolite dFdU (CLd-

FdU l/hr/m2) and its theoretical volume of distribution (VdFdU l/
m2) are shown in Figure 4a,c, respectively.

First-order interactions with the cytidine deaminase (CDA) 
208G→A (CDA011) and CDA-116G→A (CDA004) SNPs, as 
well as Age (Figure 3c, all P values ≤0.01) were observed for 
Cmax. Figure 3c shows the distribution of Cmax values across 
age groups and CDA011 genotypes in the study population 
and highlights the shifting median values present upon exami-
nation. In addition, trends towards association with Cmax were 
seen with three of the equilibrative nucleoside transporter 
(ENT) SNPs – ENT1 IVS8 + 97T→C (ENT1024, P = 0.028), 
ENT1 1861C→T (ENT1037, P = 0.031), and ENT1-7789T→C 
(ENT1004, P = 0.041). For CLgem, the CDA011 and CDA004 
SNPs, along with Age, exhibited significant first-order interac-
tions (Figure 3d, all P values ≤0.01). Figure 3e highlights the 
shifting median values across genotype groups for the CDA011 
and CDA004 SNPs in the study population. Furthermore, a 
trend (P = 0.012) towards association was found for ENT1004 
(data not shown) with the CLgem phenotype. No significant sec-
ond-order interactions were found for CLgem or Cmax.

Figure 4 shows KWII outputs for CLdFdU and VdFdu. For 
CLdFdu, significant first-order interactions were found for 

pretreatment levels of creatinine and Age. Significant sec-
ond-order interactions for CLdFdU were found between ENT1-
3268_-3249del20bp (ENT1011) and seven CDA SNPs, as 
well as between ENT1011 and four deoxycytidine kinase 
(DCK) SNPs.

Significant first-order interactions with VdFdU were seen for 
body-surface area (BSA), Gender, Age, pretreatment creati-
nine level, CDA011, and CDA004, whereas a trend towards 
association with VdFdU was observed with DCK 1736G→A 
(DCK025). The presence of BSA as a significant first-order 
predictor even after normalization suggests a dispropor-
tional effect from BSA on VdFdU. In addition, for VdFdU, sig-
nificant second-order interactions involving BSA and two 
ENT SNPs, ENT1-5851G→A (ENT1005) and ENT1 IVS7-
121C→T (ENT1021), as well as between BSA and two CDA 
SNPs, CDA-182G→A (CDA003) and CDA IVS2 + 242A→G 
(CDA016), were seen. The significant second-order interac-
tions for VdFdU involve BSA, which is also the first-order inter-
action with the highest KWII value.

Comparisons to population modeling results. Table 1 com-
pares the results from the KWII analyses of CLgem, CLdFdU, 
and VdFdU to the corresponding covariate analyses reported 
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by Sugiyama et al.7 using NONMEM for the nonlinear mixed 
effects modeling.

The KWII analyses identified pretreatment creatinine 
and age to be among the top five predictors for all three PK 
parameters whereas the NONMEM-based analysis identi-
fied creatinine as a covariate only for CLdFdU. Sugiyama et al. 
found the homozygous CDA*3 (208G→A, A70T (CDA011)) 
and heterozygous CDA*3 genotypes, as well as the num-
ber of CDA-31delC deletions to be covariates associated 
with CLgem, whereas the KWII approach identified CDA011 
and CDA004, which are SNPs defining the CDA*3 haplo-
type status and are in strong linkage disequilibrium with one 
another.8

In contrast to both the clearance terms in the original anal-
ysis, BSA was listed as a covariate for VdFdU without normal-
ization. Normalization of VdFdU by BSA was done for our KWII 
analysis to better approximate a normal distribution, and BSA 
was still detected as a significant predictor of VdFdU by the 
KWII suggesting a nonproportional effect of BSA on VdFdU.

Overall, the comparisons in Table 1 indicate extensive 
concordance between the results of study by Sugiyama et 
al. and those from the KWII. For each PK parameter, two or 
more of the covariates identified via nonlinear mixed effects 
modeling were among the top five predictors with the highest 
KWII values.

Gemcitabine-associated toxicities
We also investigated GEI associated with gemcitabine 
treatment–related neutropenia, a dose-limiting toxicity. Neu-
tropenia was defined as nadir grade of neutrophil counts 
≥grade 3.

The significant first-order predictors of serious gemcitabi-
ne-associated neutropenia with the highest KWII values were 
concomitant carboplatin administration (P = 0.01), CDA011 
(P = 0.008), CDA-205C→G (CDA002, P = 0.018), CDA004 
(P = 0.016), and ENT-7947G→A (ENT1003, P = 0.04) geno-
types. Figure 5a,b show the percentage of patients with 
observed neutropenia toxicities for patients receiving carbo-
platin (or not), and for patients with mutated (or wild-type) 
CDA011 genotypes, respectively. Further examination of the 
data revealed that the odds ratio for toxicity associated with 
concomitant carboplatin administration was 4.81 (95% con-
fidence interval = 1.5–15.4). Carrying at least one CDA011 
mutation had an odds ratio of 4.13 (95% confidence interval 
= 1.5–12.0).

The significant second-order combinations with the high-
est KWII values were {CDA-92A→G (CDA005), Combination 
therapy, Neutropenia} (P = 0.006), and {CDA002, ENT1 1984 
+ 69A→C (ENT1039), Neutropenia} (P = 0.008). Figure 5c,d 
show the percentage of patients with observed neutrope-
nia toxicities for the {CDA002, ENT1039, Neutropenia} and 

80 OR = 4.81

OR = 3.11 OR = 0.34

OR = 4.13

40
Fr

eq
ue

nc
y 

of
 n

eu
tr

op
en

ia
 %

Fr
eq

ue
nc

y 
of

 n
eu

tr
op

en
ia

 %

0

0

20

40

60

0

20

40

60

80

40

0
No WT/WT Not WT/WT

Carboplatin treatment CDA011 genotype

WT/WT Not WT/WT

ET1039 genotype

WT/WT Not WT/WT

CDA005 genotype

Yes

No
CDA002 WT/WT CDA002 WT/WT

Yes NoYes Yes
Monotherapy Monotherapy
No YesNo

a b

c d
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{CDA005, Combination therapy, Neutropenia} combinations, 
respectively.

Further inspection of the data revealed that the CDA002 
wt/wt genotype group had greater risk of neutropenia than 
those containing CDA002 non-wt genotypes in individuals 
with ENT1039 wt/wt genotypes (Figure 5c left, odds ratio: 
3.11, 95% confidence interval: 2.6–3.8). In addition, the data 
suggest that gemcitabine monotherapy was associated with 
a reduced risk of neutropenia in the presence of one or more 
CDA005 non-wt alleles as compared with combination ther-
apy (Figure 5d right, odds ratio: 0.34, 95% confidence inter-
val: 0.32–0.37).

The results indicate that the KWII approach is able to 
detect genetic and environmental factors associated with 
drug-related toxicities.

DIsCussION

The objective of this work was to critically evaluate an innova-
tive information-theoretic approach for GEI analysis capable 
of integrating genome-wide pharmacogenomic data into the 
population PK/PD analysis paradigm. We tested the method 
with several challenging data sets and the results provided 
novel findings while also demonstrating concordance with 
published literature.

The inclusion of pharmacogenetic data by Gage et al.9 into 
algorithms for predicting warfarin therapeutic dose improved 
the explained variability to ~54% from the previous 17–22% 
using clinical factors alone. The KWII analysis of INR indi-
cates strong first-order associations with Race, VKORC1 

genotype, CYP2C9 genotype, and use of Herbals. The detec-
tion of concomitant herbal use as an important predictor of 
warfarin INR in the IWPC data set is notable. The potential 
for herbals to interact with warfarin treatment is documented 
in the literature.10 Herbals such as St. John’s wort, ginseng, 
coenzyme Q10, danshen, devil’s claw, green tea, and papain 
have shown evidence of interacting with warfarin in in vitro 
studies and the emergence of Herbals in our KWII analysis 
highlights its potential clinical importance. Information on the 
exact herbals used by subjects was unfortunately not avail-
able in the IWPC data set.

We also analyzed the PKs of gemcitabine and its metabolite 
dFdU. dFdU is eliminated mainly by renal excretion; however, 
the efflux of dFdU by the ENT transporters from the cell into 
the circulation, or from blood to the renal tubule, could repre-
sent a potential rate-limiting step in its elimination. Although 
evidence is emerging supporting a role for ENT1 genotypes in 
the disposition of gemcitabine,11 few studies have confirmed 
these findings. We did not find ENT1 genotypes among the 
top combinations for CLgem. However, for VdFdU, significant sec-
ond-order interactions for two ENT SNPs, ENT1-5851G→A 
(ENT1005) and ENT1 IVS7-121C→T (ENT1021) with BSA 
were found. In addition, trends towards association with gem-
citabine Cmax were found for three ENT SNPs, ENT1 IVS8 + 
97T→C (ENT1024), ENT1 1861C→T (ENT1037), and ENT1-
7789T→C (ENT1004). A role for ENT1039 in combination 
with CDA002 was also detected with gemcitabine-associated 
neutropenia.

From the gemcitabine toxicity data, we detected the 
CDA 208G→A (CDA011) and CDA-116G→A (CDA004) 
SNPs, defining the CDA*3 haplotype, which has previously 
been linked to nucleoside-analog treatment sensitivity and 
increased rates of severe neutropenia during gemcitabine 
monotherapy,12 as well as when gemcitabine is administered 
in combination with platinum-based chemotherapeutics.13

Genetic, environmental, and demographic data are useful 
for building covariate models in population PK/PD analyses, 
which seek to identify sources of variability involved in drug 
disposition and effect. Typically, stepwise selection proce-
dures are used for covariate modeling, which requires itera-
tive refitting, and higher-order interactions are onerous to 
detect even in small data sets. Previous work from our group 
suggests that testing saturated parametric interaction models 
containing as few as 10 predictors may not be feasible on 
desktop computers.14 Minimizing bias in covariate effect esti-
mates and model parameters has been previously assessed 
in population modeling.15–19 Algorithms for building covariate 
models have also been proposed.15,17 For example, Jons-
son and Karlsson developed an automated covariate model 
building strategy within NONMEM17 that helps to evaluate the 
effects of adding a covariate on unrelated parameters and 
tests both linear and nonlinear effects within each run.

Computational issues inherent with genome-scale data 
have not been examined in population PK/PD covariate mod-
eling. Identifying interactions in large pharmacogenetic data 
sets presents computational challenges because the number 
of interactions grows explosively as the number of predictors 
increases. This combinatorial growth makes it computationally 
difficult to exhaustively search the full range of genetic and 
environmental variables for potential interactions associated 

Table 1 Comparison of KWII to the population modeling results using 

NONMEM from Sugiyama et al.7

Parameter NONMEMa Top 5 KWII

CLgem (l/h/m2) CDA*3 (CDA208G→A) 
Homozygous

CDA011  
(CDA208G→A)

CDA*3 (CDA208G→A) 
Heterozygous

CDA004  
(CDA-116G→A)

Number CDA-31delC Age

S-1 coadministration Pretreatment creatinine

CDA007 (CDA-31delC)

CLdFdU (l/h/m2) Age Pretreatment creatinine

Pretreatment creatinine Age

ENT1009 (ENT1-3548G→C)

CDA003 (CDA 182G→A)

ENT1012 (ENT-1355T→C)

VdFdU (l) BSA BSA

Age Age

Gender Gender

Pretreatment creatinine

CDA011 (CDA208G→A)

BSA, body-surface area; CDA, cytidine deaminase; CLdFdU, clearance of the 
gemcitabine metabolite dFdU; CLgem, gemcitabine clearance; ENT, equilibrative 
nucleoside transporter; KWII, k-way interaction information; VdFdU, volume of 
distribution.
aFor CLgem and CLdFdU, the BSA term from the NONMEM model was not 
included in the table as it is implied necessary for individual prediction from  
the units listed.
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with PK/PD and clinical outcomes. Our search algorithms 
leverage information theory to find the most prominent inter-
actions. Another strength of our approach is that it is nonpara-
metric and does not require a structural interaction model: 
covariate(s) and covariate combinations (interactions) can be 
detected with a single unified analysis method. Our approach 
handles large numbers of predictors, collinearity between pre-
dictors, as well as interactions among predictors effectively.

We have shown the potential utility of our information-the-
oretic analysis method in pharmaceutical applications using 
point estimates (Cmax), calculated and individual empirical 
Bayes estimates (NONMEM), as well as overall exposure 
(AUC). We have developed a model-building algorithm that 
selects the parsimonious informative set of predictors.6 The 
explicit quantitative relationships between covariates needed 
for nonlinear mixed effects modeling have to be obtained by 
visual inspection or other regression methods. This becomes 
tractable because number of predictors is reduced. Analysis 
of full longitudinal data is currently a limitation of our method. 
These entropy expressions require consideration of the cor-
relation structure between time points and are an active area 
of ongoing research.

It is important to emphasize that our method is not limited 
to PK/PD data. It can also be used for analysis of non–time 
course data from early drug development or from the clinical 
trial and the postmarketing settings. For example, the method 
could be used to identify drug responder/nonresponder sta-
tus or for analyzing drug–drug interactions in large data-
bases such as the Food and Drug Administration Adverse 
Event Reporting System. The information-theoretic approach 
is versatile for a diverse range of PD response data types 
as it can handle binary, discrete, rate/count, and continuous 
variables.4,5,14 Because the KWII approach does not require 
model specification, it may allow drug response to be criti-
cally analyzed earlier in the development process and could 
therefore, have a significant impact on the overall modeling 
strategy for population analysis.

In conclusion, our information-theoretic approach provides 
novel and effective analytical capabilities for population anal-
yses and for the integration of pharmacogenetic data during 
the analysis of PK/PD and clinical outcomes. It provides a 
systematic framework for identifying and incorporating GEI to 
better assess drug disposition, effect, and outcomes in popu-
lations. Critical analysis earlier in the development process 
could have a significant impact on the overall drug-develop-
ment paradigm.

METHODs

Definitions, terminology, and representation. Definitions of 
GEI, gene–gene interactions, and entropy are provided in 

supplementary Methods online.

KWII. The underlying terminology and representation for the 
KWII and phenotype-associated information20 are concisely 

recapitulated here. For the three-variable case, the KWII is 
defined in terms of the entropies for the individual variables, 
H(A), H(B), and H(C) and the joint entropies, H(A,B), H(A,C), 
H(B,C), and H(A,B,C):

For the K-variable case on the set v = {X1, X2,…,Xk}, the 
KWII can be written succinctly as an alternating sum over all 
possible subsets T of v using the difference operator notation 
of Han:21

 
KWII( ) ( ) ( )| | | |v H Tv T

T v

=
⊆
∑− − −1

  (2)

The number of variables K in a combination is called the 
order of the combination. The KWII represents the gain or 
loss of information due to the inclusion of additional variables; 
it quantifies interactions by representing the information that 
cannot be obtained without observing all K variables at the 
same time.22–25

The KWII of a given combination is a parsimonious inter-
action metric; it does not contain contributions arising from 
the KWII of lower-order combinations (subsets) of these vari-
ables. The KWII was employed as the principal measure of 
GEIs because it is resistant to confounding factors such as 
linkage disequilibrium and correlations among the variables.

In the bivariate case, the KWII is always nonnegative, but 
in the multivariate case, the KWII can be positive or negative. 
We define positive KWII values to indicate interactions (or net 
synergy) between the variables and negative KWII values to 
indicate net redundancy between variables. A value of zero 
indicates the net absence of K-way interactions.

Computational algorithms
CHORUS algorithm. CHORUS is an information-theoretic 
search algorithm for detecting GEI that is based on the KWII. 
The algorithm employs the phenotype-associated informa-
tion to facilitate efficient searching of combinatorial space. 
The details of CHORUS are described in Chanda et al.5

Significance testing. For continuous phenotypes, the signifi-
cance of KWII combinations was assessed using a permu-
tation-derived P value from 10,000 random permutations of 
the phenotype.

Warfarin PKs. Simulation studies were conducted to assess 
the capability of our GEI analysis method to identify covari-
ates in a warfarin population PK data analysis. Concentra-
tion profiles following a 10 mg oral dose of warfarin were 
simulated using the structural and variance model parameter 
values from the warfarin population PK model developed by 
Hamberg et al.26 The model is shown in Figure 1a, with inter-
individual variability terms for CL, V1, and V2.

Natural-log transformed values of the AUC and individual 
clearance estimates from NONMEM (CL, in ml/h) were used 
as phenotypes.

We used a P value ≤0.01 to determine significance. 
The simulations are described in detail in supplementary 
 Methods online.

Warfarin PDs. The IWPC Warfarin Data Set was obtained 
from PharmGKB.27 The INR was used as the phenotype of 
interest. All patients in the reported IWPC cohort had a target 
INR of 2–3: the reported INR values in the data set represent 

KWII (A,B,C) = −H(A) − H(B) − H(C) + H(A,B) 
                         + H(A,C) + H(B,C) − H(A,B,C)

(1)
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the treatment INR achieved over a period during which the 
dose of warfarin was stable.28 The IWPC warfarin data set 
contains candidate genetic variations known to affect warfa-
rin response including CYP2C9 and VKORC1 (rs7294); how-
ever, as it lacks sufficient size to adequately challenge our 
information-theoretic method, we created a hybrid data set in 
which 1,000 SNPs from the GAW15 Problem 1 data set were 
appended to each subject.

The results from the KWII analysis were compared with the 
findings from linear regression. Details of the methodology 
are provided in supplementary Methods online.

Gemcitabine PKs. Genetic information and gemcitabine 
clinical and PK/PD data were collected from 256 Japanese 
patients with cancer receiving gemcitabine (dFdC). The data 
were collected in the National Cancer Center in Japan and 
the National Institute of Health Sciences in Japan. All meth-
ods and protocols for the original studies were approved by 
the ethics committees of the National Cancer Center and 
the National Institute of Health Sciences and have previ-
ously been described.7,8,29 Part of the data is available at the 
Genome Medicine Database of Japan (http://gemdbj.nibio.
go.jp).

We performed an information-theoretic analysis using our 
algorithm, CHORUS,4 a set of 94 candidate genes (including 
polymorphisms from the genes for CDA, DCK, and ENT1), 
and patient characteristics including age, BSA, pretreatment 
creatinine levels, and gender. Continuous predictors were 
discretized into four groups using the observed quartiles as 
thresholds. Because the candidate gene set contained both 
existing and novel polymorphisms,7,8,29,30 we introduced each 
polymorphism using specific notation and subsequently refer 
to it using the provided abbreviated notation.

The following calculated PK parameters were individually 
analyzed as phenotypes of interest: (i) systemic clearance of 
gemcitabine (CLgem), (ii) the maximum plasma concentration 
(Cmax) of gemcitabine, (iii) systemic clearance of the metabo-
lite 2′,2′-difluorodeoxyuridine (dFdU; CLdFdU), and (iv) appar-
ent VdFdU.

All parameters except Cmax were normalized to BSA and 
log-transformed to reduce skew in the data and to better 
approximate a normal distribution.

We used a P value ≤0.01 to determine significance; a trend 
was defined as a P value ≤0.05.

Gemcitabine toxicities. The data described above for “Gemcit-
abine PKs” were used. The neutrophil count nadir grade during 
treatment was used to assess toxicity (evaluated according to 
the National Cancer Institute Common Toxicity Criteria, ver-
sion 2). We defined the toxicity phenotype as a binary variable 
depending on whether or not the nadir grade was 3 or higher. 
The variable “monotherapy” was added to indicate whether 
or not gemcitabine was given alone. Complete patient demo-
graphics and baseline values are described elsewhere.7

Given the limited sample size and higher expected vari-
ability inherent in PD data sets, a P value ≤0.05 was used to 
determine significance.
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